• Tidak ada hasil yang ditemukan

Agus F. 2007. Cadangan, emisi, dan konservasi karbon pada lahan gambut. Bunga Rampai Konservasi Tanah dan Air. Pengurus Pusat Masyarakat Konservasi Tanah dan Air Indonesia 2004-2007. Hal. 45 – 52.

Agus F et al. 2009. Carbondioxide emission in land use transitions to plantation. Jurnal Litbang Pertanian, 28(4): 119-126.

Alex K, Joosten H. 2008. Global peatland assesment. Factbook for UNFCCC policies on peat carbon emission.

Alfred EH., Sullivan JNO. 2001. Leaf litter decomposition of Piper aduncum, Gliricidia sepium and Imperata cylindrical in the humid lowlands of Papua New Guinea. Plant and Soil 230: 115 – 124.

Ambak K, Melling L. 2000. Management practices for sustainable cultivation of crop plants on tropical peatlands. Proc. Of The International Symposium on Tropical Peatlands 22-23 November 1999. Bogor-Indonesia, hal 119. Andersen E. 2003. Hydrology, nutrient processes and vegetation in floodplain

wetlands. PhD thesis. National Environmental Research Institute, Denmar

Andrie E et al. 2010. The depth of ground water table dynamics and

charackteristic of peatland near drainage canal ex, mega rice project in Central-Kalimantan. Makalah Seminar Ilmiah VI

Anonim. 2010a. Rumusan seminar dampak perubahan peruntukan dan fungsi kawasan hutan dalam revisi RTRWP terhadap neraca karbon dalam hutan. Prosiding: "Seminar Dampak Perubahan Peruntukan dan Fungsi Kawasan Hutan". Direktorat Jendral Planologi Kehutanan, Kementerian Kehutanan Hal 2 – 6.

Anonim. 2010b. Lawn Drainage. http://www.completehome.ie/page/tips/24/ Ardjakusuma S, Nuraini, Somantri E. 2001. Teknik penyiapan lahan gambut

bongkor untuk tanaman hortikultura. Buletin Teknik Pertanian. Vol 6 No. 1, 2001. Badan Litbang Pertanian. Jakarta.

Asada T, Warner BG. 2005. Surface peat mass and carbon balance in a hypermaritime peatland. Soil Sci. Soc. Am. J. 69:549–562.

Bahruni. 2010. Neraca atau siklus karbon di dalam hutan. Prosiding: "Seminar Dampak Perubahan Peruntukan dan Fungsi Kawasan Hutan". Direktorat Jendral Planologi Kehutanan, Kementerian Kehutanan Hal 22 – 53.

Balai Penelitian Tanah. 2005. Petunjuk Teknis Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. 136 halaman.

Balai Penelitian Tanah. 2006. Peta Tanah Kabupaten Aceh Barat Propinsi Nanggroe Aceh Darussalam.

Baldock JA, Skjemstad JO. 2000. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Organic Geochem. 31: 697-710.

Ballhorn U, Siegert F, Mason M, Limin S. 2009. Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands. Proceedings of the National Academy of Sciences of the United States of America (online). The paper can be read and downloaded at

Bernal B. 2008. Carbon pools and profiles in wetland soils: The effect of climate and wetland type. M.S. thesis, presented in partial fulfillment of the requirements for Master’s degree in the Graduate School of the Ohio State University.

Bertrand I, Delfosseb O, Mary B. 2007. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: Apparent and actual effects. Soil Biol. Biochem. 39: 276-288.

Blodau C. 2002. Carbon cycling in peatlands – A review of processes and controls. Environ Rev 10:111-134.

BPS Kabupaten Aceh Barat. 2008. Aceh Barat Dalam Angka. 275 hal.

Bridgham SD, Richardson CJ. 2003. Endogenous versus exogenous nutrient control over decomposition and mineralization in North Carolina peatlands. Biogeochemistry 65:151- 178.

Canadell JG et al. 2007. Saturation of the terrestrial carbon sink. In: Canadell, J.G., D. E. Pataki and L. Pitelka (eds.): Terrestrial Ecosystems in a Changing World. Berlin, Springer Verlag, pp. 59-78.

Chmura GL, Anisfeld C, Cahoon DR, Lynch JC. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles. 17: 1111, doi: 10.1029/2002GB001917.

Charman D. 2002. Peatlands and environmental change. Wiley, Chichester. Chi FH, Amy GL. 2004. Kinetic study on the sorption of dissolved natural

organic matter onto different aquifer materials: the effects of

hydrophobicity and functional groups. J. Colloid Interf. Sci. 274:380-391.

Chimner RA, Cooper DJ. 2003. Influence of water table position on CO2

emissions in a Colorado subalpine fen: An in situ microcosm study. Soil Biology and Biogeochemistry. 35: 345–351.

Chun Mei MA et al. 2009. Climate changes in East China since the late-glacial inferred from high-resolution mountain peat humification records. Science in China Series D: Earth Sciences. Vol 52. No. 1: 118-131.

Couwenberg J, Dommain R, Joosten H. 2009. Greenhouse gas fluxes from tropical peatswamps in Southeast Asia. Global Change Biology (accepted).

Cruz-Guzman MR et al. 2003. Sorption-Desorption of lead (II) and mercury (II) by model association of soil colloids. Soil Sci. Soc. Am. J. 67:1378-1387.

Dai XY, White D, Ping CL. 2002. Evaluation of soil organic matter composition and bioavailability by Pyrolysis-gas chromatography/mass spectrometry. Journal of Analytical Applied Pyrolysis. 62. 249-258.

Dawson, JJC et al. 2004. Sources and sinks of aquatic carbon linked to a peatland stream continuum. Biogeochemistry 70: 71-92.

DeBusk WF, Reddy KR. 2003. Nutrient and Hydrology effects on soil respiration in a northern everglades marsh. J. Environ. Qual. 32:702-710. Dorien MK, Peter B, Dirk HH. 2006. Oxidation and compaction of a collapsed

peat dome in Central Kalimanta Page: 217-225.

Eliška R, Kateřina. 2006. Wetland plant decomposition under different nutrient conditions: what is more important, litter quality or site quality?

Etik PH. 2009. Emisi karbon dioksida (CO2) dan metan (CH4) pada perkebunan kelapa sawit di lahan gambut yang memiliki keragaman dalam ketebalan gambut dan umur tanaman. Disertasi S.3. Program Studi Ilmu Tanah, Sekolah Pascasarjana, Institut Pertanian Bogor. 158 hal.

Finn HB. 1983. Water table levels at different drainage intensities on deep peat in Northern Norwa 169-192

Fitzgerald N, Basher S, McLeod M. 2005. Peat subsidence near drains in the Waikato region. Environment Waikato Tachnical Report. PO BOX 4010 Hamilton East. Pp 33.

Global Peatland Initiative. 2002. World Peatland Map.

Gronlund A, Atle H., Anders H, Daniel PR. 2008. Carbon loss estimates from cultivated peat soils in Norway: a comparison of three methods. Nutr Cycl Agroecosyst. 81: 157 – 167.

Hairiah K dan Rahayu S. 2007. Petunjuk praktis pengukuran ”karbon tersimpan” di berbagai macam penggunaan lahan. World Agroforestry Centre. 77 hal. Hobbie S, Schimel J, Trumbore S, Randerson J. 2000. Controls over carbon

storage and turnover in high-latitude soils. Global Change Biology. 6. Suppl. 1: 196-210.

Hooijer A, Silvius M, Wösten H, Page S. 2006. PEAT CO2, Assessment of CO2

Emission from drained peatlands in SE Asia. Wetland International and Delft Hydraulics report Q3943.

Hooijer et al. 2010. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences, 7: 1505–1514.

IPCC. 2007. The physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, USA, 996 pp.

Jawatan Hidro-Oceanografi TNI AL. 2008. Daftar Pasang Surut Kepulauan Indonesia Tahun 2008. Halaman 42 – 47.

Joosten H, Clarke D. 2002. Wise use of mires and peatlands – Background and principles including a framework for decision-making. International Mire Conservation Group / International Peat Society, 304pp.

Joosten H. 2009. Peatland status and drainage related emissions in all countries of the world. The Global Peatland CO2 Picture. Wetlands International.

Joeni S, Rahajoe A, Laode, Simbolon H, Muhidin A. 2005. Produksi biomassa dad an variasi musiman jenis-jenis dominan serta tingkat dekomposisi serasah di hutan gambut alami dan pasca kebakaran di Kelampangan, Kalimantan tengah. Laporan Teknik Bidang Botani, Pusat Penelitian Biologi-LIPI: 196 - 200

Kalbitz K, Geyer S. 2002.. "Different effects of peat degradation on dissolved organic carbon and nitrogen." Organic Geochemistry 33(3): 319-326. Keddy PA. 2000. Wetland Ecology: principles and conservation. Cambridge

University Press. Cambridge, U.K.

Keller JK, Bridgham SD. 2007. Pathways of anaerobic carbon cycling across an ombrotrophic-minerotrophic peatland gradient. Limnol. Oceanogr. 52:96- 107.

Kirk G. 2004. The Biogeochemestry of Submerged Soils. John Wiley & Sons, Ltd. 291 hal.

Kyuma K. 1991. Problems related to reclamation and development of swampy lowlands in the tropics. Jpn. J. Soil Physic. Cond. Plant Growth. 63: 43-49. Lai CT et al. 2002. Modeling the limits on the response of net carbon exchange to

fertilization in a south-eastern pine forest. Plant Cell Environ. 25: 1095- 1119.

Laiho R, Finér L. 1996. Changes in root biomass after water-level drawdown on pine mires in Southern Finland. Scandinavian Journal of Forest Research 11: 251-260.

Laiho R, Laine J. 1997. Tree stand biomass and carbon content in an age sequence of drained pine mires in southern Finland. Forest Ecology and Management 93: 161-169.

Lasco RD. 2002. Forest carbon budged in Southeast Asia following harvesting and land cover change. Science in China (Series C): Vol 45 Supp: 55 – 64. Limin SH et al. 2000. Konsep Pemanfaatan Hutan Rawa Gambut di Kalimantan

Tengah. Disampaikan pada “Seminar Nasional Pengelolaan Hutan Rawa Gambut dan ekspose hasil Penelitian di Lahan Basah”, diselenggarakan oleh Balai Teknologi Reboisasi Banjarbaru, Istana Barito Banjarmasin, Kalimantan Selatan, 9 Maret 2000.

Limpens J et al. 2008. Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences Discuss., 5: 1379–1419.

Maas A. 2003. Peluang dan konsekuensi pemanfaatan lahan rawa pada masa mendatang. Pengukuhan Guru Besar. Universitas Gajah Mada. Yogyakarta. Menteri Pertanian RI. 2009. Peraturan Menteri Pertanian, Nomor:

14/Permentan/PL.110 /2/2009.

Minkkinen K et al. 1999. Post-drain-age changes in vegetation composition and carbon balance in Lakkasuo mire, Central Fin-land. Plant and Soil 207: 107- 120.

Mer J, Roger P. 2001. Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology. 37: 25-50 Minkkinen K, Laine J. 1998. Long-term effect of forest drainage on the peat

carbon stores of pine mires in Finland. Canadian Journal of Forest Research 28: 1267-1275.

Mongabay.com. 2009a. Indonesia: emissions to rise 50% by 2030, 3rd largest GHG emitter

Mongabay.com. 2009b. EU is 2nd largest source of peat emissions after Indonesia, finds global peat survey

Mudiyarso D et al. 2004. Petunjuk Lapangan Pendugaan Cadangan Karbon pada Lahan Gambut. Proyek Climate Change, Forest and peatlands in Indonesia. Wetlands International-Indonesia Programme dan Wildlife Habitat Canada. Bogor.

Najiyati S, Asmana A, Suryadiputra INN. 2005. Pemberdayaan Masyarakat di Lahan Gambut. Proyek Climate Change, Forest and peatlands in Indonesia. Wetlands International-Indonesia Programme dan Wildlife Habitat Canada. Bogor.

Neil F, Sarah B, Malcolm McL. 2005. Peat subsidence near drains in the Waikato region. Environment Waikato Technical Repot 2005/40. 33p.

Nelson, Sommers. 1996. Organic matter. Methods of Soil Analysis. Pg 1001 – 1010

Norman et al. 1997. A comparison of six methods for measuring soil-surface carbondioxide fluxes. Journal of Geophysical Research. Vol 12. No. D24: 28,771 – 28,777.

Noor M. 2001. Pertanian lahan Gambut Potensi dan Kendala. Penerbit Kanisius. Page S et al. 2002. The amount of carbon released from peat and forest fires in

Indonesia during 1997. NATURE. 420:61-65.

Paytan A et al. 2002. Rapid biologically mediated oxygen isotope exchange between water and phosphate. Global Biogeochemical Cycles 16(1): 1-8. Pribyl DW. 2010. A critical review of the conventional SOC to SOM conversion

factor. Geoderma 156: 75 - 83.

Rhett AB. 2009. Peatlands conversion for oil palm a 'monumental mistake' for Indonesia's long-term prosperity, sustainability. http//:www.mogabay.com

Rieley JO et al. 2008. Tropical Peatlands, carbon stores, carbon gas emissions and contribution to climate change processes. In: M. Strack (ed.) Peatlands and Climate Change. IPS. Saarijärvi. pp. 148-181.

Ritzema H, Wosten H. 2002, Hidrology of Borneo’s peat swamp. STRAPEAT – Status Report Hydrology. 19pp

Roulet NT. 2000. Peatlands, carbon storage, greenhouse gases, and the Kyoto protocol: Prospects and significance for Canada. Wetlands 20:605-615. Sabiham S. 2006. Pengelolaan lahan gambut Indonesia berbasis keunikan

ekosistem. Orasi Ilmiah Guru Besar tetap Pengelolaan Tanah. Fakultas Pertanian Institut Pertanian Bogor.

Sanderson E et al. 2006. Setting Priorities for the conservation recovery Wild Tiger:2005-2015, Washington DC, WCS, WWF, Smithsonian, and NFWF-STF.

Sapek A, Sapek B, Chrzanowski S, Jaszynsky J. 2007. Mobilization of substances in peat soils and their transfer within the groundwater and into surface water. Agronmy Research 5(2): 155 – 163.

Sarwono H. 2003. Ilmu Tanah. Jakarta : Akademika Pressindo. 354 halaman. Schipper LA, McLeod M. 2002. Subsidence rates and carbon loss in peat soils

following conversion to pasture in the Waikato Region, New Zeala

Silva CC et al. 2008. Production of carbon dioxide and nitrous oxide in alkaline saline soil of Texcoco at different water content amanded with urea: A Laboratory study. Soil Biol & Biochem. 40: 1813-1822.

Sofyan R, Wahyunto. 2003. Kandungan karbon tanah gambut di pulau Sumatera (Carbon contents of peat soils in Sumatera). Makalah disampaikan pada ”Workshop on Wise Use and Sustainable Peatlands Management Practices”, October 13th-14th, 2003, Hotel Pangrango II, Bogor.

Soil Survey Staff. 2010. Key to soil taxonomy 11th United States Departement of Agriculture Natural Resources Conservation Service.

Stern JC, Wang Y. 2002. Using oxygen isotopes to determine the source of phosphate in the Everglades. Eos Transactions AGU, Spring Meeting Supplement 83(19).

Sudip M, Wassmann R, Vlek PLG. 2005. An appraisal of global wetland area and its organic carbon stock. Current Science, Vol. 88, No. 1: 25-35.

Susanne MS, Price JS. 1999. Soil water flow dynamics in managed cutover peat field, Quebec: Field and laboratory invertigations. Water Resouces Research. Vol. 35. No. 12: 3675-3683.

Tanji KK, Chow AT, Suduan G. 1999. Dissolved organic carbon (DOC) production from cultiveted organic soils on Twitchell Island, Sacramento- San Joaquin Delta, California. Technical Completion Report. Project Number W-891. University of California Water Resources Center. U.C. Barkeley. Pp. 153.

Tans P. 2010. Full Mauna Loa CO2 record. NOAA/ES gov/gmd/ccgg/trends/)

Turetsky MR, Wieder RK. 2001. A direct approach to quantifying organic matter lost as a result of peatland wildfire. Can. J. For. Res. 31: 363–366.

Wahyunto, Ritung S, Subagjo H. 2003. Map of peatland distribution area and carbon content in Sumatra. Wetland International-Indonesia Program and Wildlife Habitat Canada (WHC).

Wahyunto, Ritung S, Suparto, SubagjoH. 2004. . Map of peatland distribution area and carbon in Kalimantan. Wetland International-Indonesia Program and Wildlife Habitat Canada (WHC).

Wahyunto, Subagjo H, Ritung S, Bekti H. 2007. Map of peatland distribution area and carbon content in Papua. Wetland International-Indonesia Program and Wildlife Habitat Canada (WHC).

Wahyunto, Dariah A, Agus F. 2010. Distribution, properties, and carbon stock of Indonesia peatland. Proc. of Int. Workshop Evaluation and Sustainable Management of Soil Carbon Sequestration in Asian Countries – Bogor, Indonesia Sept. 28 29. Page: 187 - 204

Walkley A, Black IA. 1934. An Examination of Degtjareff Method for

Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 37:29-37

White DM, Garland DS, Dai X, Ping CL. 2002. Fingerprinting soil organic matter in the Arctic to help predict CO

2 flux, Journal of Cold Regions

Science and Technology. 35: 185-194.

Wösten JHM, Ritzema HP. 2001. Land and water management options for peatland development in Sarawak, Malaysia. International Peat Journal 11: 59-66.

Yavitt J, Williams C, Wieder R. 2004. Soil chemistry versus environmental controls on production of CH

4 and CO2 in northern peatlands. European

Journal of Soil Science. 56. 2: 169-178.

Yulianti N. 2009. Cadangan karbon lahan gambut dari agroekosistem kelapa sawit PTPN IV Ajamu kabupaten Labuhan Batu, Sumatera Utara. Tesis Sekolah Pasca Sarjana IPB Bogor.

Zhang Y et al. 2002. An integrated model of soil, hydrology and vegetation for carbon dynamics in wetland ecosystems. Global Biogeochemical Cycles. 16: GB001838.

Zhang et al. 2007. Effects of nitrogen on the ecosystem respiration, CH4 and N2O emissions to the atmosphere from the freshwater marshes in Northeast China. Environ Geol. 52: 529-539.

Lampiran 1. Legenda Land Unit Kabupaten Aceh Barat

SPT Fisiografi Bahan Induk Penggunaan Lahan Bentuk Lereng dan Lokasi Wilayah (%)

1 Sand beach recent (Mq 1.2) Endapan laut Lahan terbuka Agak datar 1 - 3 sepanjang pesisir pantai

2 Sand beach recent (Mq 1.2) Endapan laut Kebun kelapa Datar 0 - 1 sepanjang pesisir pantai

bag. Belakang

3 Sand beach recent (Mq 1.2) Endapan laut sepanjang pesisir pantai Datar 0 - 1 bag. Belakang, air tanah

dangkal

4 Beach ridges recent (Mq 1.1.1) Endapan laut Sekitar pemukiman dan Agak datar 1 - 3 bekas pemukiman

air tanah agak dalam

5 Beach ridges & swales recent Endapan laut Sekitar pemukiman dan Agak datar 1 - 3

(Mq.1.1.1) bekas pemukiman

air tanah agak dalam

6 Beach ridges & swales recent Endapan laut Umumnya bekas sawah Datar 0 - 1 (Mq.1.1.1) dan sebagian perkebunan

7 Beach ridges & swales recent Endapan laut Perkebunan karet, pemu- Datar 0 - 1 (Mq.1.1.1) dan bahan organik kiman, dan belukar rawa

8 Beach ridges & swales recent Endapan laut Datar 0 - 1 (Mq.1.1.1) dan bahan organik

9 Beach ridges & swales sub recent Endapan laut Pemukiman/pekarangan Agak datar 1 - 3

(Mq.1.1.2) perkebunan rakyat

sekitar Seunebok Tengah

10 Beach ridges & swales sub recent Endapan laut Pemukiman/pekarangan Agak datar 1 - 3 (Mq.1.1.2) overflow mantle dan endapan sungai perkebunan rakyat

sekitar Seunebok Tengah

11 Beach ridges & swales sub recent Endapan laut Sawah-sawah Datar 0 - 1 (Mq.1.1.2) sekitar Seunebok Tengah

12 Beach ridges & swales sub recent Endapan laut Sawah-sawah Datar 0 - 1 (Mq.1.1.2) sekitar Seunebok Tengah

13 Beach ridges sub recent Endapan laut

Pemukiman dan

perkebunan Datar 0 - 1 (Mq.1.1.2/Mfq.1.1.2) dan sungai dekat sungai-sungai besar

14 Beach ridges & swales sub recent Endapan laut dan Perkebunan karet/sawit Datar 0 - 1 (Mq.1.1.2) bahan organik

Lampiran 3. Tingkat kematangan gambut pada profil gambut di berbagai lokasi kajian

Hutan, Simpang Semak , Simpang Karet, Simpang

Lapisan Tingkat kematangan Lapisan Tingkat kematangan Lapisan Tingkat kematangan

0-50 Hemik 0-50 Hemik 0-50 Hemik

50-100 Fibrik 50-100 Hemik 50-100 Hemik

100-150 Fibrik 100-150 Fibrik 100-150 Hemik

150-200 Fibrik 150-200 Fibrik 150-168 Hemik

200-250 Fibrik 200-250 Fibrik 250-300 Fibrik 250-300 Fibrik 300-350 Fibrik 300-350 Fibrik 350-400 Fibrik 350-400 Hemik 400-450 Fibrik 400-450 Hemik 450-500 Hemik 450-500 Hemik 500-550 Hemik 500-550 Hemik 550-600 Hemik 550-600 Hemik 600-650 Hemik 600-650 Hemik 650-700 Hemik 700-750 Hemik 750-800 Hemik 800-850 Hemik 850-900 Hemik 900-950 Hemik 950-1000 Hemik

Karet, Suak raya Kelapa sawit I, Suakraya Kelapa sawit II, Suak raya

Lapisan Tingkat kematangan Lapisan Tingkat kematangan Lapisan Tingkat kematangan

0-50 Hemik 0-50 Hemik 0-50 Hemik

50-100 Fibrik 50-100 Fibrik 50-100 Hemik

100-150 Fibrik 100-150 Fibrik 100-150 Hemik

150-200 Fibrik 150-200 Hemik 150-173 Saprik

200-250 Fibrik 200-250 Hemik

250-300 Hemik 250-300 Hemik

300-350 Saprik 300-350 Saprik

350-400 Saprik 350-400 Saprik

400-450 Saprik

Kelapa sawit, Cot gajah mati Hutan, Cot gajah mati Kelapa sawit, Suak puntong

Lapisan Tingkat kematangan Lapisan Tingkat kematangan Lapisan Tingkat kematangan

0-50 Hemik 0-50 Hemik 0-50 Hemik

50-100 Fibrik 50-100 Fibrik 50-100 Hemik

100-150 Hemik 100-150 Fibrik 100-150 Hemik

150-200 Hemik 150-200 Fibrik 150-163 Hemik

200-215 Hemik 200-250 Hemik

Land use, Desa Pengmatan Cadangan Kehilangan Particle BD Hidraulik Subsidence

dari saluran karbon karbon Density konduktiviti

(m) (kg/m2) (kg/m2/th) (gr cm-3) (gr cm-3) (cm/jam) (cm) Spg Hutan, Simpang 10 294,28 0,55 1,06 0,04 360 5 Spg Hutan, Simpang 50 253,7 0,39 1,16 0,05 360 4 Spg Hutan, Simpang 100 286,26 0,45 1,44 0,05 352 5 Spg Hutan, Simpang 200 289,71 0,23 1,49 0,05 411 2 Spg Hutan, Simpang 250 296,91 0,28 0,9 0,05 361 3 Spg Semak I, Simpang 5 179,74 1,72 1 0,09 327 15 Spg Semak I, Simpang 10 180,19 1,14 0,83 0,1 349 7 Spg Semak I, Simpang 50 164,67 0,54 1,01 0,13 369 4 Spg Semak I, Simpang 150 187,18 0,72 1,03 0,09 314 12 Spg Semak I, Simpang 250 172,25 0,64 1,07 0,12 349 5

Spg Semak II, Simpang 5 123,9 1,70 1,32 0,06 333 12

Spg Semak II, Simpang 10 74,94 1,05 1,13 0,03 310 7

Spg Semak II, Simpang 50 95,6 0,64 1,25 0,05 300 4

Spg Semak II, Simpang 150 109,61 0,92 1,1 0,06 321 9

Spg Semak II, Simpang 250 90,85 0,70 1,37 0,12 290 3

Spg Karet, Simpang 5 32,78 0,21 1,32 0,08 281 4

Spg Karet, Simpang 10 47,42 0,05 1,56 0,06 310 1

Spg Karet, Simpang 50 53,6 0,04 1,23 0,14 257 1

Spg Karet, Simpang 150 54,7 0,02 1,73 0,12 300 0

Spg Karet, Simpang 250 115,04 0,03 1,26 0,11 321 0

CGM Hutan, Cot gajah mati 5 99,72 0,39 1,63 0,07 288 3

CGM Hutan, Cot gajah mati 10 43,71 0,25 1,67 0,06 300 2

CGM Hutan, Cot gajah mati 90 65,95 0,24 1,58 0,05 320 2

CGM Hutan, Cot gajah mati 135 58,19 0,17 1,49 0,07 343 2

CGM Hutan, Cot gajah mati 190 67,42 0,17 1,43 0,07 351 2

CGM Kelapa sawit I, Cot gajah mati 30 64,94 1,80 1,43 0,14 272 9

CGM Kelapa sawit I, Cot gajah mati 40 115,59 1,66 1,34 0,1 272 9

CGM Kelapa sawit I, Cot gajah mati 50 139,19 1,65 1,31 0,09 327 9

CGM Kelapa sawit I, Cot gajah mati 60 57,72 1,04 1,43 0,14 225 7

CGM Kelapa sawit I, Cot gajah mati 70 80,31 1,17 1,42 0,15 232 7

CGM Kelapa sawit II, Cot gajah mati 20 65,21 0,53 1,53 0,15 262 4

CGM Kelapa sawit II, Cot gajah mati 35 64,86 0,98 1,53 0,06 215 3

CGM Kelapa sawit II, Cot gajah mati 50 89,32 0,33 1,52 0,09 252 2

CGM Kelapa sawit II, Cot gajah mati 65 61,31 0,43 1,66 0,08 234 3

CGM Kelapa sawit II, Cot gajah mati 90 58,25 0,44 1,48 0,1 248 3

SR Karet, Suak raya 5 163,27 0,19 1,38 0,15 257 3

SR Karet, Suak raya 10 193,57 0,23 1,55 0,16 265 3

SR Karet, Suak raya 30 209,01 0,24 1,4 0,14 290 4

SR Karet, Suak raya 50 200,08 0,15 1,45 0,11 273 3

SR Karet, Suak raya 70 192,44 0,08 1,16 0,16 281 1

SR Kelapa sawit I, Suak raya 5 211,73 0,86 1,29 0,12 220 6

SR Kelapa sawit I, Suak raya 10 244,44 0,72 1,49 0,13 231 4

SR Kelapa sawit I, Suak raya 30 203,6 0,69 1,39 0,12 225 4

SR Kelapa sawit I, Suak raya 50 176,66 0,64 1,28 0,15 237 4

SR Kelapa sawit I, Suak raya 70 218,04 0,93 1,46 0,13 243 6

SR Kelapa sawit II, Suak raya 5 57,02 0,09 1,33 0,2 250 1

SR Kelapa sawit II, Suak raya 10 71,29 0,15 1,21 0,18 243 1,5

SR Kelapa sawit II, Suak raya 25 72 0,09 1,47 0,2 237 1

SR Kelapa sawit II, Suak raya 40 78,27 0,06 1,09 0,13 257 1

SR Kelapa sawit II, Suak raya 55 89,34 0,09 1,35 0,09 255 1

SP Kelapa sawit I, Suak puntong 5 45,19 2,05 1,38 0,12 228 14

SP Kelapa sawit I, Suak puntong 10 51,8 1,64 1,26 0,13 218 12

SP Kelapa sawit I, Suak puntong 40 55,5 1,11 1,06 0,12 208 9

SP Kelapa sawit I, Suak puntong 70 63,97 0,57 1,21 0,12 213 3

SP Kelapa sawit I, Suak puntong 100 81,84 0,56 1,45 0,12 229 3

SP Kelapa sawit II, Suak puntong 5 69,1 1,34 1,29 0,14 211 9

SP Kelapa sawit II, Suak puntong 10 54,38 1,59 1,17 0,17 201 12

SP Kelapa sawit II, Suak puntong 40 59,9 1,52 1,22 0,16 196 13

SP Kelapa sawit II, Suak puntong 70 63,04 1,33 1,51 0,13 192 10

Titik Muka air tanah

Land use, Desa Pengmatan Rataan Minimum Maksimum Fluktuasi

(cm) (cm) (cm) (cm) Hutan, Simpang 10 75 56 89 33 Hutan, Simpang 50 55 34 74 40 Hutan, Simpang 100 50 30 70 40 Hutan, Simpang 200 44 20 64 44 Hutan, Simpang 250 41 20 52 32 Semak I, Simpang 5 87 68 108 40 Semak I, Simpang 10 83 69 97 28 Semak I, Simpang 50 54 47 60 13 Semak I, Simpang 150 45 25 61 36 Semak I, Simpang 250 49 20 90 70

Semak II, Simpang 5 88 54 120 66

Semak II, Simpang 10 88 76 102 26

Semak II, Simpang 50 85 70 100 30

Semak II, Simpang 150 60 49 79 30

Semak II, Simpang 250 40 24 66 42

Karet, Simpang 5 43 34 57 23

Karet, Simpang 10 41 28 57 29

Karet, Simpang 50 31 6 56 50

Karet, Simpang 150 29 10 51 41

Karet, Simpang 250 31 13 60 47

Hutan, Cot gajah mati 5 19 11 27 16

Hutan, Cot gajah mati 10 12 10 14 4

Hutan, Cot gajah mati 90 14 8 20 12

Hutan, Cot gajah mati 135 10 7 13 6

Hutan, Cot gajah mati 190 9 5 12 7

Kelapa sawit I, Cot gajah mati 30 37 5 69 64

Kelapa sawit I, Cot gajah mati 40 36 5 63 58

Kelapa sawit I, Cot gajah mati 50 32 9 59 50

Kelapa sawit I, Cot gajah mati 60 31 5 60 55

Kelapa sawit I, Cot gajah mati 70 40 5 76 71

Kelapa sawit II, Cot gajah mati 20 17 12 22 10

Kelapa sawit II, Cot gajah mati 35 15 9 20 11

Kelapa sawit II, Cot gajah mati 50 18 13 22 9

Kelapa sawit II, Cot gajah mati 65 12 9 15 6

Kelapa sawit II, Cot gajah mati 90 26 11 40 29

Karet, Suak raya 5 49 18 65 47

Karet, Suak raya 10 53 21 70 49

Karet, Suak raya 30 50 20 70 50

Karet, Suak raya 50 38 13 60 47

Karet, Suak raya 70 46 23 62 39

Kelapa sawit I, Suak raya 5 51 33 60 27

Kelapa sawit I, Suak raya 10 4 23 58 35

Kelapa sawit I, Suak raya 30 44 12 54 42

Kelapa sawit I, Suak raya 50 52 30 60 30

Kelapa sawit I, Suak raya 70 49 24 58 34

Kelapa sawit II, Suak raya 5 37 24 46 22

Kelapa sawit II, Suak raya 10 34 25 39 14

Kelapa sawit II, Suak raya 25 52 43 63 20

Kelapa sawit II, Suak raya 40 55 36 61 25

Kelapa sawit II, Suak raya 55 48 36 55 19

Kelapa sawit I, Suak puntong 5 67 52 82 30

Kelapa sawit I, Suak puntong 10 68 49 81 32

Kelapa sawit I, Suak puntong 40 61 41 73 32

Kelapa sawit I, Suak puntong 70 52 40 65 25

Kelapa sawit I, Suak puntong 100 53 44 66 22

Kelapa sawit II, Suak puntong 5 84 69 98 29

Kelapa sawit II, Suak puntong 10 73 77 78 1

Kelapa sawit II, Suak puntong 40 83 65 112 47

Kelapa sawit II, Suak puntong 70 63 50 72 22

Pengmatan (%) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Hutan, Simpang 10 1,8 4,1 62,75 3894 917 34