• Tidak ada hasil yang ditemukan

Akbar H. 2013. Hubungan Tipe Dasar Perairan Terhadap Distribusi Ikan Demersal di Perairan Pangkajene Sulawesi Selatan 2011 [Skripsi]. Bogor (ID): Institut Pertanian Bogor.

Allo OAT, Pujiyati S, dan Jaya I. 2009. Klasifikasi Habitat Dasar Perairan dengan Menggunakan Instrumen Hidroakustik SIMRAD EY60 di Perairan Sumur, Pandeglang-Banten. Jurnal Kelautan Nasional 1 (Edisi Khusus) : 129-130

Allo OAT. 2011. Kuantifikasi dan Karakterisasi Acoustic Backscattering Dasar Perairan Di Kepulauan Seribu-Jakarta [Thesis]. Bogor (ID): Institut Pertanian Bogor.

Andi. 2002. 10 Model Penelitian dan Pengolahannya dengan SPSS 14. Edisi IV. Yogyakarta (ID) : Wahana Komputer.

Astuti IR, Mardiana L dan Prihadi V. 2008. Studi Kandungan Fosfor Pada Limbah Organik Di Dasar Perairan Yang Dipengaruhi Aktivitas Karamba Jaring Apung Di Waduk Cirata Jawa Barat. Prosiding Teknologi Perikanan Budidaya. Pusat Riset Perikanan Budidaya : 363-370.

Bakhtiar. 2008. Analisis Manfaat Pengembangan Situ (Studi Kasus : Situ Cangkuang, Kabupaten Garut, Jawa Barat) [Komuniksi Singkat]. Media Komunikasi Teknik Sipil. 16(3) : 291-302

Boulton B & R Wyness. 2001. Annual Report : Sangachal Seabed Mapping Survey. London : BP

Caruthers JW dan Fisher CA. 2002. Remote Sediment Classification Using Acoustical Techniques. Final Report for Task 5, FY 01. Department of Marine Science, America : The University of Southern Mississippi

CruzPro. 2005. CruzPro PC fishfinder for Win98, Win Xp, Win2000 & Vista. PcFF80 user’s manual. Auckland (NZ) : Cruzpro Ltd.

Ferrini VL dan Flood RD. 2006. The effects of finescale surface roughness and grain size on 300 kHz multibeam backscatter intensity in sandy marine sedimentary environments. Marine Geology. (228) : 153-172

Irfania R. 2009. Pengukuran Nilai Acoustic Backscattering Strength Berbagai Tipe Substrat Dasar Perairan Arafura dengan Instrumen SIMRAD EK60 [Skripsi]. Bogor (ID) : Institut Pertanian Bogor.

Katsnelson BG dan Petnikov VG. 2002. Shallow-Water Acoustics. Chichester, UK : Praxis Publishing Ltd.

MacLennan DN, Copland PJ, Armstrong E, Simmonds EJ. 2004. Experiments on the discrimination of fish and seabed echoes. ICES Journal of Marine Science. 61: 201-210

Ma’mun A, Manik HM dan Hestirianoto T. 2013. Rancang Bangun Algoritma dan Aplikasinya pada Akustik Single Beam untuk Pendeteksian Bawah Air. Jurnal Teknologi Perikanan dan Kelautan. 4 (2) : 173-183

Manik HM. 2006 Study on Acoustic Quantification of Sea Bottom Using Quantitative Echo Sounder [Dissertation]. Tokyo, Japan : Tokyo University of Marine Science and Technology

Manik HM. 2015. Acoustic characterization of fish and seabed using underwater acoustic technology ini Seribu Island Indonesia. J. Marine Sci Res Dev. 5:157. doi:10.4172/2155-9910.1000157

Muhaimin H. 2013. Distribusi Makrozoobentos pada Sedimen Bar (Pasir Penghalang) di Intertidal Pantai Desa Mappakalompo Kabupaten Takalar [Skripsi]. Makassar (ID) : Universitas Hasanuddin.

Mulyani. 2014. Uji Beda Ketebalan Integrasi pada Pantulan Pertama dan Kedua Hasil Deteksi Akustik [Skripsi]. Bogor (ID) : Institut Pertanian Bogor. Ningsih EN, Supriyadi F, Nurdawati S. 2013. Pengukuran dan Analisis Nilai

Hambur Balik Akustik untuk Klasifikasi Dasar Perairan Delta Mahakam. J. Lit. Perikan. Ind. 19(3) : 139-146

Oktavia S. 2009. Perbedaan Ketebalan Integrasi Dasar Perairan dengan Instrumen Hidroakustik Simrad EY60 Di Perairan Kepulauan Pari [Skripsi]. Bogor (ID): Institut Pertanian Bogor.

Penrose JD et al. 2005. Acoustic Techniques for Seabed Classification. Coastal for Coastal Zone Estuary and Waterway Management. Technical Report Pujiyati S, Hartati S dan Priyono W. 2010. Efek Ukuran Butiran, Kekasaran, dan

Kekerasan Dasar Perairan Terhadap Nilai Hambur Balik Hasil Deteksi Hydroakustik. EJurnal Ilmu dan Teknologi Kelautan Tropis. 2(1) : 59-67 Pujiyati S. 2008. Pendekatan Metode Hidroakustik untuk Analisis Keterkaitan

Antara Tipe Substrat Dasar Perairan dengan Komunitas Ikan Demersal [disertasi]. Bogor (ID) : Institut Pertanian Bogor.

Rahman AA. 2010. Potensi Pengembangan Situ Di Kota Bogor Sebagai Objek Wisata [Thesis]. Semarang (ID) : Universitas Diponegoro.

15 Siwabessy PJW. 2001. An investigation of the relationship between seabed type and benthic and benthopelagic biota using acoustic techniques [Thesis]. Australia: Curtin University of Technology.

Supranto J. 2004. Analisis Multivariat Arti & Interpretasi. Jakarta (ID) : Rineka Cipta.

Urick, RJ. 1983. Principles of Underwater Sound, 3rd ed. McGrawHill. New York.

Lampiran 1. Sintaks pengolahan data penelitian

clc;

disp('============================================')

disp('Program Matlab CRUZPRO')

disp('MARINE SCIENCE AND TECHNOLOGY - IPB')

ORIGINAL BY Dr. Henry M Manik, S.Pi, M.T UPDATE BY Asep Ma’mun M.Si

disp('============================================') %% Rumusan Dasar %% % EL=SL-2TL+TS+2DI % EL= SL-2*(20LOG10(RR)-2(alp)(RR))+TS+2DI % SL=10*log10(p) % p=((rho*C*Pa*Sig*DI)/4*phi)) % Pe=v^2/R % k = 2*phi*F/C % V = phi*(r^2)*t %% Memasukan variabel %% % a= 0.045; % Pa = 53.9; %v = 12; %R = v/15; % hambatan %r = 0.5; %t = 1; %phi=3.14; %T=27; %alp = 0.006940; disp('---') disp('Parameter Alat')

disp('---') disp('Masukan Nilai :')

F=input('Frekuensi(Hz) = ');

a=input('Diameter Transduser(m)= '); t=input('Durasi Pulsa(s)=');

disp('PRESS ENTER !!!')

pause% Press any key to continue. clc;

disp('---') disp('Kalibrasi-Parameter Lingkungan') disp('---')

disp('# KECEPATAN SUARA #')

disp('Masukan Nilai :') %Sound Speed formula% s=input('Salinitas(permil)= '); T=input('Temperatur(C)= ');

D=input('Kedalaman Pengukuran(m)='); [C1,C2,C3,C4]=soundspeed(s,T,D); disp(['1.C_Leroy (1969)=',num2str(C1)]); disp(['2.C_Medwin (1975)=',num2str(C2)]); disp(['3.C_Mackenzie (1981)=',num2str(C3)]);

17

disp(['4.C_Del Grosso=',num2str(C4)]); pilih=input('pilihan anda(1-4)->');

switch pilih

case 1

C=C1;disp(['Leroy (1969)=',num2str(C1)]);

case 2

C=C2;disp(['Medwin (1975)=',num2str(C2)]);

case 3

C=C3;disp(['Mackenzie (1981)=',num2str(C3)]);

case 4

C=C4;disp(['Del Grosso=',num2str(C4)]);

end

disp('PRESS ENTER !!!')

pause% Press any key to continue. clc;

disp('# ABSORPSI KOEFISIEN(Francois-Garrison)#') disp('Masukan Nilai :')

ph=input('Ph = '); clc; FF=F/1000000; DD=D; [alpha]=koefabsorbsi(C,DD,s,T,ph,FF); disp('============================================')

disp(['Koef.Absorpsi=',num2str(alpha)]); ld= C/F;

% rho=1000;

%Vreff=6.5043e-004; % beamwidth

[beamwidth]=beamwidth(ld,a);

disp(['Lebar Beam =',num2str(beamwidth)]);

disp('============================================')

disp('PRESS ENTER !!!')

pause% Press any key to continue. %% Perhitungan Variabel %% %k =2*phi*F/C ; %DI=(k*a)^2; %Pe=v^2/R; %Sig=(Pa/Pe)*0.01; %p=(((rho*C*Pa*Sig*DI)/4*phi)^0.5); %% instrument parameter %%

r=1.2; % Jarak target dari permukaan transducer (m) %---% AG0=-53.78; %amplifier gain

RS=-185;% Receiving sensitivity 200 kHz RS2=-173;% Receiving sensitivity 50 kHz AGTR=10^(AG0/10);

RSTR=10^(RS/10); KTRlin=AGTR*RSTR;

KTR=20*log10(KTRlin);

SL=163; % Source Level 200 kHz

alpha=0.07898; % koef absorpsi untuk 200 kHz, Fisheries Acoustic Book TL=20*log10(r)+2*alpha*r;

%count=12; % contoh count makscount=255; % 8 bit

%VR=20*(log10((count*10)/makscount)); jumrec=1; % jumlah receiver

AVG=20*log10(jumrec);% array voltage gain %% load data melalui workspace %% clc

file=input('Masukan Nama File='); %% inisialisasi data ke 'variabel data=file; aa=data(101:size(data,1),18:size(data,2)); aaa=rot90(aa); aaaa=aaa.*0.218577; VR=20*log10((aaaa)/makscount); SS=-RS-SL+2*TL+VR-AVG+AG0; %% Revebrasi Level %% RL=SL-2*TL+SS+10*log10(beamwidth)+10*log10(C*t/2)+10*log10(r); %% Scattering Volume %% % SV=10*log10(dens)+TS SV=RL-SL+2*TL-10*log10(beamwidth)-10*log10(C*t/2)-10*log10(r^2); %% SV,Furusawa %% %SV=VR+20*log10(r)+2*r*(alpha/1000)-10*log10(C*t/2)+19.1; %%rata-rata target strength%%

NN=size(aa,2); NNN=NN-11; ff=aa(:,1:NNN); hh=mean(ff); hhh=hh.*0.218577; VR1=20*log10((hh)/makscount); SS1=-RS-SL+2*TL+VR1-AVG+AG0; %% rata-rata RL %% RLr=SL-2*TL+SS1+10*log10(beamwidth)+10*log10(C*t/2)+10*log10(r); %% rata-rata SV %% % SV=10*log10(dens)+TS SVv=RLr-SL+2*TL-10*log10(beamwidth)-10*log10(C*t/2)-10*log10(r^2); %% Echo Level %% EL=SL-2*TL+SS; EL1=SL-2*TL+SS1;

%% Fast Fourier Transform %% m = length(hh); % Window length n = pow2(nextpow2(m)); % Transform length y = fft(hh,n); % DFT

xfft = abs(fft(y));

f = (0:n-1)*(F/n); % Frequency range FF= ceil(f);

19 PWR= ceil(power); PWR1=rot90(PWR); [lamda,range,N,dpt,Y,YX,YY,X,XX,N1,dpt1,Y1,YX1,YY1,X1,time]=kedalaman(C,F,aa a,ff,hh); %% Figure 1 %%

figure('Name','Time Series of Target Strength','NumberTitle','on') imagesc(X,YY,SS);

colorbar('XTickLabel',{'TS (dB)'},'XTick',[1],... 'XAxisLocation','bottom'); % propertis % Title ('') ylabel('Depth (m)') xlabel('Time (s)') %% Figure 2 %%

figure('Name','Time Series of Scattering Volume','NumberTitle','on') imagesc(X,YY,SV);

colorbar('XTickLabel',{'SV (dB)'},'XTick',[1],... 'XAxisLocation','bottom'); % propertis % Title ('') ylabel('Depth (m)') xlabel('Time (s)') %% figure 3 %%

figure('Name','Targeth Strength Vs Depth'); plot(YY1,SS1,'-r');

% propertis % Title ('')

ylabel('Target Strength (dB)') xlabel('Depth (m)')

gridon

%% figure 4 %%

figure('Name','Scattering Volume Vs Depth'); plot(YY1,SVv,'-');

% propertis % Title ('')

ylabel('Scattering Volume (dB)') xlabel('Depth (m)')

gridon

%% figure 5 %%

figure('Name','Echo Level(dB)Vs Time'); plot(time,EL1,'-');

%propertis % Title ('')

ylabel('Echo Level(dB)') xlabel('Time (s)') gridon %% figure 6 %% %figure('Name','Spectral Amplitude') %plot(XX,ff,'-b') %propertis%

%title('') %xlabel('Frequency (Hz)') %ylabel('Specktral Amplitude') %grid on %% figure 7 %% figure('Name','FFT'); plot(FF,PWR1(1:length(y)),'-b'); %propertis% title('') xlabel('Frequency (Hz)') ylabel('Specktral Amplitude') gridon

%% ________________________________________________ %%

21

Dokumen terkait