• Tidak ada hasil yang ditemukan

Grafik Tegangan Keluaran vs Waktu

TINJAUAN PUSTAKA

2.3 Arang Aktif

Arang merupakan suatu padatan berpori yang mengandung 85-95% karbon, dihasilkan dari bahan-bahan yang mengandung karbon dengan pemanasan pada suhu tinggi. Ketika pemanasan berlangsung, diusahakan agar tidak terjadi kebocoran udara di dalam ruangan pemanasan sehingga bahan yang mengandung karbon tersebut hanya terkarbonisasi dan tidak teroksidasi. Arang selain digunakan sebagai bahan bakar, juga dapat digunakan sebagai adsorben (penyerap). Daya serap ditentukan oleh luas permukaan partikel dan kemampuan ini dapat menjadi lebih tinggi jika terhadap arang tersebut dilakukan aktifasi dengan aktivator bahan-bahan kimia ataupun dengan pemanasan pada temperatur tinggi. Dengan demikian, arang akan mengalami perubahan sifat-sifat fisika dan kimia. Arang yang demikian disebut sebagai arang aktif.

sangat halus, diameter pori mencapai 1000A0, digunakan dalam fase cair, berfungsi untuk memindahkan zat-zat penganggu yang menyebabkan warna dan bau yang tidak diharapkan, membebaskan pelarut dari zat-zat penganggu dan kegunaan lain yaitu pada industri kimia. Diperoleh dari serbuk-serbuk gergaji, ampas pembuatan kertas atau dari bahan baku yang mempunyai densitas kecil dan mempunyai struktur yang lemah. Arang aktif sebagai penyerap uap, biasanya berbentuk granular atau pellet yang sangat keras diameter pori berkisar antara 10- 200 A0 , tipe pori lebih halus, digunakan dalam fase gas, berfungsi untuk memperoleh kembali pelarut, katalis, pemisahan dan pemurnian gas. Diperoleh dari tempurung kelapa, tulang, batubata atau bahan baku yang mempunyai bahan baku yang mempunyai struktur keras.

Sifat arang aktif yang paling penting adalah daya serap. Dalam hal ini, ada beberapa faktor yang mempengaruhi daya serap adsorpsi, yaitu :

1. Sifat Adsorben

Arang aktif yang merupakan adsorben adalah suatu padatan berpori, yang sebagian besar terdiri dari unsur karbon bebas dan masing- masing berikatan secara kovalen. Dengan demikian, permukaan arang aktif bersifat non polar. Selain kompisisi dan polaritas, struktur pori juga merupakan faktor yang penting diperhatikan. Struktur pori berhubungan dengan luas permukaan, semakin kecil pori-pori arang aktif, mengakibatkan luas permukaan semakin besar. Dengan demikian kecepatan adsorpsi bertambah. Untuk meningkatkan kecepatan adsorpsi, dianjurkan agar menggunakan arang aktif yang telah dihaluskan. Jumlah atau dosis arang aktif yang digunakan, juga diperhatikan.

2. Sifat Serapan

Banyak senyawa yang dapat diadsorpsi oleh arang aktif, tetapi kemampuannya untuk mengadsorpsi berbeda untuk masing- masing senyawa. Adsorpsi akan bertambah besar sesuai dengan bertambahnya ukuran molekul serapan dari stuktur yang sama, seperti dalam deret homolog. Adsorpsi juga dipengaruhi oleh gugus fungsi, posisi gugus fungsi, ikatan rangkap, struktur rantai dari senyawa serapan.

3. Temperatur

Dalam pemakaian arang aktif dianjurkan untuk menyelidiki.temperatur pada saat berlangsungnya proses. Karena tidak ada peraturan umum yang bisa diberikan

mengenai temperatur yang digunakan dalam adsorpsi. Faktor yang mempengaruhi temperatur proses adsoprsi adalah viskositas dan stabilitas thermal senyawa serapan. Jika pemanasan tidak mempengaruhi sifat-sifat senyawa serapan, seperti terjadi perubahan warna maupun dekomposisi, maka perlakuan dilakukan pada titik didihnya. Untuk senyawa volatil, adsorpsi dilakukan pada temperatur kamar atau bila memungkinkan pada temperatur yang lebih kecil.

4. pH (Derajat Keasaman)

Untuk asam-asam organik adsorpsi akan meningkat bila pH diturunkan, yaitu dengan penambahan asam-asam mineral. Ini disebabkan karena kemampuan asam mineral untuk mengurangi ionisasi asam organik tersebut. Sebaliknya bila pH asam organik dinaikkan yaitu dengan menambahkan alkali, adsorpsi akan berkurang sebagai akibat terbentuknya garam.

5. Waktu Singgung

Bila arang aktif ditambahkan dalam suatu cairan, dibutuhkan waktu untuk mencapai kesetimbangan. Waktu yang dibutuhkan berbanding terbalik dengan jumlah arang yang digunakan. Selain ditentukan oleh dosis arang aktif, pengadukan juga mempengaruhi waktu singgung. Pengadukan dimaksudkan untuk memberi kesempatan pada partikel arang aktif untuk bersinggungan dengan senyawa serapan. Untuk larutan yang mempunyai viskositas tinggi, dibutuhkan waktu singgung yang lebih lama.

Pada penelitian ini arang aktif yang digunakan adalah arang aktif Aquasorb® 1000. Arang aktif Aquasorb ® 1000 adalah media kerja yang berbentuk butiran-butiran karbon aktif yang dibuat dengan aktivasi uap dari batubara bitumen yang mutunya diseleksi. Produk arang aktif ini memiliki bahan adsorbent dengan nilai densitas yang tinggi dan menghasilkan volume pengaktivasi yang maksimum. Arang aktif ini memiliki karakteristik antara lain sebagai berikut luas permukaan = 950 m2/g ; total volume pori = 0,88 cm3/g ; apparent density = 500 kg/m3 ; pH = 8 ; ball pan hardness number = 96%. (Lampiran D)

2.4Keramik

Keramik didefinisikan sebagai seni dan ilmu membuat dan menggunakan partikel padat yang mempunyai bagian material inorganik nonmetalik sebagai komponen terpentingnya (Kingery et al., 1976). Keramik adalah bahan yang keras, memiliki senyawa polikristalin, biasanya inorganik, termasuk silika, metalik oksida, karbida dan bahan bahan hidrida, sulfida dan seleneida. Oksida seperti Al2O3, MgO, SiO2 dan ZrO2 mengandung bahan metalik dan unsur nonmetalik serta garam ionik seperti NaCl, CsCl dan ZnS.

Keramik berasal dari bahasa Yunani keramos/keramikos yang berarti periuk atau belanga yang terbuat dari tanah yang dibakar. Keramik adalah semua benda-benda yang terbuat dari tanah liat/lempung yang mengalami suatu proses pengerasan dengan pembakaran suhu tinggi. Pengertian keramik yang lebih luas

dan umum adalah “bahan yang dibakar tinggi” termasuk di dalamnya semen,

gips, metal dan lainnya. Sebelum diproses menjadi keramik, segi penting sifat bubuk mineralnya adalah ukuran partikel (yang mengganti sifat akhir) serta distribusi sifat partikel (mempengaruhi rapatan).

Secara umum keramik merupakan paduan antara logam dan non logam , senyawa paduan tersebut memiliki ikatan ionik dan ikatan kovalen yang memiliki sifat-sifat sebagai berikut :

a. Sifat Mekanik

Keramik merupakan material yang kuat, keras dan juga tahan korosi.Selain itu keramik memiliki kerapatan yang rendah dan juga titik lelehnya yang tinggi.Keterbatasan utama keramik adalah kerapuhannya, yakni kecenderungan untuk patah tiba-tiba dengan deformasi plastik yang sedikit. Di dalam keramik, karena kombinasi dari ikatan ion dan kovalen, partikel- partikelnya tidak mudah bergeser.

Faktor rapuh terjadi bila pembentukan dan propagasi keretakan yang cepat. Dalam padatan kristalin, retakan tumbuh melalui butiran (trans granular)

dan sepanjang bidang cleavage (keretakan) dalam kristalnya. Permukaan tempat putus yang dihasilkan mungkin memiliki tekstur yang penuh butiran atau kasar. Material yang amorf tidak memiliki butiran dan bidang kristal yang teratur, sehingga permukaan putus kemungkinan besar terjadi. Kekuatan tekan penting untuk keramik yang digunakan untuk struktur seperti bangunan.Kekuatan tekan keramik biasanya lebih besar dari kekuatan tariknya. Untuk memperbaiki sifat ini biasanya keramik di-pretekan dalam keadaan tertekan

b. Sifat Termal

Sifat termal bahan keramik adalah kapasitas panas, koefisien ekspansi termal, dan konduktivitas termal. Kapasitas panas bahan adalah kemampuan bahan untuk mengabsorbsi panas dari lingkungan. Panas yang diserap disimpan oleh padatan antara lain dalam bentuk vibrasi (getaran) atom/ion penyusun padatan tersebut.

Keramik biasanya memiliki ikatan yang kuat dan atom-atom yang ringan. Jadi getaran-getaran atom-atomnya akan berfrekuensi tinggi dan karena ikatannya kuat maka getaran yang besar tidak akan menimbulkan gangguan yang terlalu banyak pada kisi kristalnya.

Sebagian besar keramik memiliki titik leleh yang tinggi, artinya walaupun pada temperatur yang tinggi material ini dapat bertahan dari deformasi dan dapat bertahan dibawah tekanan tinggi. Akan tetapi perubahan temperatur yang besar dan tiba-tiba dapat melemahkan keramik. Kontraksi dan ekspansi pada perubahan temperatur tersebutlah yang dapat membuat keramik pecah.

c. Sifat elektrik

Sifat listrik bahan keramik sangat bervariasi.Keramik dikenal sangat baik sebagai insulator. Beberapa sifat isolator keramik (seperti BaTiO3) dapat dipolarisasi dan digunakan sebagai kapasitor. Keramik lain menghantarkan elektron bila energi ambangnya dicapai dan oleh karena itu disebut semikonduktor. Tahun 1986, keramik jenis baru yakni superkonduktor temperatur kritis ditemukan. Bahan jenis ini di bawah suhu kritisnya memiliki hambatan = 0. Akhirnya keramik yang disebut sebagai sebagai piezoelektrik dapat menghasilkan respons listrik akibat tekanan mekanik atau sebaliknya

sebagian besar keramik adalah isolator. Namun, konduktivitas keramik dapat ditingkatkan dengan memberikan ketakmurnian. Energi termal juga akan mempromosikan elektron ke pita konduksi, sehingga dalam keramik, konduktivitas meningkat (hambatan menurun) dengan kenaikan suhu.

Beberapa keramik memiliki sifat piezoelektrik, atau kelistrikan tekan.Sifat

ini merupakan bagian bahan “canggih” yang sering digunakan sebagai sensor.

Dalam bahan piezoelektrik, penerapan gaya atau tekanan dipermukaannya akan menginduksipolarisasi dan akan terjadi medan listrik, jadi bahan tersebut mengubah tekananmekanis menjadi tegangan listrik. Bahan piezoelektrik digunakan untuk tranduser,yang ditemui pada mikrofon, dan sebagainya.Dalam bahan keramik, muatan listrik dapat juga dihantarkan oleh ion-ion.Sifat ini dapat diubah-ubah dengan merubah komposisi, dan merupakan dasar banyak aplikasi komersial, dari sensor zat kimia sampai generator daya listrik skala besar.Salah satu teknologi yang paling prominen adalah sel bahan bakar.

d. Sifat Optik

Bila cahaya mengenai suatu obyek cahaya dapat ditransmisikan, diabsorbsi, atau dipantulkan. Bahan bervariasi dalam kemampuan untuk mentransmisikan cahaya, dan biasanya dideskripsikan sebagai transparan, translusen, atau opaque. Material yang transparan, seperti gelas mentransmisikan cahaya dengan difus, seperti gelasterfrosted, disebut bahan translusen. Batuan yang opaque tidak mentransmisikan cahaya. Dua mekanisme penting interaksi cahaya dengan partikel dalam padatan adalah polarisasi elektronik dan transisi elektron antar tingkat energi. Polarisasi adalah distorsi awan elektron atom oleh medan listrik dari cahaya. Sebagai akibat polarisasi, sebagian energi dikonversikan menjadi deformasi elastik (fonon), dan selanjutnya panas.

e. Sifat kimia

Salah satu sifat khas dari keramik adalah kestabilan kimia. Sifat kim ia dari permukaan keramik dapat dimanfaatkan secara positif. Arang aktif, silika gel, zeolit, dsb, mempunyai luas permukaan besar dan dipakai sebagai bahan pengabsorb. Kalau oksida logam dipanaskan pada kira-kira 5000C, permukaannya menjadi bersifat asam atau bersifat basa. Alumina, zeolit, lempung asam atau S2O2 – TiO2 demikian juga berbagai oksida biner dipakai

sebagai katalis, yang memanfaatkan aksi katalitik dari titik bersifat asam dan basa pada permukaan.

f. Sifat fisik

Sebagian besar keramik adalah ikatan dari karbon, oksigen atau nitrogen dengan material lain seperti logam ringan dan semilogam. Hal ini menyebabkan keramik biasanya memiliki densitas yang kecil. Sebagian keramik yang ringan mungkin dapat sekeras logam yang berat. Keramik yang keras juga tahan terhadap gesekan. Senyawa keramik yang paling keras adalah berlian, diikuti boron nitrida pada urutan kedua dalam bentuk kristal kubusnya. Aluminum oksida dan silikon karbida biasa digunakan untuk memotong, menggiling, menghaluskan dan menghaluskan material-material keras lain.

Dokumen terkait