Role of Citron K in the Development of Cerebral Cortex
2. Conclusion
availability of neurotrophins, especially of BDNF. Similar changes in interneuron morphology have been reported in patients bearing corti-cal malformations and epilepsy (Ferrer et al., 1992; Garbelli et al., 1999;
Thom et al., 2000). As for pyramidal neurons, these effects could be the outcome of a complex interplay between genetic and epigenetic con-straints. The cerebral cortex in the CIT-K −/− mice is strikingly altered, with an overall decrease in thickness due to deprivation of supragran-ular layers. This might change the availability of trophic factors, which are reported to be very important in dendritic growth (McAllister et al., 1995). Also, afferents are capable to influence PV expression in visual cortex (Cellerino et al., 1992).
6. Cellerino, A., Siciliano, R., Domenici, L., and Maffei, L. (1992). Parvalbumin immunoreactivity: a reliable marker for the effects of monocular deprivation in the rat visual cortex. Neuroscience 51:749–753.
7. Cipelletti, B., Avanzino, G., Vitellaro-Zuccarello, L., Franceschetti, S., Sancini, G., Gavazza, T., Acampora, D., Simeone, A., Spreafico, R., and Frassoni, C. (2002). Morphological organization of somatosensory cortex in Otx1(−/−) mice. Neuroscience 115:657–667.
8. Cobas, A., Welker, E., Fairen, A., Kraftsik, R., and Van der Loos, H. (1987).
GABAergic neurons in the barrel cortex of the mouse: an analysis using neuronal archetypes. J. Neurocytol. 16:843–870.
9. DeFelipe, J., Huntley, G.W., del Rio, M.R., Sola, R.G., and Morrison, J.H. (1994). Microzonal decreases in the immunostaining for non-NMDA ionotropic excitatory amino acid receptor subunits GluR 2/3 and GluR 5/6/7 in the human epileptogenic neocortex. Brain Res. 657:150–158.
10. Di Cunto, F., Calautti, E., Hsiao, J., Ong, L., Topley, G., Turco, E., and Dotto, G.P. (1998). Citron rho-interacting kinase, a novel tissue-specific ser/thr kinase encompassing the Rho-Rac-binding protein Citron. J. Biol. Chem.
273:29706–29711.
11. Di Cunto, F., Imarisio, S., Hirsch, E., Broccoli, V., Bulfone, A., Migheli, A., Atzori, C., Turco, E., Triolo, R., Dotto, G.P., Silengo, L., and Altruda, F. (2000).
Defective neurogenesis in citron kinase knockout mice by altered cytokinesis and massive apoptosis. Neuron 28:115–127.
12. Di Cunto, F., Ferrara, L., Curtetti, R., Imarisio, S., Guazzane, S., Broccoli, V., Bulfone, A., Altruda, F., Vercelli, A., and Silengo, L. (2003). Role of citron kinase in dendritic morphogenesis of cortical neurons. Brain Res Bull. 60:319–
327.
13. Fairen, A., DeFelipe, J., and Regidor, J. (1984). Nonpyramidal neurons: Gen-eral account. In: Cerebral cortex, Vol 1, Cellular components of the cerebral cortex (Peters A, Jones EG, eds), pp 201–245, New York, Plenum.
14. Ferrer, I., Pineda, M., Tallada, M., Oliver, B., Russi, A., Oller, L., Noboa, R., Zujar, M.J., and Alcantara, S. (1992). Abnormal local-circuit neurons in epilepsia partialis continua associated with focal cortical dysplasia. Acta Neuropathol. (Berl) 83:647–652.
15. Ferster, D., and Jagadeesh, B. (1992). EPSP-IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording. J. Neurosci. 12:1262–
1274.
16. Funahashi, A., Darmanto W., and Inouye, M. (1997). Cortical fiber distri-bution in the somatosensory cortex of rats following prenatal exposure to X
-irradiation. Environ. Med. 41:37–39.
17. Furuyashiki, T., Fujisawa, K., Fujita, A., Madaule, P., Uchino, S., Mishina, M., Bito, H., and Narumiya S. (1999). Citron, a Rho-target, interacts with PSD-95/SAP-90 at glutamatergic synapses in the thalamus. J. Neurosci. 19:109–
118.
18. Gallo, G., and Letourneau, P.C. (1998). Axon guidance: GTPases help axons reach their targets. Curr. Biol. 8:R80–82.
19. Garbelli, R., Munari, C., De Biasi, S., Vitellaro-Zuccarello, L., Galli, C., Brame-rio, M., Mai, R., Battaglia, G., and Spreafico, R. (1999). Taylor’s cortical dys-plasia: a confocal and ultrastructural immunohistochemical study. Brain Pathol. 9:445–461.
20. Glaser, J.R., and Glaser, E.M. (1990). Neuron imaging with Neurolucida–a PC-based system for image combining microscopy. Comput. Med. Imaging Graph. 14:307–317.
21. Gonchar, Y., and Burkhalter, A. (1997). Three distinct families of GABAergic neurons in rat visual cortex. Cereb. Cortex 7:347–358.
22. Gonchar, Y., and Burkhalter, A. (1999A). Connectivity of GABAergic calretinin-immunoreactive neurons in rat primary visual cortex. Cereb. Cor-tex 9:683–696.
23. Gonchar, Y., and Burkhalter, A. (1999B). Differential subcellular localiza-tion of forward and feedback interareal inputs to parvalbumin expressing GABAergic neurons in rat visual cortex. J. Comp. Neurol. 406:346–360.
24. Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science 279:509–
514.
25. Hirose, M., Ishizaki, T., Watanabe, N., Uehata, M., Kranenburg, O., Moole-naar, W.H., Matsumura, F., Maekawa, M., Bito, H., and Narumiya, S. (1998).
Molecular dissection of the Rho-associated protein kinase (p160ROCK)-regulated neurite remodeling in neuroblastoma N1E-115 cells. J. Cell Biol.
141:1625–1636.
26. Jefferys, J.G., Traub, R.D., and Whittington, M.A. (1996). Neuronal networks for induced ’40 Hz’ rhythms. Trends Neurosci. 19:202–208.
27. Jones, E.G., and Hendry, S.C.H. (1986). Co-localization of GABA and neu-ropeptides in neocortical neurons. Trends Neurosci., 9:71–76.
28. Jones, E.G. (1993). GABAergic neurons and their role in cortical plasticity in primates. Cereb. Cortex 3:361–372.
29. Kawaguchi, Y. (1995). Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex.
J. Neurosci. 15:2638–2655.
30. Killackey, H. P., and Belford, G. R. (1980). Central correlates of peripheral pattern alterations in the trigeminal system of the rat. Brain Res., 183:205–
210.
31. Kozma, R., Sarner, S., Ahmed, S., and Lim, L. (1997). Rho family GTPases and neuronal growth cone remodelling: relationship between increased com-plexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol. Cell. Biol. 17:1201–1211.
32. Lee, T., Winter, C., Marticke, S.S., Lee, A., and Luo, L. (2000). Essential roles of Drosophila RhoA in the regulation of neuroblast proliferation and dendritic but not axonal morphogenesis. Neuron 25:307–316.
33. Li, Z., Van Aelst, L., and Cline, H.T. (2000). Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nat.
Neurosci. 3:217–225.
34. LoTurco, J.J., Sarkisian, M.R., Cosker, L., and Bai, J. (2003). Citron kinase is a regulator of mitosis and neurogenic cytokinesis in the neocortical ventricular zone. Cereb. Cortex 13:588–591.
35. Madaule, P., Furuyashiki, T., Reid, T., Ishizaki, T., Watanabe, G., Morii, N., and Narumiya, S. (1995). A novel partner for the GTP-bound forms of rho and rac. FEBS Lett. 377:243–248.
36. Madaule, P., Eda, M., Watanabe, N., Fujisawa, K., Matsuoka, T., Bito, H., Ishizaki, T., and Narumiya, S. (1998). Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature 394:491–494.
37. Maekawa, M., Ishizaki, T., Boku, S., Watanabe, N., Fujita, A., Iwamatsu, A., Obinata, T., Ohashi, K., Mizuno, K., and Narumiya, S. (1999). Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285:895–898.
38. McAllister, A.K., Lo, D.C., and Katz, L.C. (1995). Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15:791–803.
39. Muzzi, P., Di Cunto, F., and Vercelli, A. (2005). Deletion of Citron K gene selectively affects the number and distribution of cortical interneurons. Sub-mitted.
40. Naegele, J.R., and Barnstable, C.J. (1989). Molecular determinants of GABAergic local-circuit neurons in the visual cortex. Trends Neurosci. 12:28–
34.
41. Nakayama, A.Y., Harms, M.B., and Luo, L. (2000). Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J. Neurosci. 20:5329–5338.
42. Narumiya, S., Ishizaki, T., and Watanabe, N. (1997). Rho effectors and reor-ganization of actin cytoskeleton. FEBS Lett. 410:68–72.
43. Pant `o, M.R., Zappala, A., Tuorto, F., and Cicirata, F. (2004) Role of the Otx1 gene in cell differentiation of mammalian cortex. Eur. J. Neurosci., 19:2893–
2902.
44. Ramakers, G.J. (2002). Rho proteins, mental retardation and the cellular basis of cognition. Trends Neurosci. 25, 191–199.
45. Reynolds, G.P., Zhang, Z.J., and Beasley, C.L. (2001). Neurochemical cor-relates of cortical GABAergic deficits in schizophrenia: selective losses of calcium binding protein immunoreactivity. Brain Res. Bull. 55:579–584.
46. Rhoades, R. W., Bennet-Clarke, C.A., Chiaia, N.L., White, F.A., Macdonald, G.J., Haring, J.H., and Jacquin, M.F. (1990). Development and lesion-induced reorganization of the cortical representation of the rats body surface as re-vealed by immunocytochemistry for serotonin. J. Comp. Neurol. 293:190–207.
47. Roberts, M.R., Bittman, K, Li, W.W., French, R., Mitchell, B., LoTurco, J.J., and D’Mello, S.R. (2000). The flathead mutation causes CNS-specific devel-opmental abnormalities and apoptosis. J. Neurosci. 20:2295–2306.
48. Santhakumar, V., and Soltesz, I. (2004). Plasticity of interneuronal species diversity and parameter variance in neurological diseases. Trends Neurosci.
27:504–510.
49. Sarkisian, M.R., Rattan, S., D’Mello, S.R., and LoTurco, J.J. (1999). Charac-terization of seizures in the flathead rat: a new genetic model of epilepsy in early postnatal development. Epilepsia 40:394–400.
50. Sarkisian, M.R., Frenkel, M., Li, W., Oborski, J.A., and LoTurco, J.J. (2001).
Altered interneuron development in the cerebral cortex of the flathead mu-tant. Cereb. Cortex 11:734–743.
51. Sarkisian, M.R, Li, W., Di Cunto, F., D’Mello, S.R., and LoTurco, J.J. (2002).
Citron-kinase, a protein essential to cytokinesis in neuronal progenitors, is deleted in the flathead mutant rat. J. Neurosci. 22:RC217.
52. Sherr, E.H. (2003). The ARXstory (epilepsy, mental retardation, autism, and cerebral malformations): one gene leads to many phenotypes. Curr. Opin.
Pediatr. 15:567–571.
53. Somers, D.C., Nelson, S.B., and Sur, M. (1995). An emergent model of ori-entation selectivity in cat visual cortical simple cells. J. Neurosci. 15:5448–
5465.
54. Spreafico, R., Tassi, L., Colombo, N., Galli, M.B., Garbelli, R., Ferrario, A., Lo Russo, G., and Munari, C. (2000). Inhibitory circuits in human dysplastic tissue. Epilepsia 41 (Suppl.):168–173.
55. Thom, M,, Holton, J.L., D’Arrigo, C., Griffin, B., Beckett, A., Sisodiya, S., Alexiou, D., and Sander, J.W. (2000). Microdysgenesis with abnormal corti-cal myelinated fibres in temporal lobe epilepsy: a histopathologicorti-cal study with calbindin D-28-K immunohistochemistry. Neuropathol. Appl. Neurobiol.
26:251–257.
56. Ueda, S., Nishimura, A., Kusuki, T., Takeuchi, Y., and Yoshimoto, K. (1999).
Delayed 5-HT release in the developing cortex of microencephalic rats. Neu-roreport 10:1215–1209.
57. Valtschanoff, J.G., Weinberg, R.J., Kharazia, V.N., Schmidt, H.H.H.W., Nakane, M., and Rustioni, A. (1993). Neurons in rat cerebral cortex that synthesize nitric oxide: NADPH-diaphorase histochemistry, NOS immuno-cytochemistry, and colocalization with GABA.Neurosci. Lett. 157:157–161.
58. Van Aelst, L., and Souza-Schorey, C. (1997). Rho GTPases and signaling networks. Genes Dev. 11:2295–2322.
59. Vercelli, A., Repici, M., Biasiol, S., and Jhaveri S. (1999). Maturation of NADPH-d activity in the rat’s barrel-field cortex and its relationship to cy-tochrome oxidase activity. Exp. Neurol. 156:294–315.
60. Vincent, S. R., and Kimura, H. (1992). Histochemical mapping of nitric oxide synthase in the rat brain.Neuroscience 46:755–784.
61. Welker, E., and Van der Loos, H. (1986). Is areal extent in sensory cerebral cortex determined by peripheral innervation density? Exp. Brain Res. 63:650–
654.
62. Zhang, W., Vazquez, L., Apperson, M., and Kennedy, M.B. (1999). Citron binds to PSD-95 at glutamatergic synapses on inhibitory neurons in the hippocampus. J. Neurosci. 19:96–108.