• Tidak ada hasil yang ditemukan

Agbozu, I. E., Emoruwa, F. O. 2014. Batch Adsorption Of Heavy Metals (Cu, Pb, Fe, Cr And Cd) From Aqueous Solutions Using Coconut Husk. African Journal of Environmental Science and Technology 8 (4):239-246

Ahalya et al. 2005. Biosorption of Cchromium (VI) from aqueous solution by the husk of Bengal gram (Cicer Arientinum). Electronic Journal of Biotechnology. Vol 8.

No. 3

Ahmad R, Hasany SM, Chaudhary MH.2005. Adsorption Characteristics of Cr(III) Ions Onto Coconut Husk From Aqueous Solution. Adsorption Science Technology 23:467-478

Akar, S.T., Arslan, S., Alp, T., Arslan, D., Akar, T. 2012. Biosorption Potential Of The Waste Biomaterial Obtain From Cucumis Melo For The Removal Of Pb2+ Ions From Aqueous Media: Equilibrium, Kinetic, Thermodynamic And Mechanism Analysis. Journal Of Chemical Engineering 185:82-90

Akpor, O.B., Ohiobor, G.O., Olalu, T.D. 2014. Heavy Metal Pollutants In Wastewater Effluents: Sources, Effect And Remediation. Advances in Bioscience and Bioengineering 2(4):37-43

Al-Anber, Z.A., M.A.D., Matouq. 2008. Batch Adsorption Of Cadmium Ions From Aqueous Solution By Means Of Olive Cake. J Hazard Mater 151:194-201 Alias Mohd Yusof dan Nik Ahmad Nizam. 2008. Removal Of Cr(IV) And As(V) From

Aqueous Solution By HDMTA-Modified Zeolite Y. Journal of Hazard Materials 162:1019-1024

Basu, P., 2010, Biomass Gasification Design Handbook, Elsevier Inc.

Bhatnagar, Amit., Minkyu Ji, Yang-Hun Choi, Jung W., Lee SH., Kim SJ., Lee G., Heejun Suk, Hyung Soo Kim, Booki Min, Seong Heon Kim, Jeon BH., dan Kang JW. 2008. Removal of Nitrate from Water by Adsorption onto Zinc Chloride Treated Activated Carbon. Separation Science and Technology 43(4):886-907 Bhatnagar A, Sillanpää M. 2010. Utilization of Agro-Industrial and Municipal Waste

Materials as Potential Adsorbents for Water Treatment: A Review. Chemical Engineering Journal157:277

Bhatnagar A, Sillanpää M. 2011. A Review Of Emerging Adsorbents For Nitrate Removal From Water. Chemical Engineering Journal 168(2):493-504

Bisht, R., Agarwal, M., Singh, K., 2016. Heavy Metal Removal From Wastewater Using Various Adsorbents: A Review. J. Water Reuse Desal. 7 (4):387–419

Brigida, A.I.S., Calado, V.M.A., Goncalves, L.R.B., Coelho, M.A.Z. 2010. Effect Of Chemical Treatments On Properties Of Green Coconut Fiber. Carbohydr.

Polym 79:832-838

Bueno, B.Y.M., M.L. Torem, F. Molina and L.M.S. de, Mesquita. 2008. Biosorption Of Lead(II), Chromium(III) And Copper(II) By R. Opacus: Equilibrium And Kinetic Studies. Minerals Engineering 21:65–75

C. D. Pinho da Costa Castro, J. de Assis Fonseca Faria, and T. Bassani Hellmeister Dantas. 2012. “Testing the Use of Coconut Fiber as a Cushioning Material for Transport Packaging”. Mater. Sci. Appl. 3:151–156

Chatwal, G. 1985. Spectroscopy Atomic and Molecule. Bombay:Himalaya Publishing House

Das, S.K., A.R., Das, A.K., Guha. 2007. A Study On The Adsorption Mechanism Of Mercury On Aspergillus Versi Color Biomassa. Environ Sci Technol 41:8281-8287

Danarto, Y.C., dan Samun, T. 2008. Pengaruh Aktivasi Karbon dari Sekam Padi pada Proses Adsorpsi Logam Cr (VI). Jurusan Teknik Kimia UNS Surakarta, Surakarta

Davis, M.L., David. A. Cornwell. 2008. Introduction to Environmental Engineering Fourth Edition. McGraw Hill

Demirbas, A. 2008. Heavy Metal Adsorption Onto Agro-Based Waste Materials: A Revie W. J. Hazard. Mater. 157:220–229

Diao, Y.L., W.P. Walawender, & L.T. Fan. 2002. Activated Carbons Prepared from Phosphoric Acid Activation of Grain Sorghum. Bioresource Technology, 81: 45-52

Diapati, Maipa. 2009. “Ampas Tebu Sebagai Adsorben Zat Warna Reaktif Cibacron Red”. Bogor: Institut Pertanian Bogor.

Dwi, Yuliana M. 2017. Optimalisasi Bahan Baku Kelapa. Jakarta : Warta Ekspor

Etim, U.J., S.A. Umoren, U.M Eduok. 2016. Coconut Coir Dust As A Low Cost Adsorbent For The Removal Of Cationic Dye From Aqueous Solution. Journal of Saudi Chemical Society 20: S67-S76

Febrianto, J., A.N. Kosasih, J. Sunarso, Y.H. Ju, N. Indraswati, S. Ismadji. 2009.

Equilibrium And Kinetic Studies In Adsorption Of Heavy Metals Using Biosorbent: A Summary Of Recent Studies. J. Hazard. Mater. 162:616–645 Gonzales, B.P., 1970. Analysis And Pulping Of Coir Dust. In: Emata, R. (Ed.). Coconut

Research and Development 3:163–173

Greenwood, N.N., A. Earnshaw. 1984. Chemistry Of The Elements. Crystal Research &

Technology 20(5)

Grimwood, B. E., F. Ashman. 1975. Coconut Palm Products; Their Processing In Developing Countries

Guo, Xueyan, Shuzhen Zhang, Xiao-quan Shan. 2008. Adsorption Of Metal Ions On Lignin. Journal of hazardous materials 151(1):134-42

Gupta, V.K., Tyagi, I., Sadegh, H., Shahryari-Ghoshekandi, R., Makhlouf, A.S.H., Maazinejad, B., 2015. Nanoparticles As Adsorbent; A Positive Approach For Removal Of Noxious Metal Ions: A Review. Sci., Technol. Dev. 34 (3):195–214 Hameed, B.H., Mahmoud, D.K., Ahmad, A.L. 2008. Equilibrium Modeling And Kinetic Studies On The Adsorption Of Basic Dye By A Solutions. Journal of Hazardous Materials 162:305-311

Hannachi, Chiraz., Guesmi, Fatma., Missaoui, Khaoula., Hamrouni, Bechir. 2014.

Application of Adsorption Models for Fluoride, Nitrate and Sulfate Ion Removal by AMX Membrane. International Journal of Technology 1: 60-69

Hasany, S.M., R. Ahmad. 2006. The Potential Of Cost-Effective Coconut Husk For The Removal Of Toxic Metal Ions For Environmental Protection. Journal Environ.

Manag.81:286–295

Heidari, A., H. Younesi, Z. Mehraban. H. Heikkinen. 2013. Selective Adsorption Of Pb(II), Cd(II), And Ni(II) Ions From Aqueous Solution Using Chitosan-MAA Nanoparticles. Int. J. Biol. Macromol. 61:251–263

Ho, Y.S., McKay, G., 1998. Kinetic Models For Lead (II) Sorption On To Peat.

Adsorption Science & Technology 16:243-255

Ho, Y.S., J.C.Y., Ng., G., McKay. 2000. Kinetics Of Pollutant Sorption By Biosorbents : Review. Sep and Puri Mets 29 (2):189-232

Irawan, Chandra, Bahsri Dahlan,Nawang Retno. 2015. Pengaruh Massa Adsorben, Lama Kontak Dan Aktivasi Adsorben Menggunakan HCl Terhadap Efektivitas Penurunan Logam Berat (Fe)Dengan Menggunakan Abu Layang Sebagai Adsorben Jurnal Teknologi Terpadu 3 (2)

Joachim, A.W.R., 1930. The Fertilizer Value And Decompositability Of Coconut Fiber Dust. Chemical Abstracts 24:1796

Kamari, Azlan, Siti Najiah Mohd Yusoff, Fadhilah, Wiwid Pranata Putra. 2014.

Biosorptive Removal Of Cu(II), Ni(II) And Pb(II) Ions From Aqueous Solutions Using Coconut Dregs Residue: Adsorption And Characterisation Studies.

Journal of Environmental Chemical Engineering 2 : 1912-1919

Kadirvelu, K., C. Namasivayam. 2003. Activated Carbon From Coconut Coirpith As Metal Adsorbent: Adsorption Of Cd(II) From Aqueous Solution. Advances in Environmental Research 7:471–478

Kaur, R., J. Singh, R. Khare, S.S. Cameotra, A. Ali. 2013. Batch Sorption Dynamics, Kinetics And Equilibrium Studies Of Cr(Vi), Ni(Ii) And Cu(Ii) From Aqueous Phase Using Agricultural Residues. Appl. Water Sci. 3:207–218

Khaled, Azza, Ahmed El Nemr, Amany El-Sikaily, Ola Abdelwahab. 2009. Treatment Of Artificial Textile Dye Effluent Containing Direct Yellow 12 By Orange Peel Carbon. Desalination 238:210–232

Koleangan, H.S.J., & A.D. Wuntu. 2008. Kajian Stabilitas Termal dan Karakter Kovalen Zat Pengaktif pada Arang Aktif Limbah Gergajian Kayu. Prosiding Kimia, 1(1):

43-46

Li, Haigang., dan Yang, Chuanfang. 2015. Nitrite Removal Using Ion Exchange Resin:

Batch vs. Fixed Bed Performance. Separation Science and Technology 50: 1721-1730

Malik, Reena, Shefali Dhiya, Suman Lata. 2017. An Experimental and Quantum Chemical Study of Removal of Utmostly Quantified Heavy Metals in Wastewater Using Coconut Husk: A Novel Approach to Mechanism. India: International Journal of Biological Macromolecules 98 : 139-149

Moupung, Sumrit, Phansiri Moonsri, Wanwimon Palas, Sataporn Khumpai. 2015.

Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution. The Scientific World Journal Vol 2015

Mohammed, A.S, Kapri A.,Goel R. 2011. Biomanagement Of Metal-contaminant Soil.

Heavy Metal Polution Source Impact and Remedis Springer Dordrecht:1-28 Namasivayam, C., D. Sangeetha. 2004. Equilibrium And Kinetic Studies Of Adsorption

Of Phosphate Onto ZnCl2 Activated Coir Pith Carbon. Journal Colloid Interface Science 280(2):359-65

Narendar, P., Priya Dasan. 2014. Chemical Treatments Of Coir Pith: Morphology, Chemical Composition, Thermal And Water Retention Behavior. Composites Part B Engineering 56:770-779

Nurhasni, Florentinus Firdiyono, Qosim Sya’ban. 2012. Penyerapan Ion Aluminium dan Besi dalam Larutan Sodium Silikat Menggunakan Karbon aktif. Valensi Vol.

2(4):516-525

Nurhayati, I., J. Sutrisno. 2011. Pemanfaatan Limbah Ampas Tebu Sebagai Penyerap Logam Berat Cu. Jurnal Wahana 63(2):27-31

Peraturan Menteri Lingkungan Hidup Republik Indonesia Nomor 5 Tahun 2014 Tentang Baku Mutu Air Limbah pada lampiran XLVII

Pinandari, A. W., Fitriana, D. N., Nugraha, A., dan Suhartono E.. 2011. Uji Efektifitas dan Efisiensi Filter Biomassa Menggunakan Sabut Kelapa (Cocos nucifera) sebagai Bioremoval untuk Menurunkan Kadar Logam (Cd, Fe, Cu) Total Padatan Tersuspensi (TSS) dan Meningkatkan pH pada Limbah Air Asam Tambang Batubara. Prestasi. 1 (1): 1-12

Pollard, S.J.T., Fowler G.D., Sollars C.J., Perry R. 1992. Low-cost Adsorbents For Waste And Wastewater Treatment: A Review. Science Total Environmental

116:31-52

Prasad, M,. S., Saxena. 2004. Sorption Mechanism Of Some Divalent Metal Ions Onto Low-Cost Mineral Adsorbent. Ind Eng Chem Res 43:1512-1522

Quek SY, Al-Duri B, Wase DAJ, Forster CF. 1998. Coir As A Biosorbent Of Copper And Lead. Trans. IChem E 76:50-54

Quintelas, K., Flavio, S.S., E. Sousa, S. Neto. 2006. Competitive Biosorption Of Ortho-Cresol, Phenol, Chlorophenol And Chromium(VI) From Aqueous Solution By A Bacterial Biofilm Supported On Granular Activated Carbon. Process Biochemistry 41(9):2087-2091

Raghuvanshi SP, Sing R, Kaushik CP. 2004. Kinetics Study Of Methylene Blue Dye Bioadsorption On Baggase. App Ecol Env Res 2:35-43

Rangabhashiyam, N., Anu, M.S.G., Nandagopal, N., Selvaraju. 2014. Relevance Of Isotherm Models In Biosorption Of Pollutants By Agricultural By Products. J.

Environ. Chem. Eng. 2 (1):398-414

Reddy, D.H., K. Seshaiah, A.V.R. Reddy, M.M. Rao, M.C. Wang. 2010. Biosorption of Pb2+ from aqueous solutions by Moringa oleifera bark: equilibrium and kinetic studies. J. Hazard. Mater. 174:831–838

Riyanti. 2016. Studi Kinetika Adsorpsi Kation Mg2+ Oleh Adsorben Silika Gel Dari Bagasse Tebu. Universitas Negeri Yogyakarta. Skripsi

Romera, E. 2007. Comparative Study Of Biosorption Of Heavy Metals Using Different Types Of Algae. Bioresour Technol 98:3344-3353

Sahu, J.N., Acharya, J., Meikap, B.C., 2009. Response Surface Modeling And Optimization Of Chromium (VI) Removal From Aqueous Solution Using Tamarind Wood Activated Carbon In Batch Process. J. Hazard. Mater. 172 (2):818–825

Salem, H.M., Eweida, E.A., Farag A. 2000. Heavy Metals In Drinking Water And Their Enviromental Impact On Human Health. ICEHM:542-556

SenthilKumar, P., Ramalingam, S., Senthamarai, C., Niranjanaa, M., Vijayalakshmi, P., Sivanesan, S., 2010. Adsorption Of Dye From Aqueous Solution By Cashew Nut Shell: Studies On Equilibrium Isotherm, Kinetics And Thermodynamics Of Interactions. Desalination 261:52–60

Singanan, M., E. Peters. 2013. Removal Og Toxic Heavy Metal From Synthetic Wastewater Using A Novel Biocarbon Technology. Journaln Chemical Engineering 1:884-890

Singh, N., Gupta, S.K., 2016. Adsorption Of Heavy Metals: A Review. Int. J. Innov. Res.

Science Engineering Technology 5 (2):2267–2281 Standar Nasional Indonesia No.06-3730-1995

Standar Nasional Indonesia No. 46-6989-2009 Standar Nasional Indonesia No. 16-6989-2009

Stum W, dan Morgan, J.J. 1996. Aquatic Chemistry. John Wiley and Sons Vol (3) Sudiarta, I.W., N.P. Diantariani dan D. A. Yulihastuti. 2011. Biosorpsi Cr(III) Pada

Biosorben Serat Sabut Kelapa Teraktivasi Amonium Hidroksida (NH4OH).

The Excellence Research: 103-107

T. Ucol-Ganiron Jr. 2013. “Recycling of Waste Coconut Shells as Substitute for Aggregates in Mix Proportioning of Concrete Hollow Blocks,” WSEAS Trans.

Environ. Dev. 9:290–300

Tan, I.A.W., A.L. Ahmad, B.H. Hameed. 2008. Adsorption Of Basic Dye On High-Surface-Area Activated Carbon Prepared From Coconut Husk: Equilibrium, Kinetic And Thermodynamic Studies. Journal of Hazardous Material 154:337 – 346

Tejano, E.A., 1985. State Of The Art Of Coconut Coir Dust And Husk Utilization: General Overview- Paper Presented During The National Workshop On Waste Utilization, Coconut Husk. Philippine Journal of Coconut Studies 2:4–11 Tripathi, A., Ranjan, M.R., 2015. Heavy Metal Removal From Wastewater Using Low

Cost Adsorbents. Journal Bioremediat. Biodegr. 6 (6):315

Tumin, Najua Delaila, A. Luqman Chuah, Z. Zawani, Suraya Abdul Rashid. 2008.

Adsorption Of Copper From Aqueous Solution By Elais Guineensis Kernel Activated Carbon. Journal Of Engineering Science And Technology 3 (2):180 - 189

Van Dam J.E.G. 2002. Coir Processing Technologies, Improvement Of Drying, Softening, Bleaching And Dyeing Coir Fibre/Yarn And Printing Coir Floor Coverings. Technical Paper No.6

Victoria. 2009. Adsorpsi Asam Lemak Bebas Dan Zat Warna Menggunakan Campuran Kaolin-Limbah Padat Tapioca. Bogor: Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor. Skripsi

Wallace, J. P., 2003. Exercise in Hypertension. Sports Medicine 33:585-598.

Wankasi, Horsfall & Spiff, A. I.2. 2005. Desorption of Pb2+ and Cu2+ from Nipa Palm (Nypa fruticans Wurmb) Biomass. African Journal of Biotechnology, 4(9): 923-927

Wardani, G. A., Dea, D. P., Winda, T. W., Fajar S. 2010. Pengaruh Waktu Kontak Dan Keasaman Terhadap Daya Bio Adsorpsi Limbah Sabut Kelapa Hijau Pada Ion Logam Timbal (II). Kovalen, 4(2): 215-220

Wedepohl, K. Hans. 1995. The Composition Of The Continental Crust. Geochimica et Cosmochimica Acta 59(7):1217-1232

WHO (World Health Organization), Guidelines for Drinking Water Quality, World Health Organization, Geneva

Widhiati. 2008. Karakterisasi Keasaman Luas Permukaan Tempurung Kelapa Hijau (cococ nucifera) dan Pemanfaatannya Sebagai Biosorben Ion Cd2+. Bukit

Jimbaran. FMIPA Universitas Udayana. Jurnal Kimia 4(1):7-14

Wijayanti, R. 2009. Arang Aktif Dari Ampas Tebu Sebagai Adsorben pada Pemurnian Minyak Goreng Bekas. Bogor: IPB 49:19-20

Woodroof, J. B. 1979. Coconut : Production, Processing, Product, 2th ed. The AVI Publishing Company Inc. Westport, Connecticut

Yadav, A; Yadav, P.K; dan Shukla, D.N. 2013. Investigation Of Heavy Metal Status In Soil And Vegetables Grown In Urban Area Of Allahabad. Journal of Scientific and Research Publication 3 (9):2250-3153

Yoosefian, M., Ahmadzadeh, S., Aghasi, M., Dolatabadi, M., 2017. Optimization Of Electrocoagulation Process For Efficient Removal Of Ciprofloxacin Antibiotic Using Iron Electrode; Kinetic And Isotherm Studies Of Adsorption. J. Mol. Liq.

225, 544-553

Zhao, X.-T., T. Zeng, Z.J. Hu, H.-W. Gao, C.Y. Zou. 2012. Modeling And Mechanism Of The Adsorption Of Proton Onto Natural Bamboo Sawdust. Carbohydr. Polym. 87 530:1199–1205

Zhao, X.-T., T. Zeng, X.-Y. Li, Z.J. Hua, H.-W. Gao, Z. Xie, 2012. Modeling And Mechanism Of 531 The Adsorption Of copper Ion onto Natural bamboo sawdust.

Carbohydr. Polym.89 532:185–192

Pb-Lead http://weppi.gtk.fi/publ/foregsatlas/text/Pb.pdf diakses pada tanggal 2 April 2018 pukul 20:49 WIB

Cd-Cadmium http://weppi.gtk.fi/publ/foregsatlas/text/Cd.pdf diakses pada tanggal 2 April 2018 pukul 21:05 WIB

LAMPIRAN I Data Baku Mutu Air Limbah

Berikut adalah tabel data baku mutu limbah sesuai dengan Keputusan Menteri Negara Lingkungan Hidup No.5/Kep-MenLH/2014 pada pelayanan kesehatan yang melakukan pengolahan limbah bahan berbahaya dan beracun

Tabel Baku Mutu Air Limbah

Parameter Konsentrasi Paling Tinggi

Nilai Satuan

Senyawa aktif biru metilen (MBAS) 5 mg/L

Fenol 0,5 mg/L

AOX 0,5 mg/L

PCBs 0,005 mg/L

PCDFs 10 mg/L

PCDDs 10 mg/L

LAMPIRAN II DATA PERHITUNGAN Data Perhitungan Penentuan Waktu Kontak Terhadap Penyisihan Pb

Dosis Adsorben : 1 gram Volume larutan Pb : 200mL

No. Adsorben Waktu Konsentrasi Awal Timbal Co Konsentrasi Akhir Timbal Ce Efisiensi Penyisihan Kapasitas Adsorpsi qt

(menit) (mg/l) (mg/l) (%) (mg/g)

1 Biosorben

0 100 100 0 0

5 100 80.293 19.7 3.9

15 100 14.4854 85.5 17.1

30 100 10.0377 90.0 18.0

45 100 28.2877 71.7 14.3

60 100 46.5624 53.4 10.7

2 Karbon Aktif

0 100 100 0 0

5 100 36.1418 63.9 12.8

15 100 23.0715 76.9 15.4

30 100 9.774 90.2 18.0

45 100 7.1301 92.9 18.6

60 100 19.0716 80.9 16.2

Data Perhitungan Penentuan Waktu Kontak Terhadap Penyisihan Cd Dosis Adsorben : 1 gram

Volume larutan Pb : 200mL

No. Adsorben Waktu Konsentrasi Awal Kadmium Co

Konsentrasi Akhir Kadmium

Ce Efisiensi Penyisihan Kapasitas Adsorpsi qt

(menit) (mg/l) (mg/l) (%) (mg/g)

1 Biosorben

0 98 98 0 0

5 98 77.6433 20.8 4.1

15 98 19.0135 80.6 15.8

30 98 13.2976 86.4 16.9

45 98 32.2106 67.1 13.2

60 98 60.3654 38.4 7.5

2 Karbon

Aktif

0 98 98 0 0

5 98 43.3674 55.7 10.9

15 98 27.5832 71.9 14.1

30 98 11.7288 88.0 17.3

45 98 9.8381 90.0 17.6

60 98 22.3884 77.2 15.1

Data Perhitungan Penentuan pH Terhadap Penyisihan Pb

Dosis Adsorben : 1 gram Volume larutan Pb : 200mL Waktu Kontak Biosorben : 30 menit Waktu Kontak Karbon Aktif : 45 menit

No. Adsorben pH

Konsentrasi Awal Timbal Co

Konsentrasi Akhir Timbal

Ce Efisiensi Penyisihan Kapasitas Adsorpsi qt

(mg/l) (mg/l) (%) (mg/g)

Data Perhitungan Penentuan pH Terhadap Penyisihan Cd

Dosis Adsorben : 1 gram Volume larutan Pb : 200mL Waktu Kontak Biosorben : 30 menit Waktu Kontak Karbon Aktif : 45 menit

No. Adsorben pH

Konsentrasi Awal Kadmium Co

Konsentrasi Akhir Kadmium

Ce Efisiensi Penyisihan Kapasitas Adsorpsi qt

(mg/l) (mg/l) (%) (mg/g)

Data Perhitungan Penentuan Dosis Adsorben Terhadap Penyisihan Pb pH : 5 Waktu Kontak Biosorben : 30 menit Volume larutan Pb : 200mL Waktu Kontak Karbon Aktif : 45 menit

No. Adsorben

Dosis Adsorben

Konsentrasi Awal Timbal Co

Konsentrasi Akhir Timbal

Ce Efisiensi Penyisihan Kapasitas Adsorpsi qt

(gram) (mg/l) (mg/l) (%) (mg/g)

1 Biosorben

0 100 100 0 0

0.25 100 4.9655 95.0 76.0

0.50 100 1.4895 98.5 39.4

0.75 100 2.4225 97.6 26.0

1.00 100 6.556 93.4 18.7

1.25 100 6.8557 93.1 14.9

2 Karbon

Aktif

0 100 100 0 0

0.25 100 25 75 60

0.50 100 1.7228 98.3 39.3

0.75 100 1.8296 98.2 26.2

1.00 100 1.6759 98.3 19.7

1.25 100 1.7426 98.3 15.7

Data Perhitungan Penentuan Dosis Adsorben Terhadap Penyisihan Cd pH : 5 Waktu Kontak Biosorben : 30 menit Volume larutan Pb : 200mL Waktu Kontak Karbon Aktif : 45 menit

No. Adsorben

Dosis Adsorben

Konsentrasi Awal Kadmium Co

Konsentrasi Akhir Kadmium

Ce Efisiensi Penyisihan Kapasitas Adsorpsi qt

(gram) (mg/l) (mg/l) (%) (mg/g)

1 Biosorben

0 98 98 0 0

0.25 98 5.7352 94.1 73.8

0.50 98 1.7204 98.2 38.5

0.75 98 2.8222 97.1 25.4

1.00 98 7.6377 92.2 18.1

1.25 98 7.9869 91.9 14.4

2 Karbon

Aktif

0 98 98 0 0

0.25 98 29.125 70.3 55.1

0.50 98 2.0071 98.0 38.4

0.75 98 2.1315 97.8 25.6

1.00 98 1.9524 98.0 19.2

1.25 98 2.0302 97.9 15.4

Perhitungan Penentuan Model Kinetika Adsorpsi Model Pseudo orde pertama:

Log (qe-qt) = Log (qe) –

( ) keterangan :

qt dan qe = kapasitas adsorpsi pada waktu t (mg N/g) dan pada waktu kesetimbangan k1 =konstanta laju kesetimbangan adsorpsi pada orde semu pertama (1/menit)

Tabel Penentuan Pseudo Orde Pertama

No. Adsorben Waktu Konsentrasi

Awal Timbal Co

No. Adsorben Waktu Konsentrasi Awal

Dari grafik penentuan kinetika reaksi pseudo orde pertama diperoleh persamaan:

Y= -0,1404x + 1,0366 R2 = 0,677

Dari persamaan linear diatas ditentukan kapasitas adsorpsi maksimum pseudo orde pertama (k1), maka diperoleh:

Log q1 = 1,0366 q1 = 10,88

k1 / 2,303 = 0,1404 k1 = 0,33 min-1

Model Pseudo Orde Kedua :

keterangan :

qt dan qe = jumlah yang terserap pada waktu t (mg N/g) dan pada waktu kesetimbangan k2 =konstanta laju kesetimbangan adsorpsi pada orde semu kedua (g/mg menit)

Tabel Penentuan Pseudo Orde Kedua

No. Adsorben Waktu Konsentrasi Awal Timbal Co

No. Adsorben Waktu Konsentrasi Awal

Dari grafik penentuan kinetika reaksi pseudo orde kedua diperoleh persamaan:

Y= 0,051x – 0,006 R2 = 0,9999

Dari persamaan linear diatas ditentukan kapasitas adsorpsi maksimum (q2) dan konstanta untuk pseudo orde kedua (k2), maka diperoleh:

t/q2 = 0,051 q2 = 19,6

1/ k2 q2 = 0,0381 1 / (19,6^2) k2 = 0,006 k2 = 0,43 min-1

Perhitungan Isoterm adsorpsi Langmuir :

Ce = konsentrasi nitrat pada saat kesetimbangan (mg N/l)

qe = jumlah nitrat yang terserap per satuan massa adsorben pada saat kesetimbangan (mg N/g) qm = jumlah maksimum nitrat yang terserap per satuan massa adsorben (mg N/g)

KL = konstanta afinitas Langmuir yang berhubungan denngan energi sorpsi.desorpsi (l/mg)

No. Adsorben

Penyisihan Kapasitas Adsorpsi qt

ce/qe

No. Adsorben

Penyisihan Kapasitas Adsorpsi qt

ce/qe

Diplot kurva Ce vs Ce/Qe, grafik penentuan model isoterm Langmuir ditunjukkan oleh gambar berikut ini:

y = 0,0699x - 0,1202

Dari grafik penentuan isoterm Langmuir diperoleh persamaan : Y = - 0,0146x + 0,052

R2 = 0,9748

Nilai-nilai parameter Langmuir qmax dan k dihitung dari garis miring dan intersep dari plot linear 1/q vs 1/Ce, sehingga diperoleh:

1/qm = 0,0146 RL =

=

= 0,034 Qm = 68,49

1/(Ka.qm) = 0,052 Ka = 0,28

Penentuan Isoterm adsorpsi Freundlich:

Keterangan :

Ce = Konsentrasi logam pada saat kesetimbangan (mg N/L)

qe = Jumlah logam yang terserap per satuan massa adsorben pada saat kesetimbangan (mgN/g) Kf = Konstanta isoterm adsorpsi Freundlich yang berkaitan dengan tingkat kapasitas adsorpsi

No. Adsorben

No. Adsorben

Diplot kurva log qe vs log Ce, grafik penentuan isoterm Freundlich ditunjukkan oleh gambar berikut ini:

y = -0,3412x + 1,6656

Dari grafik penentuan isoterm Freundlich diperoleh persamaan : Y = - 0,3488x + 1,2914

R2 = 0,5976

Nilai-nilai parameter Freundlich 1/n dan kf dihitung dari garis miring dan intersep dari plot linear log q vs log Ce, sehingga diperoleh:

1/n = 0,3488 n = 2,86 log kf = 1,2914 kf = 19,56

LAMPIRAN III Dokumentasi Penelitian

Proses Aktivasi Sabut Kelapa

Penyaringan Adsorben Setelah Aktivasi

Pengeringan Proses Pirolisis Katbon

Proses Penetralan Karbon Aktif

Dokumen terkait