• Tidak ada hasil yang ditemukan

Acknowledgments

Dalam dokumen Drug Delivery System (Halaman 191-194)

much greater than the maximum collisional quenching con-stant (2.0 × 1010M−1/s), the static quenching is dominant in these drug–chitosan complexes [48].

3. Molecular modeling was often used to predict the binding sites for drug–polymer complexes. The spectroscopic results were combined with docking experiments in which Dox, FDox, Tam, 4-Hydroxytam, and endoxifen molecules were docked to chitosan to determine the preferred binding sites on the poly-mer. The models of the docking for drug are shown in Fig. 10.

The docking results showed that drugs are surrounded by sev-eral donor atoms of chitosan C–O, N–H, and NH2 groups on the surface with a free binding energy of −3.89 (Dox), −3.76 (FDox), −3.46 (Tam), −3.54 (4-Hydroxytam), and −3.47 kcal/mol (Fig. 10). It should be noted that FDox is located near chitosan C–O, N–H, and NH2 groups with a hydrogen bonding system between drug O-213 and chitosan N-19 atoms (2.922 Ǻ) (Fig. 10). As one can see, drugs are not sur-rounded by similar donor groups showing different binding modes in these drug–chitosan complexes (Fig. 10).

References

1. Agudelo D, Nafisi S, Tajmir-Riahi HA (2013) Encapsulation of milk beta-lactoglobulin by chitosan nanoparticles. J Phys Chem B 117:

6403–6409

2. Amidi M, Mastrobattista E, Jiskoot W, Hennink WE (2010) Chitosan- based delivery systems for protein therapeutics and antigens.

Adv Drug Deliv Rev 62:59–82

3. Gan Q, Wang T (2007) Chitosan nanoparti-cles as protein delivery carrier-systematic examination of fabrication conditions for effi-cient loading and release. Colloids Surf B:

Biointerfaces 59:24–34

4. Pacheco N, Gamica-Gonzalez M, Gimeno M, Barzana E, Trombotto S, David L, Shirai K (2011) Structural characterization of chitin and chitosan obtained by biological and chemical methods. Biomacromolecules 12:3285–3290 5. Rabea EI, Badawy MET, Stevens CV, Smagghe

G, Steurbaut W (2003) Chitosan as antimicro-bial agent: application and mode of action.

Biomacromolecules 4:1457–1465

6. Dang JM, Leong KW (2006) Natural poly-mers for gene delivery and tissue engineering.

Adv Drug Deliv Rev 58:487–499

7. Mao S, Shuai X, Unger F, Simon M, Bi D, Kissel T (2004) The depolymerization of chi-tosan: effects on physicochemical and biologi-cal properties. Int J Pharm 281:45–54

8. Saranya N, Moorthi A, Saravanan S, Pandima Devi M, Selvamurugan N (2011) Chitosan and its derivatives for gene delivery. Int J Biol Macromol 49:234–238

9. Shu Z, Zhu K (2000) A novel approach to pre-pare tripolyphosphate:chitosan complex beads for controlled release drug delivery. Int J Pharm 201:51–58

10. Souza KS, Gonc-alves MDP, Gomez J (2011) Effect of chitosan degradation on its interac-tion with β-lactoglobulin. Biomacromolecules 12:1015–1029

11. Sanyakamdhorn S, Agudelo D, Tajmir-Riahi HA (2013) Encapsulation of antitumor drug doxorubicin and its analogue by chitosan nanoparticles. Biomacromolecules 14:557–563 12. Agudelo D, Sanyakamdhorn S, Nafisi S,

Tajmir-Riahi HA (2013) Transporting antitu-mor drug tamoxifen and its metabolites, 4-hydroxytamoxifen and endoxifen by chito-san nanoparticles. PLoS ONE 8(1–11):

e60250

13. Bowman K, Leong KW (2006) Chitosan nanoparticles for oral drug and gene delivery.

Int J Nanomedicine 1:117–128

14. Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, Moreira PI (2009) Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16:3267–3285 15. Minotti G, Menna P, Salvatorelli E, Cairo G,

Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity.

Pharmacol Rev 56:185–229

16. Turner A, Li LC, Pilli T, Qian L, Wiley EL, Setty S, Christov K, Ganesh L, Maker AV, Li P, Kanteti P, Gupta TKD, Prabhakar BS (2013) MADD knock-down enhances doxorubicin and TRAIL induced apoptosis in breast cancer cells. PLoS ONE 8(1–8):e56817

17. Jordan VC (2006) Tamoxifen (ICI46,474) as a targeted therapy to treat and prevent breast can-cer. Br J Pharmacol 147(Suppl):S269–S276 18. Spears M, Bartlett J (2009) The potential role

of estrogen receptors and the SRC family as targets for the treatment of breast cancer.

Expert Opin Ther Targets 13:665–674 19. Brauch J, Jordan VC (2009) Targeting of

tamoxifen to enhance antitumour action for the treatment and prevention of breast cancer.

Eur J Cancer 45:2274–2283

20. Jordan VC (2007) New insights into the metabolism of tamoxifen and its role in the treatment and prevention of breast cancer.

Steroids 72:829–842

21. Acton EM, Tong GL (1981) Synthesis and preliminary antitumor evaluation of 5-Iminodoxorubicin. J Med Chem 24:

669–673

22. Bérubé G, Richardson VJ, Ford CHJ (1991) Synthesis of new N-(trifluoroacetyl) doxorubi-cin analogues. Synthetic Comm 21:931–944 23. Fauq AH, Maharvi GM, Sinha D (2010) A

convenient synthesis of (Z)-4-hydroxy-N- desmethyltamoxifen (endoxifen). Bioorg Med Chem Lett 15:3036–3038

24. Brugnerotto J, Lizardi J, Goycoolea FM, Arguelles-Monal W, Desbrieres J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization.

Polymer 42:3569–3580

25. Palpandi C, Shanmugam V, Shanmugam A (2009) Extraction of chitin and chitosan from shell and operculum of mangrove gastropod nerita (Dostia) crepidularia lamarcck. Intl J Med Med Sci 1:198–205

26. Beng XDB, Zhilian Y, Eccleston ME, Swartling J, Slater NKH, Kaminski CF (2008) Fluorescence intensity and lifetime imaging of

free and micellar-encapsulated doxorubicin in living cells. Nanomedicine 4:49–56

27. Engelke M, Bojarski P, Blob R, Diehl H (2001) Tamoxifen perturbs lipid bilayer order and permeability: comparison of DSC, fluores-cence anisotropy, laurdan generalized polariza-tion and carboxyfluorescein leakage studies.

Biophys Chem 90:157–173

28. Dufour C, Dangles O (2005) Flavonoid-serum albumin complexation: determination of binding constants and binding sites by fluo-rescence spectroscopy. Biochim Biophys Acta 1721:164–173

29. Froehlich E, Jennings CJ, Sedaghat-Herati MR, Tajmir-Riahi HA (2009) Dendrimers bind human serum albumin. J Phys Chem B 113:6986–6993

30. He W, Li Y, Xue C, Hu Z, Chen X, Sheng F (2005) Effect of Chinese medicine alpinetin on the structure of human serum albumin.

Bioorg Med Chem 13:1837–1845

31. Sarzehi S, Chamani J (2010) Investigation on the interaction between tamoxifen and human holo-transferrin: determination of the binding mechanism by fluorescence quenching, reso-nance light scattering and circular dichroism methods. Int J Biol Macromol 47:558–569 32. Bi S, Ding L, Tian Y, Song D, Zhou X, Liu X,

Zhang H (2004) Investigation of the interac-tion between flavonoids and human serum albumin. J Mol Struct 703:37–45

33. Iranfar H, Rajabi O, Salari R, Chamani J (2012) Probing the interaction of human serum albumin with ciprofloxacin in the pres-ence of silver nanoparticles of three sizes: mul-tispectroscopic and ζ potential investigation. J Phys Chem B 116:1951–1964

34. Lakowicz JR (2006) In principles of fluores-cence spectroscopy, 3rd edn. Springer, New York

35. Taye N, Rungassamy T, Albani JR (2009) Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins.

J Pharm Biomed Anal 50:107–116

36. Skovstrip S, Hansen SG, Skrydstrup T, Schiott B (2010) Conformational flexibility of chito-san: a molecular modeling study.

Biomacromolecules 11:3196–3207

37. Manikrao AM, Mahajan NS, Jawarkar DR, Khatale PN, Kedar KC, Thombare KS (2012) Docking analysis of darunnavir as HIV prote-ase inhibitors. J Comput Meth Mol Des 2:29–43

38. Agudelo D, Beauregard M, Bérubé G, Heidar- Ali Tajmir-Riahi HA (2012) Antibiotic doxo-rubicin and its derivative bind milk beta-lactoglobulin. J Photochem Photobiol B 117:185–192

39. Agudelo D, Bourassa P, Bruneau J, Berubé G, Asselin E, Tajmir-Riahi HA (2012) Probing the binding sites of antibiotic drug doxorubi-cin and N-(trifluoroacetyl) doxorubidoxorubi-cin with human and bovine serum albumins. PLoS ONE 7(8):1–13, e43814

40. Ahmed Belatik A, Hotchandani S, Carpentier R, Tajmir-Riahi HA (2012) Locating the bind-ing sites of Pb(II) ion with human and bovine serum albumins. PLoS ONE 7(5):1–11, e36723

41. Mandeville JS, Tajmir- Riahi HA (2010) Complexes of dendrimers with bovine serum albumin. Biomacromolecules 11:465–472 42. Charbonneau DM, Tajmir-Riahi HA (2010)

Study on the Interaction of cationic lipids with bovine serum albumin. J Phys Chem B 114:

1148–1155

43. Bourassa P, Kanakis DC, Tarantilis P, Polissiou MG, Tajmir-Riahi HA (2010) Resveratrol, genistein and curcumin bind bovine serum albumin. J Phys Chem B 114:3348–3354 44. Froehlich E, Mandeville JF, Arnold D, Kreplak L,

Tajmir-Riahi HA (2012) Effect of PEG and mPEG-anthracene on tRNA aggregation and arti-cle formation. Biomacromolecules 13:282–287 45. Froehlich E, Mandeville JF, Arnold D, Kreplak

L, Tajmir-Riahi HA (2011) PEG and mPEG- anthracene induce DNA condensation and particle formation. J Phys Chem B 115:

9873–9879

46. Mandeville JS, N’soukpoé-Kossi CN, Neault JF, Tajmir-Riahi HA (2010) Structural analysis of DNA interaction with retinol and retinoic acid. Biochem Cell Biol 88:469–477

47. Mandeville JS, Froehlich E, Tajmir-Riahi HA (2009) Study of curcumin and genistein inter-actions with human serum albumin. J Pharm Biomed Anal 49:468–474

48. Zhang G, Que Q, Pan J, Guo J (2008) Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy. J Mol Struct 881:132–138

49. Jiang M, Xie MX, Zheng D, Liu Y, Li XY, Chen X (2004) Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin. J Mol Struct 692:71–80

50. Huang DC, Piché M, Ma G, Jean-Jacques M, Khayat M (2010) Early detection and treat-ment monitoring of human breast cancer MCF-7 using fluorescence imaging. ART Advanced Research Technologies Inc. www.

art.ca/docs/publications/WMIC2010_

MCF7.pdf

51. Gong C, Qi T, Wei X et al (2013) Thermosensitive polymeric hydrogels as drug delivery systems. Curr Med Chem 20:79–94

185

Kewal K. Jain (ed.), Drug Delivery System, Methods in Molecular Biology, vol. 1141, DOI 10.1007/978-1-4939-0363-4_12, © Springer Science+Business Media New York 2014

Chapter 12

A Method for Evaluating Nanoparticle Transport

Dalam dokumen Drug Delivery System (Halaman 191-194)