Anam, M. K., Narindra, R., & Abraha, K. (2013). Deteksi Formalin Menggunakan
Surface Plasmon Resonance ( SPR ) Berbasis Nanopartikel Perak sebagai Pengembangan Awal Teknologi Food Safety. 3(2), 201–208.
Anggita, A. W., & Harmadi. (2015). Aplikasi Serat Optik sebagai Sensor Kekentalan Oli Mesran SAE 20W-50 Berbasis Perubahan Temperatur. Jurnal
Fisika Unand, 4(3), 239–246.
Ariani, P. F., & Prajitno, G. (2016). Analisis Pengaruh Panjang Kupasan dan Perubahan Suhu terhadap Pancaran Intensitas pada Serat Optik Platik Multimode Tipe FD 620-10. Jurnal Sains Dan Seni ITS, 5(2), 103–107. Avila-Garcia, M. S., Bianchetti, M., Corre, R. Le, & Guevel, A. (2018). High
sensitivity strain sensors based on single-mode-fiber core-offset
Mach-Zehnder interferometers.pdf (pp. 202–206). pp. 202–206. Optics and Lasers in
Engineering.
Bhardwaj, V., & Singh, V. K. (2016). Fabrication and characterization of cascaded tapered Mach-Zehnder interferometer for refractive index sensing. Sensors
and Actuators, A: Physical, 244, 30–34. https://doi.org/10.1016/j.sna.2016.04.008
Binu, S., Pillai, V. P. M., Pradeepkumar, V., Padhy, B. B., Joseph, C. S., & Chandrasekaran, N. (2009). Fibre optic glucose sensor. Materials Science &
Engineering C, 29(1), 183–186. https://doi.org/10.1016/j.msec.2008.06.007
Castrellon-Uribe, J. (2012). Optical Fiber Sensors : An Overview (M. Yasin, Ed.).
https://doi.org/10.5772/28529
Chen, H., Shao, Z., Zhang, X., Hao, Y., & Rong, Q. (2018). Highly sensitive magnetic field sensor using tapered Mach–Zehnder interferometer. Optics and
Lasers in Engineering, 107(March), 78–82. https://doi.org/10.1016/j.optlaseng.2018.03.016
Firdausi, S., K, S., & Budi, W. S. (2008). Studi Kualitas Minyak Goreng Dengan Parameter Viskositas Dan Indeks Bias. Berkala Fisika, 11(2), 54–57. https://doi.org/10.1139/Z07-001
Ghatak, A. (2010). OPTICS (1st ed.). New York: McGraw-Hill.
Ghetia, S., Gajjar, R., & Trivedi, P. (2013). Classification of Fiber Optical Sensors.
International Journal of Electronics Communication and Computer Technology (IJECCT), 3(4), 442–445.
https://doi.org/10.1007/978-90-481-8831-4
Harris, J., Lu, P., Larocque, H., Chen, L., & Bao, X. (2014). In-fiber Mach-Zehnder
interferometric refractive index sensors with guided and leaky modes.pdf.
https://doi.org/http://dx.doi.org/doi:10.1016/j.snb.2014.09.062 SNB
Herdiyanto. (2007). Interferometer Mach-Zehnder sebagai Sensor Serat Optik.
Techne Jurnal Ilmiah Elektroteknika, 6(1), 17–30.
Hu, X., Chuan, T. S., Wang, Y., & Fang, T. (2016). Mach-Zehnder interferometer sensor based on the U-shaped probe for concentration sensing. Optik, 127(4), 2183–2186. https://doi.org/10.1016/j.ijleo.2015.11.136
Huda, N., Mahmudin, D., Hasanah, L., & Wijayanto, Y. N. (2015). Analisa Sudut Persimpangan dan Indeks Bias Pada Mach Zehnder Interferometer Optik.
Prosiding Seminas Nasional Fisika SNF2015, 4, 57–60.
Islam, S., Rahman, R. A., Othaman, Z. Bin, Riaz, S., & Naseem, S. (2014). Synthesis and characterization of multilayered sol-gel based plastic-clad fiber optic pH sensor. Journal of Industrial and Engineering Chemistry, 1–5. https://doi.org/10.1016/j.jiec.2014.08.007
Island, R., & Daly, J. C. (2018). Fiber Optics.
Jasim, A. A., Hayashi, N., Harun, S. W., Ahmad, H., Penny, R., Mizuno, Y., & Nakamura, K. (2014). Refractive index and strain sensing using inline Mach-Zehnder interferometer comprising perfluorinated graded-index plastic optical
44
fiber. Sensors and Actuators, A: Physical, 219, 94–99. https://doi.org/10.1016/j.sna.2014.07.018
Jiang, L., Yang, J., Wang, S., Li, B., & Wang, M. (2011). Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high
sensitivity. Optics Letters, 36(19), 3753.
https://doi.org/10.1364/OL.36.003753
Larin, K. V, Motamedi, M., & Ashitkov, T. V. (2003). Specificity of noninvasive
blood glucose sensing using optical coherence tomography technique : A pilot
study Specificity of noninvasive blood glucose sensing using optical coherence tomography technique : a pilot study. (May 2014). https://doi.org/10.1088/0031-9155/48/10/310
Li, B., Jiang, L., Wang, S., Chen, Q., Wang, M., & Yang, J. (2012). A new Mach-Zehnder interferometer in a thinned-cladding fiber fabricated by electric arc for high sensitivity refractive index sensing. Optics and Lasers in Engineering,
50(6), 829–832. https://doi.org/10.1016/j.optlaseng.2012.01.024
Liu, Y., Hering, P., & Scully, M. O. (1992). An Integrated Optical Sensor for
Measuring Glucose Concentration. 23, 18–23.
Luo, Y., Yan, B., Zhang, Q., Peng, G.-D., Wen, J., & Zhang, J. (2017). Fabrication of Polymer Optical Fibre (POF) Gratings. Sensors, 17(3), 511.
https://doi.org/10.3390/s17030511
Ma, Y., Qiao, X., Guo, T., Wang, R., Zhang, J., & Weng, Y. (2012). Mach –
Zehnder Interferometer Based on a Sandwich Fiber Structure for Refractive Index Measurement. 12(6), 2081–2085.
Maddu, A., Sardy, S., Arif, A.,& Zain, H. (2007). Pengembangan Sensor Uap Amonia Berbasis Serat Optik Dengan Cladding Termodifikasi Nanoserat Polianilin. Sains Teknologi, 12(3), 137–142.
Marques, C. A. F., Webb, D. J., & Andre, P. (2017). Polymer Optical Fiber Sensors in Human Life Safety. Optical Fiber Technology, 36, 144–154.
https://doi.org/10.1016/j.yofte.2017.03.010
Meadows, D. L., & Schultz, J. S. (1993). Design , manufacture and
characterization of an optical fiber glucose affinity sensor based on an homogeneous fluorescence energy transfer assay system. 280, 21–30.
Mishra, S. K., Bhardwaj, S., & Gupta, B. D. (2015). Surface Plasmon Resonance-Based Fiber Optic Sensor for the Detection of Low Concentrations of Amonia Gas. IEEE Sensors Journal, 15(2), 1235–1239. https://doi.org/10.1007/s11468-015-0005-4
Prajzler, V., Neruda, M., & Špirková, J. (2013). Planar Large Core Polymer Optical
1x2 and 1x4 Splitters Connectable to Plastic Optical Fiber. Radioengineering,
22(3), 751–757.
Raji, Y. M., Lin, H. S., Ibrahim, S. A., Mokhtar, M. R., & Yusoff, Z. (2016). Intensity-modulated abrupt tapered Fiber Mach-Zehnder Interferometer for the simultaneous sensing of temperature and curvature. Optics and Laser
Technology, 86, 8–13. https://doi.org/10.1016/j.optlastec.2016.06.006
Rodrigues, D., Lopes, R., Franco, M., Werneck, M., & Allil, R. (2017). Sensitivity Analysis of Different Shapes of a Plastic Optical Fiber-Based Immunosensor for Escherichia coli: Simulation and Experimental Results. Sensors, 17(12), 2944. https://doi.org/10.3390/s17122944
Rong, Q., Sun, H., Qiao, X., Zhang, J., Hu, M., & Feng, Z. (n.d.). Corrigendum : A
miniature fiber-optic temperature sensor based on a Fabry – Perot
interferometer. 045002. https://doi.org/10.1088/2040-8978/14/5/059501
Rosa, S., Laranjeira, M. C. M., Riela, H. G., & Valfredo, T. F. (2008). Cross-linked quaternary chitosan as an adsorbent for the removal of the reactive dye from aqueous solutions. Elsevier, 155, 253–260.
46
Sari, N. W., Marzuki, A., & Riyatun. (2012). Sensor Fiber Optik Dari Bahan Fiber Optik Polimer Untuk Pengukuran Refractive Index Larutan Gula. Indonesian
Journal of Applied Physics, 2(1), 30–36.
Suana, W., Muntini, M. S., & Hatta, A. M. (2012). Pengembangan Sensor Napas Berbasis Serat Optik Plastik dengan Cladding Terkelupas untuk Aplikasi di Bidang Medis. JURNAL FISIKA DAN APLIKASINYA, 8(2), 1–5.
https://doi.org/10.12962/j24604682.v8i2.871
Tapetado, A., Pinzón, P. J., Zubia, J., Pérez, I., Vázquez, C., Electrónica, D. T., …
N, A. D. U. S. (2014). Self-referenced Temperature Sensor Based on a
Polymer Optical Fiber. 9157, 12–15. https://doi.org/10.1117/12.2059297
Vallan, A., Casalicchio, M. L., Olivero, M., & Perrone, G. (2012). Assessment of a
Dual-Wavelength Compensation Technique for Displacement Sensors Using Plastic Optical Fibers. 61(5), 1377–1383.
Wang, Q., Wang, B., Kong, L., & Zhao, Y. (2017). Comparative Analyses of
Bi-Tapered Fiber Mach– Zehnder Interferometer for Refractive Index Sensing.
1–7.
Wang, Q., Wei, W., Guo, M., & Zhao, Y. (2016). Sensors and Actuators B :
Chemical Optimization of cascaded fiber tapered Mach – Zehnder interferometer and refractive index sensing technology. Sensors & Actuators:
B. Chemical, 222, 159–165. https://doi.org/10.1016/j.snb.2015.07.098
Wang, Yinfeng, Wang, S., Jiang, L., Huang, H., Zhang, L., Wang, P., … Cao, Z.
(2017). Temperature-insensitive Refractive Index Sensor based on Mach – Zehnder Interferometer with Two Microcavities. Chinese Optics Letters,
15(2), 1–5. https://doi.org/10.3788/COL201715.020603.Optical
Wang, Yiping, Zhou, J., Liao, C., Sun, B., He, J., Yin, G., … Zhao, J. (2015). Intensity modulated refractive index Michelson sensor based on opticalfiber
Woyessa, G., Fasano, A., Stefani, A., Markos, C., Rasmussen, H. K., & Bang, O. (2016). Single mode step-index polymer optical fiber for humidity insensitive
high temperature fiber Bragg grating sensors. 24(2), 3296–3298.
https://doi.org/10.1364/OE.24.001253
Xu, F., Shi, J., Gong, K., Li, H., Hui, R., & Yu, B. (2014). Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaghragm. Optics
Letters, 39(10), 2838–2840. https://doi.org/10.1364/OL.39.002838
Yao, Q., Meng, H., Wang, W., Xue, H., Xiong, R., Huang, B., … Huang, X. (2014).
Sensors and Actuators A : Physical Simultaneous measurement of refractive
index and temperature based on a core-offset Mach – Zehnder interferometer combined with a fiber Bragg grating. Sensors & Actuators: A. Physical, 209, 73–77. https://doi.org/10.1016/j.sna.2014.01.017
Yulianti, I., Edi, S. S., Saputra, B. A., Aji, M. P., Susanto., & Kurdi, O. (2017). Detection of Cadmium Ion by Evanescent Wave Based Chitosan Coated Optical Fiber Sensor. Journal of Physics The 3rd International Conference on
Mathematics, Science and Education 2016, (Conf. Series 824 012002).
https://doi.org/10.1088/1742-6596/824/1/012002
Yulianti, Ian, Supa’At, A. S. M., Idrus, S. M., & Anwar, M. R. S. (2013). Design
of Fiber Bragg Grating-Based Fabry-Perot sensor for Simultaneous Measurement of Humidity and Temperature. Optik, 124(19), 3919–3923. https://doi.org/10.1016/j.ijleo.2012.11.043
Yulianti, Ian, Supa’At, A. S. M., Idrus, S. M., Kurdi, O., & Anwar, M. R. S. (2012).
Sensitivity improvement of a fibre Bragg grating pH sensor with elastomeric coating. Measurement Science and Technology, 23(1).
https://doi.org/10.1088/0957-0233/23/1/015104
Zhang, Z. (2013). Bragg grating formation in PMMA doped with
Trans-4-stilbenemethanol. 196.
48
temperature high sensitivity Mach-Zehnder interferometer based on waist-enlarged fiber bitapers. Sensors & Actuators: A. Physical.
https://doi.org/10.1016/j.sna.2017.09.016
Zhong, N., Zhao, M., Liao, Q., Zhu, X., & Li, Y. (2016). Effect of heat treatments
on the performance of polymer optical fiber sensor. 24(12), 12893–12898.
https://doi.org/10.1364/OE.24.013394
Zhou, J., Liao, C., Wang, Y., Yin, G., Zhong, X., Yang, K., … Li, Z. (2014). Simultaneous Measurement of Strain and Temperature by Employing Fiber Mach-Zehnder Interferometer. Optics Express, 22(2), 1680–1686. https://doi.org/10.1364/OE.22.001680
52
Lampiran 3. Grafik hubungan rasio transmitansi terhadap perubahan indeks bias
Gambar 1.λ : λ
Gambar 2.λ : λ
54
Gambar 4.λ : λ
Gambar 5.λ : λ
Gambar 7.λ : λ
Gambar 8.λ : λ
56
Gambar 10.λ : λ
Gambar 11.λ : λ
Gambar 13.λ : λ
Gambar 14.λ : λ
58
Gambar 16.λ : λ
Gambar 17.λ : λ
Gambar 19.λ : λ
60
Lampiran 4. Grafik hubungan rasio transmitansi terhadap perubahan suhu
Gambar 21.λ : λ
Gambar 22.λ : λ
Gambar 24.λ : λ
Gambar 25.λ : λ
62
Gambar 27.λ : λ
Gambar 28.λ : λ
Gambar 30.λ : λ
Gambar 31.λ : λ
64
Gambar 33.λ : λ
Gambar 34.λ : λ
Gambar 36.λ : λ
Gambar 37.λ : λ
66
Gambar 39.λ : λ