• Tidak ada hasil yang ditemukan

Anam, M. K., Narindra, R., & Abraha, K. (2013). Deteksi Formalin Menggunakan

Surface Plasmon Resonance ( SPR ) Berbasis Nanopartikel Perak sebagai Pengembangan Awal Teknologi Food Safety. 3(2), 201–208.

Anggita, A. W., & Harmadi. (2015). Aplikasi Serat Optik sebagai Sensor Kekentalan Oli Mesran SAE 20W-50 Berbasis Perubahan Temperatur. Jurnal

Fisika Unand, 4(3), 239–246.

Ariani, P. F., & Prajitno, G. (2016). Analisis Pengaruh Panjang Kupasan dan Perubahan Suhu terhadap Pancaran Intensitas pada Serat Optik Platik Multimode Tipe FD 620-10. Jurnal Sains Dan Seni ITS, 5(2), 103–107. Avila-Garcia, M. S., Bianchetti, M., Corre, R. Le, & Guevel, A. (2018). High

sensitivity strain sensors based on single-mode-fiber core-offset

Mach-Zehnder interferometers.pdf (pp. 202–206). pp. 202–206. Optics and Lasers in

Engineering.

Bhardwaj, V., & Singh, V. K. (2016). Fabrication and characterization of cascaded tapered Mach-Zehnder interferometer for refractive index sensing. Sensors

and Actuators, A: Physical, 244, 30–34. https://doi.org/10.1016/j.sna.2016.04.008

Binu, S., Pillai, V. P. M., Pradeepkumar, V., Padhy, B. B., Joseph, C. S., & Chandrasekaran, N. (2009). Fibre optic glucose sensor. Materials Science &

Engineering C, 29(1), 183–186. https://doi.org/10.1016/j.msec.2008.06.007

Castrellon-Uribe, J. (2012). Optical Fiber Sensors : An Overview (M. Yasin, Ed.).

https://doi.org/10.5772/28529

Chen, H., Shao, Z., Zhang, X., Hao, Y., & Rong, Q. (2018). Highly sensitive magnetic field sensor using tapered Mach–Zehnder interferometer. Optics and

Lasers in Engineering, 107(March), 78–82. https://doi.org/10.1016/j.optlaseng.2018.03.016

Firdausi, S., K, S., & Budi, W. S. (2008). Studi Kualitas Minyak Goreng Dengan Parameter Viskositas Dan Indeks Bias. Berkala Fisika, 11(2), 54–57. https://doi.org/10.1139/Z07-001

Ghatak, A. (2010). OPTICS (1st ed.). New York: McGraw-Hill.

Ghetia, S., Gajjar, R., & Trivedi, P. (2013). Classification of Fiber Optical Sensors.

International Journal of Electronics Communication and Computer Technology (IJECCT), 3(4), 442–445.

https://doi.org/10.1007/978-90-481-8831-4

Harris, J., Lu, P., Larocque, H., Chen, L., & Bao, X. (2014). In-fiber Mach-Zehnder

interferometric refractive index sensors with guided and leaky modes.pdf.

https://doi.org/http://dx.doi.org/doi:10.1016/j.snb.2014.09.062 SNB

Herdiyanto. (2007). Interferometer Mach-Zehnder sebagai Sensor Serat Optik.

Techne Jurnal Ilmiah Elektroteknika, 6(1), 17–30.

Hu, X., Chuan, T. S., Wang, Y., & Fang, T. (2016). Mach-Zehnder interferometer sensor based on the U-shaped probe for concentration sensing. Optik, 127(4), 2183–2186. https://doi.org/10.1016/j.ijleo.2015.11.136

Huda, N., Mahmudin, D., Hasanah, L., & Wijayanto, Y. N. (2015). Analisa Sudut Persimpangan dan Indeks Bias Pada Mach Zehnder Interferometer Optik.

Prosiding Seminas Nasional Fisika SNF2015, 4, 57–60.

Islam, S., Rahman, R. A., Othaman, Z. Bin, Riaz, S., & Naseem, S. (2014). Synthesis and characterization of multilayered sol-gel based plastic-clad fiber optic pH sensor. Journal of Industrial and Engineering Chemistry, 1–5. https://doi.org/10.1016/j.jiec.2014.08.007

Island, R., & Daly, J. C. (2018). Fiber Optics.

Jasim, A. A., Hayashi, N., Harun, S. W., Ahmad, H., Penny, R., Mizuno, Y., & Nakamura, K. (2014). Refractive index and strain sensing using inline Mach-Zehnder interferometer comprising perfluorinated graded-index plastic optical

44

fiber. Sensors and Actuators, A: Physical, 219, 94–99. https://doi.org/10.1016/j.sna.2014.07.018

Jiang, L., Yang, J., Wang, S., Li, B., & Wang, M. (2011). Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high

sensitivity. Optics Letters, 36(19), 3753.

https://doi.org/10.1364/OL.36.003753

Larin, K. V, Motamedi, M., & Ashitkov, T. V. (2003). Specificity of noninvasive

blood glucose sensing using optical coherence tomography technique : A pilot

study Specificity of noninvasive blood glucose sensing using optical coherence tomography technique : a pilot study. (May 2014). https://doi.org/10.1088/0031-9155/48/10/310

Li, B., Jiang, L., Wang, S., Chen, Q., Wang, M., & Yang, J. (2012). A new Mach-Zehnder interferometer in a thinned-cladding fiber fabricated by electric arc for high sensitivity refractive index sensing. Optics and Lasers in Engineering,

50(6), 829–832. https://doi.org/10.1016/j.optlaseng.2012.01.024

Liu, Y., Hering, P., & Scully, M. O. (1992). An Integrated Optical Sensor for

Measuring Glucose Concentration. 23, 18–23.

Luo, Y., Yan, B., Zhang, Q., Peng, G.-D., Wen, J., & Zhang, J. (2017). Fabrication of Polymer Optical Fibre (POF) Gratings. Sensors, 17(3), 511.

https://doi.org/10.3390/s17030511

Ma, Y., Qiao, X., Guo, T., Wang, R., Zhang, J., & Weng, Y. (2012). Mach

Zehnder Interferometer Based on a Sandwich Fiber Structure for Refractive Index Measurement. 12(6), 2081–2085.

Maddu, A., Sardy, S., Arif, A.,& Zain, H. (2007). Pengembangan Sensor Uap Amonia Berbasis Serat Optik Dengan Cladding Termodifikasi Nanoserat Polianilin. Sains Teknologi, 12(3), 137–142.

Marques, C. A. F., Webb, D. J., & Andre, P. (2017). Polymer Optical Fiber Sensors in Human Life Safety. Optical Fiber Technology, 36, 144–154.

https://doi.org/10.1016/j.yofte.2017.03.010

Meadows, D. L., & Schultz, J. S. (1993). Design , manufacture and

characterization of an optical fiber glucose affinity sensor based on an homogeneous fluorescence energy transfer assay system. 280, 21–30.

Mishra, S. K., Bhardwaj, S., & Gupta, B. D. (2015). Surface Plasmon Resonance-Based Fiber Optic Sensor for the Detection of Low Concentrations of Amonia Gas. IEEE Sensors Journal, 15(2), 1235–1239. https://doi.org/10.1007/s11468-015-0005-4

Prajzler, V., Neruda, M., & Špirková, J. (2013). Planar Large Core Polymer Optical

1x2 and 1x4 Splitters Connectable to Plastic Optical Fiber. Radioengineering,

22(3), 751–757.

Raji, Y. M., Lin, H. S., Ibrahim, S. A., Mokhtar, M. R., & Yusoff, Z. (2016). Intensity-modulated abrupt tapered Fiber Mach-Zehnder Interferometer for the simultaneous sensing of temperature and curvature. Optics and Laser

Technology, 86, 8–13. https://doi.org/10.1016/j.optlastec.2016.06.006

Rodrigues, D., Lopes, R., Franco, M., Werneck, M., & Allil, R. (2017). Sensitivity Analysis of Different Shapes of a Plastic Optical Fiber-Based Immunosensor for Escherichia coli: Simulation and Experimental Results. Sensors, 17(12), 2944. https://doi.org/10.3390/s17122944

Rong, Q., Sun, H., Qiao, X., Zhang, J., Hu, M., & Feng, Z. (n.d.). Corrigendum : A

miniature fiber-optic temperature sensor based on a Fabry – Perot

interferometer. 045002. https://doi.org/10.1088/2040-8978/14/5/059501

Rosa, S., Laranjeira, M. C. M., Riela, H. G., & Valfredo, T. F. (2008). Cross-linked quaternary chitosan as an adsorbent for the removal of the reactive dye from aqueous solutions. Elsevier, 155, 253–260.

46

Sari, N. W., Marzuki, A., & Riyatun. (2012). Sensor Fiber Optik Dari Bahan Fiber Optik Polimer Untuk Pengukuran Refractive Index Larutan Gula. Indonesian

Journal of Applied Physics, 2(1), 30–36.

Suana, W., Muntini, M. S., & Hatta, A. M. (2012). Pengembangan Sensor Napas Berbasis Serat Optik Plastik dengan Cladding Terkelupas untuk Aplikasi di Bidang Medis. JURNAL FISIKA DAN APLIKASINYA, 8(2), 1–5.

https://doi.org/10.12962/j24604682.v8i2.871

Tapetado, A., Pinzón, P. J., Zubia, J., Pérez, I., Vázquez, C., Electrónica, D. T., …

N, A. D. U. S. (2014). Self-referenced Temperature Sensor Based on a

Polymer Optical Fiber. 9157, 12–15. https://doi.org/10.1117/12.2059297

Vallan, A., Casalicchio, M. L., Olivero, M., & Perrone, G. (2012). Assessment of a

Dual-Wavelength Compensation Technique for Displacement Sensors Using Plastic Optical Fibers. 61(5), 1377–1383.

Wang, Q., Wang, B., Kong, L., & Zhao, Y. (2017). Comparative Analyses of

Bi-Tapered Fiber Mach– Zehnder Interferometer for Refractive Index Sensing.

1–7.

Wang, Q., Wei, W., Guo, M., & Zhao, Y. (2016). Sensors and Actuators B :

Chemical Optimization of cascaded fiber tapered Mach – Zehnder interferometer and refractive index sensing technology. Sensors & Actuators:

B. Chemical, 222, 159–165. https://doi.org/10.1016/j.snb.2015.07.098

Wang, Yinfeng, Wang, S., Jiang, L., Huang, H., Zhang, L., Wang, P., … Cao, Z.

(2017). Temperature-insensitive Refractive Index Sensor based on Mach – Zehnder Interferometer with Two Microcavities. Chinese Optics Letters,

15(2), 1–5. https://doi.org/10.3788/COL201715.020603.Optical

Wang, Yiping, Zhou, J., Liao, C., Sun, B., He, J., Yin, G., … Zhao, J. (2015). Intensity modulated refractive index Michelson sensor based on opticalfiber

Woyessa, G., Fasano, A., Stefani, A., Markos, C., Rasmussen, H. K., & Bang, O. (2016). Single mode step-index polymer optical fiber for humidity insensitive

high temperature fiber Bragg grating sensors. 24(2), 3296–3298.

https://doi.org/10.1364/OE.24.001253

Xu, F., Shi, J., Gong, K., Li, H., Hui, R., & Yu, B. (2014). Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaghragm. Optics

Letters, 39(10), 2838–2840. https://doi.org/10.1364/OL.39.002838

Yao, Q., Meng, H., Wang, W., Xue, H., Xiong, R., Huang, B., … Huang, X. (2014).

Sensors and Actuators A : Physical Simultaneous measurement of refractive

index and temperature based on a core-offset Mach – Zehnder interferometer combined with a fiber Bragg grating. Sensors & Actuators: A. Physical, 209, 73–77. https://doi.org/10.1016/j.sna.2014.01.017

Yulianti, I., Edi, S. S., Saputra, B. A., Aji, M. P., Susanto., & Kurdi, O. (2017). Detection of Cadmium Ion by Evanescent Wave Based Chitosan Coated Optical Fiber Sensor. Journal of Physics The 3rd International Conference on

Mathematics, Science and Education 2016, (Conf. Series 824 012002).

https://doi.org/10.1088/1742-6596/824/1/012002

Yulianti, Ian, Supa’At, A. S. M., Idrus, S. M., & Anwar, M. R. S. (2013). Design

of Fiber Bragg Grating-Based Fabry-Perot sensor for Simultaneous Measurement of Humidity and Temperature. Optik, 124(19), 3919–3923. https://doi.org/10.1016/j.ijleo.2012.11.043

Yulianti, Ian, Supa’At, A. S. M., Idrus, S. M., Kurdi, O., & Anwar, M. R. S. (2012).

Sensitivity improvement of a fibre Bragg grating pH sensor with elastomeric coating. Measurement Science and Technology, 23(1).

https://doi.org/10.1088/0957-0233/23/1/015104

Zhang, Z. (2013). Bragg grating formation in PMMA doped with

Trans-4-stilbenemethanol. 196.

48

temperature high sensitivity Mach-Zehnder interferometer based on waist-enlarged fiber bitapers. Sensors & Actuators: A. Physical.

https://doi.org/10.1016/j.sna.2017.09.016

Zhong, N., Zhao, M., Liao, Q., Zhu, X., & Li, Y. (2016). Effect of heat treatments

on the performance of polymer optical fiber sensor. 24(12), 12893–12898.

https://doi.org/10.1364/OE.24.013394

Zhou, J., Liao, C., Wang, Y., Yin, G., Zhong, X., Yang, K., … Li, Z. (2014). Simultaneous Measurement of Strain and Temperature by Employing Fiber Mach-Zehnder Interferometer. Optics Express, 22(2), 1680–1686. https://doi.org/10.1364/OE.22.001680

52

Lampiran 3. Grafik hubungan rasio transmitansi terhadap perubahan indeks bias

Gambar 1.λ : λ

Gambar 2.λ : λ

54

Gambar 4.λ : λ

Gambar 5.λ : λ

Gambar 7.λ : λ

Gambar 8.λ : λ

56

Gambar 10.λ : λ

Gambar 11.λ : λ

Gambar 13.λ : λ

Gambar 14.λ : λ

58

Gambar 16.λ : λ

Gambar 17.λ : λ

Gambar 19.λ : λ

60

Lampiran 4. Grafik hubungan rasio transmitansi terhadap perubahan suhu

Gambar 21.λ : λ

Gambar 22.λ : λ

Gambar 24.λ : λ

Gambar 25.λ : λ

62

Gambar 27.λ : λ

Gambar 28.λ : λ

Gambar 30.λ : λ

Gambar 31.λ : λ

64

Gambar 33.λ : λ

Gambar 34.λ : λ

Gambar 36.λ : λ

Gambar 37.λ : λ

66

Gambar 39.λ : λ

Dokumen terkait