• Tidak ada hasil yang ditemukan

2 The Art of Making Polymeric Membranes

2.6 Summary

Membranes, both polymeric and ceramic, play an important role in pharmaceutical and medical sciences and have a great future in many different directions of their appli-cations, such as artificial organs, drug delivery and others. Many other applications also seem to remain unexplored.

For each application, membranes for a desired performance are expected to be designed and manufactured. We still remain in the infant stage in this respect. Even though chemical and physical properties of the membrane, especially those of the membrane surface, are known to govern the membrane performance, they depend on the many parameters involved in membrane fabrication. Because of the complexity arising among those parameters, to make a desirable membrane for a particular aim is still considered to be an art, even several decades after the emergence of industrial membrane processes.

There is hence a strong urge in the membrane community to design and fabricate the membrane on a more rational basis. The authors strongly believe that all the studies on membrane transport, based on newly developed software, and membrane characteriza-tion using modern physical instruments, should be directed toward achieving this goal.

Figure 2.11 Schematic diagram for measuring the tensile strength of films.

62 Handbook of Polymers for Pharmaceutical Technologies

References

1. BCC Research, Medical Membrane Devices: Markets and Technologies, Report Code:

MST043E, Published: January 2012.

2. Metcalf and Eddy, Wastewater Engineering, Treatment and Reuse, 4th ed., McGraw-Hill, New York, 2004.

3. B. Su, S. Sun, C. Zhao, “Polyethersulfone hollow fiber membranes for hemodialysis,” in:

A. Carpi, C. Donadio, G. Tramonti, eds., Progress in Hemodialysis – From Emergent Biotechnology to Clinical Practice, INTEC, Chap. 4, ISBN: 978-953-307-377-4, 2011.

4. C.S. Zhao, T. Liu. Z.P. Lu, L.P. Cheng, J. Huang, An evaluation of a polyethersulfone hollow fiber plasma separator by animal experiment, Artificial Organs, 25 (1), 60–63. 2001.

5. D. Hutmacher, M.B. Hürzeler, H. Schliephake, A review of material properties and biore-sorbable polymers and devices for GTR and GBR applications, JOMI on CD-Rom, 667–678, May 1996.

6. E.F. Schmitt, R.A. Palistina, Polyglycolic acid prosthetic devices, US patent no. 3739 773, 1973.

7. A.G. Kanani, H. Bahrami, Review on electrospun nanofibers scaffold and biomedical appli-cations, Trends Biomater Artif Organs, 24 (2), 93–115, 2010.

8. W.J. Kolff, H.Th.J. Berk, M. Welle, A.J.W. van der Ley, E.C. van Dijk, J. van Noordwijk, The artificial kidney: A dialyzer with great area, Acta Med Scand, 117, 121–134, 1944.

9. M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, The Netherlands, 1992.

10. D.F. Stamatialis, B.J. Papenburg, M. Gironés, S. Saiful, S.N.M. Bettahalli, S. Schmitmeier, M. Wessling, Medical applications of membranes: Drug delivery, artificial organs and tissue engineering, J Membr Sci, 308 (1–2), 1–35, 2008.

11. J. Ren, R. Wang, “Preparation of polymeric membranes,” in: Handbook of Environmental Engineering, vol. 13, 47–100, 2008.

12. V.P. Khare, A.R. Greenberg, W.B. Krantz, Vapor-induced phase separation effect of the humid air exposure step on membrane morphology: Part I. Insights from mathematical modeling,J Membr Sci, 258 (1–2), 140–156, 2005.

13. J.J. Kim, J.R. Hwang, U.Y. Kim, S.S. Kim, Operation parameters of melt spinning of polypro-pylene hollow fiber membranes, J Membr Sci, 108 (1–2), 25–36, 1995.

14. Y.S. Kang, H.J. Kim, U.Y. Kim, Asymmetric membrane formation via immersion precipita-tion method. I. Kinetic effect, J Membr Sci, 60 (2–3), 219–232, 1991.

15. K.V. Peinemann, M. Konrad, V. Abetz, Highly ordered membrane structures from block copolymers, Desalination, 199 (1–3), 124–126, 2006.

16. R.L. Fleischer, P.B. Price, E.M. Symes, Novel filter for biological materials, Science, 143 (3603), 249–250, 1964.

17. P. Apel, Track etching technique in membrane technology, Radiation Measurements, 34 (1–6), 559–566, 2001.

18. A.R. Harutyunyan, B.K. Pradhan, G.U. Sumanasekera, E.Yu. Korobko, A.A. Kuznetsov, Carbon nanotubes for medical applications, European Cells and Materials, 3 (2), 84–87, 2002.

19. G. Bhat, Y. Lee, “Recent advancements in electrospun nanofibers,” in: T.S. Srivatsan, and R.A.

Vain, eds., Proceedings of the Twelfth International Symposium of Processing and Fabrication of Advanced Materials, TMS, 2003.

20. K. Namekawa, M.T. Schreiber, T. Aoyagi, M. Ebara, Fabrication of zeolite–polymer com-posite nanofibers for removal of uremic toxins from kidney failure patients, Biomater Sci, 2 (5), 674–679, 2014.

The Art of Making Polymeric Membranes 63 21. International Centre for Materials (MANA), Smart nanofibers to treat kidney failure,

ScienceDaily, March 6, 2014.

22. J. Doshi, M.H. Mainz, G.S. Bhat, Nanofiber-Based Nonwoven Composites, in: Proceedings of the Tenth TANDEC Nonwoven Conference, Knoxville, Nov 8–10, TN, 2000.

23. R. Vasita, D.S. Katti, Nanofibers and their applications in tissue engineering, Int J Nanomedicine, 1 (1), 15–30, 2006.

24. P. Gupta, G.L. Wilkes, Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach, Polymer, 44 (20), 6353–6359, 2003.

25. F. Li, Y Zho, Y. Song, Core-shell nanofibers: Nano channel and capsule by coaxial electros-pinning, Nanofibers, ISBN: 978-953-7619-86-2, Chap. 22, 420–438, 2010.

26. B. Hoyer, G. Sørensen, N. Jensen, D.B. Nielsen, B. Larsen, Electrostatic spraying: A novel technique for preparation of polymer coatings on electrodes” Anal Chem, 68 (21), 3840–

3844, 1996.

27. M.E. Aalami-Aleagha, S.S. Madaeni, P. Daraei, A new application of thermal spray in prepa-ration of metallic membrane for concentprepa-ration of glucose solution, Journal of Thermal Spray Technology, 18 (4), 519–524, 2009.

28. D.J. Dixon, K.P. Johnston, R. Bodmeier, Polymeric materials formed by precipitation with compressed fluid antisolvent, AIChE J, 39 (1), 127–139, 1993.

29. H. Matsuyama, H. Yano, T. Maki, M. Teramoto, K. Mishima, K. Matsuyama, Formation of porous flat membrane by phase separation with supercritical CO2 . J Membr Sci, 194 (2), 157–163, 2001.

30. S.P. Adiga, C. Jin, L.A. Curtiss, N.A. Monteiro-Riviere, R.J. Narayan, Nanoporous membranes for medical and biological applications, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1 (5), 568–581, 2009.

31. J. Sa-nguanruksa, R. Rujiravanit, P. Supaphol S. Tokura, Porous polyethylene membranes by template-leaching technique: Preparation and characterization, Polym Test, 23 (1), 91–99, 2004.

32. P. Roy-Chowdhury, V. Kumar, Fabrication and evaluation of porous 2,3-dialdehydecellulose membranes as a potential biodegradable tissue engineering scaffold, J Biomed Mater Res, 76A (2), 300–309, 2006.

33. K.C. Khulbe, C.Y. Feng, T. Matsuura, “Synthetic membranes for membrane processes,” in:

Synthetic Polymeric Membranes: Characterization by Atomic Force Microcopy, Springer, Chap. 2, 2008.

34. L.H. Cheng, A. Karim, C.C. Seow, Characterization of composite films made of konjac glu-comannan (KGM) carboxymethylcellulose (CMC) and lipid, Food Chem, 107 (1), 411–418, 2008.

35. R.P. Shaikh, V. Pillay, Y.E. Choonara, L.C. du Toit, V.M.K. Ndesendo, P. Bawa, S. Coopan, A review of multi-responsive systems for rate-modulated drug delivery, AAPS Pharm Sci Tech, 11 (1), 441–459, 2010.

36. M.H. Ho, P.Y. Kuo, H.J. Hsieh, T.Y. Hsien, L.T. Hou, J.Y. Lai, D.M. Wang, Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods, Biomat, 25 (6), 1129–1328, 2004.

37. M. Qiu, J. Feng, Y. Fan, N. Xu, Pore evolution model of ceramic membrane during con-strained sintering, J Mater Sci, 44 (3), 689–699, 2009.

38. Y. Liu, K. Li, Preparation of SrCe0.95Yb0.5O3-α hollow fiber membranes: Study on sintering processes, J Membr Sci, 259 (1–2), 47–54, 2005.

39. K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomat, 27 (18), 3413–

3431, 2006.

64 Handbook of Polymers for Pharmaceutical Technologies

40. M.A. Islam, A. Dimov, On the mechanism of the formation of the porous structure in the filled polyethylene film by thermomechanical deformation, J Appl Polym Sci, 45 (6), 1035–

1340, 1992.

41. E. Karpov, V.E. Lavrentyev, G. Rosova, G. Elyashevich, Vysokomol Soyed A, 37, 20, 1995.

42. G. Elyashevich, A. Kozlov, I. Meneva, Study of polyethylene orientation in the course of porous structure formation, Vysokomol Soyed B, 40, 483–486, 1998.

43. A. Uchiyama, T. Yatabe, Orientated film having pores, Teijin Ltd., U.S. patent no. 6177153, 2001.

44. Y. Mizutani, S. Nagou, Process for the production of porous polyolefin, Tokuyama Corp., U.S. patent no. 6245270, 2001.

45. L.T. Rozelle, J.E. Cadotte, K.E. Cobian, C.V. Kopp Jr. “Nonpolysaccharide membranes for reverse osmosis: NS-100 membranes,” in: S. Sourirajan, ed., Reverse Osmosis and Synthetic Membranes: Theory – Technology – Engineering, National Research Council of Canada:

Ottawa, 249–261, 1977.

46. R.J. Petersen, Composite reverse osmosis and nanofiltration membranes, J Membr Sci, 83 (1), 81–150, 1993.

47. M.A. Balachandra, G.L. Baker, M.L. Bruening, Preparation of composite membranes by atom transfer radical polymerization initiated from a porous support, J Membr Sci, 127 (1–2), 227, 2003.

48. C. Ronco, Sorbents: From bench to bedside. Can we combine membrane separation pro-cesses and adsorbent based solute removal?, Int J Artif Organs, 29 (9), 819–822, 2006.

49. S. Saiful, Mixed matrix membrane adsorbers of protein and blood purification, Ph.D. thesis, University of Twente, Enschede, p. 162, 2007.

50. M.S.L. Tijink, M. Wester, G. Glorieux, K. Gerritsen, J. Sun, P.C. Swart, Z. Borneman, M.

Wessling, R. Vanholder, J.A. Joles, D. Stamatialis, Mixed matrix hollow fiber membranes for removal of protein-bound toxins from human plasma, Biomaterials, 34 (32), 7819–7828, 2013.

51. M.E. Avramescu, Preparation of mixed matrix adsorber membranes for protein recovery, J Membr Sci, 218 (1–2), 219–233, 2003.

52. M.S.L. Tijink, J. Kooman, M. Wester, J. Sun, S. Saiful, J.A. Joles, Z. Borneman, M. Wessling, D.F. Stamatialis, Mixed matrix membrane: A new asset for blood purification therapies, Blood Purif, 37 (1), 1–3, 2014.

53. R. Klotzer, et al., Method of producing hollow fiber polymer membranes, U.S. patent no.

5980795, 1999.

54. J.H. Ryu, M.S. Lee, Hollow fiber membrane and method for manufacturing the same, U.S.

patent application: 20090039102, 2009.

55. C.C. Pereira, R. Nobrega, K.V. Peinemann, C.P. Borges, Hollow fiber membrane obtained by simultaneous spinning of two polymer solutions: A morphological study, J Membr Sci, 226 (1–2), 35–50, 2003.

56. T.T. Moore, W.J. Koros, Non-ideal effects in organic–inorganic materials for gas separation membranes, J Molecul Struct, 739 (1–3) 87–98, 2005.

57. Y. Yoo, Z. Lai, H.K. Jeong, Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth, Micro Meso Mater, 123 (1–3), 100–106, 2009.

58. Y. Liu, Z. Ng, A.E. Khan, H.K. Jeong, C.B. Ching, Z. Lai, Synthesis of continious MOF-5 membranes on porous α-alumina substrates, Micro Meso Mater, 118 (1–3), 296–301, 2009.

59. J. Caro, M. Noack, Zeolite membranes: Recent developments and progress, Micro Meso Mater, 115 (3), 215–233, 2008.

The Art of Making Polymeric Membranes 65 60. M. Shah, M.C. McCarthy, S. Sachdeva, A.K. Lee, H.K. Jeong, Current status of metal-organic

framework membranes for gas separations: Promises and challenges, Ind Eng Chem Res, 51 (5), 2179–2199, 2012.

61. R.J. Kuppler, D.J. Timmons, Q.R. Fang, J.R., Li, T.A. Makal, M.D. Young, D. Yuan, D. Zhao, W. Zhuang, H.C. Zhou, Potential applications of metal-organic frameworks, Coordination Chemistry Reviews, 253 (23–24), 3042–3066, 2009.

62. S. Keskin, S. Kizilel, Biomedical applications of metal organic frameworks, Ind Eng Chem Res, 50 (4), 1799–1812, 2011.

63. K.C. Khulbe, C. Feng, T. Matsuura, The art of surface modification of synthetic polymeric membranes, J Appl Polym Sci, 115 (2), 855–895, 2010.

64. M.B. Clark, C.A. Burkhhardt, J.A. Gardella Jr., Surface studies of polymer blends, 4: An ESCA, IR, and DSC study of the effects of homopolymer molecular weight on crystallin-ity and miscibilcrystallin-ity of ppoly(ε-caprolactone)/poly(vinyl chloride) homopolymer blends, Macromolecules, 24 (3), 799–805, 1991.

65. D.E. Suk, G. Chowdhury, T. Matsuura, R.M. Narbaitz, P. Santerre, G. Pleizer, Y. Deslandes, Study on the kinetics of surface migration of surface modifying macromolecules in mem-brane preparation, Macromolecules, 35 (8), 3017–3021, 2002.

66. M. Khayet, D.E. Suk, R.M. Narbaitz, J.P. Santerre, T. Matsuura, Study on surface modifica-tion by surface-modifying macromolecules and its applicamodifica-tions in membrane-separamodifica-tion processes, J Appl Polym Sci, 89 (11), 2902–2916, 2003.

67. J.F. Hester, P. Banerjee, Y.Y. Won, A. Akthakul, M.H. Acar, A.M. Mayes, ATRP of amphiphi-lic graft copolymers based on PVDF and their use as membrane additives. Macromolecules, 35 (20), 7652–7661, 2002.

68. P. Alexander, A.P. Kharitonov, L.N. Kharitonova, Surface modification of polymers by direct fluorination: A convenient approach to improvecommercial properties of polymeric arti-cles, Pure Appl Chem, 81 (3), 451–471, 2009.

69. Q.W. Dai, Z.K. Xu, H.T. Deng, Z.M. Liu, J. Wu, P. Seta, Surface modification of microporous polypropylene membranes by graft polymerization of n,n-imethylaminoethyl methacry-late, Chinese Journal of Polymer Science, 22 (4), 369–377, 2004.

70. L.Y. Chu, S. Wang, W.M. Chen, Surface modification of ceramic-supported polyethersulfone membranes by interfacial polymerization for reduced membrane fouling, Macromolecular Chemistry & Physics, 206 (19), 1934–1940, 2005.

71. S.X. Liu, J.T. Kim, Characterization of surface modification of polyethersulfone membrane, J Adhes Sci Technol, 25 (1–3), 193–212, 2011.

72. K.R. Kull, M.L. Steen, E.R. Fisher, Surface modification with nitrogen-containing plasmas to produce hydrophilic, low fouling membranes, J Membr Sci, 246 (2), 203–215, 2005.

73. R.L. Fleischer, P.B. Price, R.M. Walker, Nuclear Tracks in Solids: Principals and Applications, University of California Press, Berkeley, 1975.

74. Y.Q. Wang, Ion beam analysis of ion-implanted polymer thin films, Nucl Instrum Meth B, 161–163, 1027–1032, 2000.

75. V. Kulshrestha, G. Agarwal, K. Awasthi, B. Tripathi, D. Vyas, Y.K. Vijay, I.P. Jain, Microstructure change in poly(ethersulfone) films by swift heavy ions, Micron, 41 (4), 390–

394, 2010.

76. X.L. Xu, M.R. Coleman, Atomic force microscopy images of ion-implanted 6FDA-pMDA polyimide films, J Appl Polym Sci, 66 (3), 459–469, 1997.

77. A. Ameri, M. Gholami, N. Nasseri, T. Matsuura, Modification of polyether sulfone (PES) hollow fiber membranes characteristics for more efficient water treatment process, Iran J Public Health, 33, 49–55. 2004.

66 Handbook of Polymers for Pharmaceutical Technologies

78. M. Gholami, S. Nasseri, C.Y. Feng, T. Matsuura, K.C. Khulbe, The effect of heat-treatment on the ultrafiltration performance of polyethersulfone (PES) hollow fiber membranes, Desalination, 155 (3), 293–301, 2003.

79. J. Charkoudian, A. Xenopoulos, J. Lynch, “Hydrophilic, heat stable, low protein bind-ing surface modification of PVDF membranes,” in: M. Asaeda, A. Ayral, V.N. Burganos, J.D. LeRoux, R.D. Noble, eds., Symposium AA – Membranes–Preparation, Properties and Applications, MRS Proceedings series, 752, AA3. 3, 2002.

80. T.S. Chung, L. Shao, P.S. Tin, Surface modification of polyimide membranes by diamines for H2 and CO2 separation, Macromol Rapid Commun, 27 (13), 998–1003, 2006.

81. Y. Maekawa, Y. Suzuki, K. Maeyama, N. Yonezawa, M. Yoshida, Visualization of chemical modification of pore internal surface using fluorescence microscopy, Chemistry Lett, 33 (2), 150–151, 2004.

82. B.D. Reid, V.H.M. Ebron, I.H. Musselman, J.P. Ferraris, K.J. Balkus, Enhanced gas selectivity in thin film composite membranes of poly(3-(2-acetoxyethyl)thiophene), J Membr Sci, 195, 181–192, 2002,

83. D.G. Yu, W.C. Lim, M.C. Yang, Surface modification of poly(l-lactic acid) membrane via layer-by-layer assembly of silver nanoparticle-embedded polyelectrolyte multilayer, Bioconjug Chem, 18 (5), 1521–1529, 2007.

84. Z.-K. Xu, X.-J. Huang, L.-S. Wan, “Techniques for membrane surface characterization,” in:

Surface Engineering of Polymer Membranes (Advanced Topics in Science and Technology in China), pp. 5–63, Springer Berlin Heidelberg, 2009.

85. K.C. Khulbe. C.Y. Feng, T. Matsuura, “Membrane characterization,” in: Water and Wastewater Treatment Technologies: Encyclopedia of Life Support Systems (EOLSS) Membrane Processes, vol. 1, ISBN: 978-1-84826-427-4 (eBook), ISBN: 978-1-84826-877-7 (Print Volume). 2010.

86. G.Z. Cao, J. Meijerink, H.W. Brinkman, A.J. Burggraaf, Permporometry study on the size distribution of active pores in porous ceramic membranes, J Membr Sci, 83 (2), 221–235, 1993.

87. E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distribu-tion in porous substances. I: Computadistribu-tions from nitrogen isotherms, J Am Chem Soc, 73 (1), 373–380, 1951.

88. S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange mem-branes for fuel cell preparation, Int J Hydrogen Energy, 35 (17), 9349–9384, 2010.

89. J.A. Dean, The Analytical Chemistry Handbook, New York, McGraw Hill, 1995.

90. J. Brandrup, ed., Polymer Handbook, John Wiley & Sons, Inc., ISBN 0-471-16628-6, 1999.

67

Vijay Kumar Thakur and Manju Kumari Thakur, Handbook of Polymers for Pharmaceutical Technologies, Volume 2 (67–94) © 2015 Scrivener Publishing LLC

*Corresponding author: [email protected]

3