• Tidak ada hasil yang ditemukan

Aboubacar A, Hamaker BR. 1999. Physicochemical Properties of Flour that Relate to Sorghum Couscos Quality. Cereal Chem. 76 (2): 308-313.

Ambarsari I, Sarjana, Choliq A. 2009. Rekomendasi dalam Penetapan Standar Mutu Tepung Ubi Jalar. Jurnal Standardisasi. 11 (3): 212-219.

Anggriawan R. 2010. Pengaruh Metode Penggilingan Terhadap Siat Fisik, Kimia dan Fungsional Tepung Jagung Kuning Hibrida [Skripsi]. Purwokerto (ID): Universitas Jenderal Soedirman.

Antarlina SS. 2003. Teknologi Pengolahan Tepung Komposit Terigu-Ubi Jalar sebagai Bahan Baku Industri Pangan. Di dalam: Winarno FG, Lukito W, Abdurrachim, Ardna MM, Wijaya B. Kumpulan Hasil Penelitian Terbaik Bogasari Nugraha 1998-2001; 2003; Jakarta (ID): PR & Communication Department ISM Bogasari Flour Mills. hlm 105-125.

[AOAC] Association of Official Analytical Chemists International. 2000. Official Methods of Analysis 17th edition. Methods 967.25-967.28, 978.24, 989.12, 991.13, 994.04, and 995.20. Gaithersburg, MD.

[AOAC] Association of Official Analytical Chemists. 2006. Official Methods of Analysis of The Association of Official Agriculture Chemist 16th edition. Virginia.

Baah FD. 2009. Characterization of Water Yam for Existing and Potential Food Products [Thesis]. Kumasi (GH): Kwame Nkrumah University.

[BAM] Bacteriological Analytical Manual. 2001. Bacteriological Analytical Manual Chapter 3 : Aerobic Plate Count. Food and Drug Administration. U.S [Internet]. [diunduh 2013 Apr 8]. Tersedia pada http://fda.gov

[BPOM] Badan Pengawas Obat dan Makanan. 2004. Status Regulasi Cemaran dalam Produk Pangan. Buletin Keamanan Pangan No. 6.

[BPS] Badan Pusat Statistik. 2012. Produksi Ubi Jalar, Jagung dan Ubi Kayu di Indonesia tahun 2012 [Internet]. [diunduh 2013 Apr 8]. Tersedia pada

http://bps.go.id

Bello-Perez LA, Contreras-Ramos SM, Romero-Manilla R, Solorza-Feria J dan Jimenez-Aparicio A. 2002. Chemical and Functional Properties of Modified Starch from Banana Musa paradisiaca L. (Var Macho). Agrociencia. 36 (2):169-180.

Charles AL, Chang YH, Ko WC, Sriroth K, Huang TC. 2004. Some Physical and Chemical Properties of Starch Isolates of Cassava Genotypes. Starch/Starke.

56 (9): 413-418.

Charles AL, Chang YH, Ko WC, Sriroth K, Huang TC. 2005. Influence of Amylopectin Structure and Amylose Content on The Gelling Properties of Five Cultivars of Cassava Starches. J Agric Food Chem. 53(7):2717-25. Cherry JP. 1981. Protein Functionality in Foods. Washington DC (USA):

American Chemical Society.

DeMan JM. 1989. Kimia Makanan Edisi Kedua. Bandung (ID): ITB.

Devega M. 2011. Short Chain Fatty Acid (SCFA) Profile Produced by

Clostridium butyrum Grown on Medium Containing Type 3 Resistant Starch (RS 3) of Sweet Potato. [Skripsi]. Bogor (ID): IPB.

30

Faridah DN, Kusnandar F, Herawati D, Wulandari N, Kusumaningrum HD, Purnomo EH, Indrasti D. 2012. Penuntun Praktikum Analisis Pangan. Bogor (ID): IPB.

Gomez MH, Aguilera JM. 1983. Changes in The Starch Fraction During Extrusion Cooking of Corn. J Food Sci. 48 (2):378-381.

Greene JL, Bowell-Benjamin AC. 2004. Macroscopic and sensory evaluation of bread supplemented with sweet potato flour. J Food Sci. 69 (4): 167173. Gujska E, Khan K. 1991. Feed Moisture EffectsonFunctional Properties, Trypsin

Inhibitor and Hemagglutinating Activities of Extruded Bean High Starch Fractions.J Food Sci. 56 (2):443-447.

Gulshan A, Lee BH, Lamoureux M. 1990. Characterization of Enzyme Profiles of

Lactobacillus casei Species by a Rapid API ZYM System. J Dairy Sci. 73 (2): 264-273.

Hoover R. 2001. Composition, molecular structure and physicochemical properties of tuber and root starches: A review. Carbohydr Polym. 45 (3): 253-267.

Jenkins JK, Courtney PD. 2003. Lactobacillus Growth and Membrane Composition in the Presence of Linoleic or Conjugated Linoleic Acid. Can. J. Micribiol. 49 (1) : 51-57.

Jusuf M. 2003. Breeding improved sweetpotato varieties in Indonesia. Di dalam: Fuglie, K. O, editor. Progress in Potato and Sweetpotato Research in Indonesia; 2002 Maret 26-27; Bogor, Indonesia. Bogor (ID): International Potato Center.

Khasanah U. 2003. Formulasi, Karakterisasi Fisikokimia dan Organoleptik Produk Makanan Sarapan Ubi Jalar (Sweet Potato Flakes) [Skripsi]. Bogor (ID): IPB.

Kusumaningrum HD, Suliantari, Nurjanah S, Dewanti-Hariyadi R, Nurwitri CC. 2010. Penuntun Praktikum Mikrobiologi Pangan. Bogor (ID): IPB.

Lan GQ, Abdullah N, Jalaludin S, Ho YW. 2002. Efficacy of supplementation of phytase-producing bacterial culture on the performance and nutrient use of broiler chickens fed corn-soybean meal diets. Poult Sci. 81 (10): 1522-1532. Lopez HW, Coudray C, Levrat-Verny MA, Feillet-Coudray C, Demigne C,

Remesy C. 2000. Fructooligosaccharides enhance mineral apparent absorption and counteract the deletious effect of phytic acid on mineral homeostasis in rats. J Nut Bio. 11 (10): 500-508.

Marlis A. 2008. Isolasi Oligosakarida Ubi Jalar (Ipomoea batatas L) dan Pengaruh Pengolahan Terhadap Potensi Prebiotiknya [Skripsi]. Bogor (ID): IPB.

Matar C, Arriot J, Savoie L, Goulet J. 1996. The Effect of Milk Fermentation by

Lactobacillus helveticus on the Release of Peptides During In Vitro Digestion.

J Dairy Sci. 79 (6): 971-979.

Meyer LH. 2003. Food Chemistry. New York (USA): Textbook Publisher.

Moorthy SN. 2002. Physicochemical and functional properties of tropical tuber starches: A review. Starch-Starke. 54 (12): 559-592.

Muchtadi TR, Haryadi P, Ahza AB. 1988. Teknologi Pemasakan Ekstrusi. Bogor (ID): PAU Pangan dan Gizi IPB.

31 Oregon State University Extension Service. 2006. Wheat and Milling Tests [Internet]. [diunduh 2013 Nov 30]; Tersedia pada

http://extension.oregonstate.edu

Perez LAB, Acevedo EA, Hernandez LS, Lopez OP. 1999. Isolation and Partial Characterization of Banana Starch. J Agric Food Chem. 47 (3):854-857. Pomeranz Y. 1991. Functional Properties of Food Components. San Diego (CA):

Academic Press.

Pusat Penelitian dan Pengembangan Tanaman Pangan. 2013. Deskripsi Ubijalar Varietas Jago [Internet]. [diunduh 2013 Apr 8]; Tersedia pada

http://puslittan.bogor.net

Putra RP, Jenie BSL, Kusnandar F. 2012. Fermentasi Kultur Campuran Bakteri Asam Laktat dan Pemanasan Otoklaf dalam Meningkatkan Kadar Pati Resisten dan Sifat Fungsional Tepung Pisang Tanduk (Musa paradisiacal formatypica). J Pasca Panen. 9 (1): 18-26.

Ratnayake WS, Hoover R, Tom W. 2002. Pea stach: composition, structure and properties – review. Starch/Starke. 54 (6):217-234.

Rianti AW. 2008. Kajian Formulasi Cookies Ubi Jalar (Ipomea batatas) dengan Karakteristik Tekstur Menyerupai Cookies Keladi [Skripsi]. Bogor (ID): IPB. Richana N, Suarni. 2007. Teknologi Pengolahan Jagung. Di dalam: Sumarno et al. Jagung: Teknik Produksi dan Pengembangan. Pusat Penelitian dan Pengembangan Tanaman Pangan. Badan Penelitian dan Pengembangan Pertanian.

Rooney LW. 2007. Corn Quality Assurance Manual 2nd Edition. Arlington (TX): Snack Food Association.

Saeed AH, Salam AI. 2013. Current Limitations and Challenges with Lactic Acid Bacteria: A Review. FNS. 4 (11A): 73-87.

Sajilata MG, Rekha SS. 2005. Specialty Starches for Snack Foods. Carb Polym.

59 (2): 131-151.

Sandoval ER, Sandoval GI, Rodriguez M. 2012. Effect of quinoa and potato flours on the thermomechanical and breadmaking properties of wheat flour.

Braz J Chem Eng. 29 (3): 503-510.

Sastrodipuro D, Jastra Y, Iswari K. 1995. Peningkatan Mutu Tepung Ubi Jalar dan Talas dengan Sodium Bisulfit. Risalah Seminar Balittan Sukarami. 8: 208-214.

Shaw N, Heatherington K, Baddiley J. 1968. The Glycolipids of Lcatobacillus case A.T.C.C 7469. Biochem J. 107 (4): 491-496.

Singh H, Sodhi NS, Singh N. 2010. Characterization of starches separated from sorghum cultivars grown in India. Food Chem. 119 (1): 95-100

Sosinski B, Cervantes-Flores J, Pokrzywa RM, Bruckner A, Yencho GC. 2002. Sweet Potato Genomics at North Carolina State University. Acta Hort. 583: 51-60.

Swinkles JJM. 1985. Source of Starch, Its Chemistry and Physic. Di dalam: Beynum GMAV, Roels JA. Starch Conversion Technology; 1985; New York (USA): Marcel Dekker Inc.

Widyasaputra R, Yuwono SS. 2013. Pengaruh Fermentasi Alami Chips Terhadap Sifat Fisik Tepung Ubi Jalar Putih (Ipomea batatas) Terfermentasi. JPA. 1 (1): 78-89.

32

Winarno FG, Jenie SL. 1974. Dasar Pengawetan, Sanitasi dan Peracunan. Bogor (ID): IPB.

Yadang G, Mbome IL, Ndjouenkeu R. 2013. Changes in amylase activity, hot-paste viscosity and carbohydrates during natural fermentation of sweet potato (Ipomea batatas). AJFST. 4 (8): 188-194.

33 Lampiran 1 Hasil Analisis Ragam dan Uji Lanjut Duncan Terhadap Kadar Air

Bobot Basah Tepung Ubi Jalar UNIANOVA Kadar_Air BY Sampel

/METHOD=SSTYPE(3) /INTERCEPT=EXCLUDE /POSTHOC=Sampel(DUNCAN) /CRITERIA=ALPHA(0.05)

/DESIGN=Sampel.

Univariate Analysis of Variance

Tests of Between-Subjects Effects

Dependent Variable:Kadar_Air

Source Type III Sum of

Squares df Mean Square F Sig.

Model 1065.091a 7 152.156 2.278E4 .000

Sampel 1065.091 7 152.156 2.278E4 .000

Error .047 7 .007

Total 1065.138 14

a. R Squared = 1.000 (Adjusted R Squared = 1.000)

Kadar_Air Duncan Sampel N Subset 1 2 3 4 5 L1 2 7.798500 T1 2 8.086700 L2 2 8.086700 K 2 8.226550 8.226550 T2 2 8.414850 8.414850 T3 2 8.491250 L3 2 11.41720 Sig. 1.000 .144 .055 .381 1.000

Means for groups in homogeneous subsets are displayed. Based on observed means.

34

Lampiran 2 Hasil Analisis Ragam dan Uji Lanjut Duncan Terhadap Kadar Air Bobot Kering Tepung Ubi Jalar

UNIANOVA Kadar_Air BY Sampel /METHOD=SSTYPE(3)

/INTERCEPT=EXCLUDE /POSTHOC=Sampel(DUNCAN) /CRITERIA=ALPHA(0.05)

/DESIGN=Sampel.

Univariate Analysis of Variance

Tests of Between-Subjects Effects

Dependent Variable:Kadar_Air

Source Type III Sum of Squares df Mean Square F Sig. Corrected Model 27.970a 6 4.662 494.775 .000 Intercept 1258.736 1 1258.736 1.336E5 .000 Sampel 27.970 6 4.662 494.775 .000 Error .066 7 .009 Total 1286.772 14 Corrected Total 28.036 13

a. R Squared = .998 (Adjusted R Squared = .996)

Kadar_Air Duncan Sampel N Subset 1 2 3 4 5 L1 2 8.458050 T1 2 8.798150 L2 2 8.798200 K 2 8.964050 8.964050 T2 2 9.188150 9.188150 T3 2 9.279200 L3 2 12.8887 Sig. 1.000 .144 .054 .379 1.000

Means for groups in homogeneous subsets are displayed. Based on observed means.

35

Lampiran 3 Hasil Analisis Ragam dan Uji Lanjut Duncan Terhadap Kadar Abu Bobot Basah Tepung Ubi Jalar

UNIANOVA Kadar_Abu BY Sampel /METHOD=SSTYPE(3)

/INTERCEPT=EXCLUDE /POSTHOC=Sampel(DUNCAN) /CRITERIA=ALPHA(0.05)

/DESIGN=Sampel.

Univariate Analysis of Variance

Tests of Between-Subjects Effects

Dependent Variable:Kadar_Abu

Source Type III Sum of

Squares df Mean Square F Sig.

Model 20.914a 7 2.988 3.962E3 .000

Sampel 20.914 7 2.988 3.962E3 .000

Error .005 7 .001

Total 20.919 14

a. R Squared = 1.000 (Adjusted R Squared = .999)

Kadar_Abu Duncan Sampel N Subset 1 2 3 4 5 6 T3 2 .350550 L3 2 .413000 .413000 T2 2 .452450 L2 2 .741150 L1 2 1.048900 T1 2 1.190600 K 2 2.625200 Sig. .057 .194 1.000 1.000 1.000 1.000

Means for groups in homogeneous subsets are displayed. Based on observed means.

36

Lampiran 4 Hasil Analisis Ragam dan Uji Lanjut Duncan Terhadap Kadar Abu Bobot Kering Tepung Ubi Jalar

UNIANOVA Kadar_Abu BY Sampel /METHOD=SSTYPE(3)

/INTERCEPT=EXCLUDE /POSTHOC=Sampel(DUNCAN) /CRITERIA=ALPHA(0.05)

/DESIGN=Sampel.

Univariate Analysis of Variance

Tests of Between-Subjects Effects

Dependent Variable:Kadar_Abu

Source Type III Sum of

Squares df Mean Square F Sig.

Model 24.827a 7 3.547 3.669E3 .000

Sampel 24.827 7 3.547 3.669E3 .000

Error .007 7 .001

Total 24.834 14

a. R Squared = 1.000 (Adjusted R Squared = .999)

Kadar_Abu Duncan Sampel N Subset 1 2 3 4 5 6 T3 2 .383050 L3 2 .466250 T2 2 .494000 L2 2 .806350 L1 2 1.137650 T1 2 1.295400 K 2 2.860550 Sig. 1.000 .402 1.000 1.000 1.000 1.000

Means for groups in homogeneous subsets are displayed. Based on observed means.

37 Lampiran 5 Hasil Analisis Ragam dan Uji Lanjut Duncan Terhadap Kadar

Lemak Bobot Basah Tepung Ubi Jalar UNIANOVA Kadar_Lemak BY Sampel

/METHOD=SSTYPE(3) /INTERCEPT=EXCLUDE /POSTHOC=Sampel(DUNCAN) /CRITERIA=ALPHA(0.05)

/DESIGN=Sampel.

Univariate Analysis of Variance

Tests of Between-Subjects Effects

Dependent Variable:Kadar_Lemak

Source Type III Sum of

Squares df Mean Square F Sig.

Model .573a 7 .082 1.783E3 .000

Sampel .573 7 .082 1.783E3 .000

Error .000 7 4.591E-5

Total .573 14

a. R Squared = .999 (Adjusted R Squared = .999)

Kadar_Lemak Duncan Sampel N Subset 1 2 3 4 5 6 T1 2 .049262 T2 2 .088545 T3 2 .140951 L1 2 .141464 L3 2 .204009 L2 2 .291381 K 2 .331473 Sig. 1.000 1.000 .942 1.000 1.000 1.000

Means for groups in homogeneous subsets are displayed. Based on observed means.

38

Lampiran 6 Hasil Analisis Ragam dan Uji Lanjut Duncan Terhadap Kadar Lemak Bobot Kering Tepung Ubi Jalar

UNIANOVA Kadar_Lemak BY Sampel /METHOD=SSTYPE(3)

/INTERCEPT=EXCLUDE /POSTHOC=Sampel(DUNCAN) /CRITERIA=ALPHA(0.05)

/DESIGN=Sampel.

Univariate Analysis of Variance

Tests of Between-Subjects Effects

Dependent Variable:Kadar_Lemak

Source Type III Sum of

Squares df Mean Square F Sig.

Model .687a 7 .098 1.867E3 .000

Sampel .687 7 .098 1.867E3 .000

Error .000 7 5.256E-5

Total .687 14

a. R Squared = .999 (Adjusted R Squared = .999)

Kadar_Lemak Duncan Sampel N Subset 1 2 3 4 5 6 T1 2 .053600 T2 2 .096700 L1 2 .153450 T3 2 .154000 L3 2 .230300 L2 2 .317000 K 2 .361150 Sig. 1.000 1.000 .942 1.000 1.000 1.000

Means for groups in homogeneous subsets are displayed. Based on observed means.

39 Lampiran 7 Hasil Analisis Ragam dan Uji Lanjut Duncan Terhadap Kadar

Protein Bobot Basah Tepung Ubi Jalar UNIANOVA Kadar_Protein BY Sampel

/METHOD=SSTYPE(3) /INTERCEPT=EXCLUDE /POSTHOC=Sampel(DUNCAN) /CRITERIA=ALPHA(0.05)

/DESIGN=Sampel.

Univariate Analysis of Variance

Tests of Between-Subjects Effects

Dependent Variable:Kadar_Protein

Source Type III Sum of

Squares df Mean Square F Sig.

Model 78.271a 7 11.182 4.813E3 .000

Sampel 78.271 7 11.182 4.813E3 .000

Error .016 7 .002

Total 78.288 14

a. R Squared = 1.000 (Adjusted R Squared = 1.000)

Kadar_Protein Duncan Sampel N Subset 1 2 3 4 5 L3 2 1.723850 T3 2 1.826800 L2 2 2.195700 L1 2 2.411150 T2 2 2.569050 T1 2 2.755550 K 2 2.828250 Sig. .070 1.000 1.000 1.000 .175

Means for groups in homogeneous subsets are displayed. Based on observed means.

40

Lampiran 8 Hasil Analisis Ragam dan Uji Lanjut Duncan Terhadap Kadar Protein Bobot Kering Tepung Ubi Jalar

UNIANOVA Kadar_Protein BY Sampel /METHOD=SSTYPE(3)

/INTERCEPT=EXCLUDE /POSTHOC=Sampel(DUNCAN) /CRITERIA=ALPHA(0.05)

/DESIGN=Sampel.

Univariate Analysis of Variance

Tests of Between-Subjects Effects

Dependent Variable:Kadar_Protein

Source Type III Sum of

Squares df Mean Square F Sig.

Model 93.342a 7 13.335 4.694E3 .000

Sampel 93.342 7 13.335 4.694E3 .000

Error .020 7 .003

Total 93.362 14

a. R Squared = 1.000 (Adjusted R Squared = 1.000)

Kadar_Protein Duncan Sampel N Subset 1 2 3 4 5 L3 2 1.946000 T3 2 1.996300 L2 2 2.388850 L1 2 2.615100 T2 2 2.805150 T1 2 2.997950 K 2 3.081750 Sig. .377 1.000 1.000 1.000 .160

Means for groups in homogeneous subsets are displayed. Based on observed means.

41 Lampiran 9 Hasil Analisis Ragam dan Uji Lanjut Duncan Terhadap Kadar

Karbohidrat Bobot Basah Tepung Ubi Jalar UNIANOVA Kadar_Karbohidrat BY Sampel

/METHOD=SSTYPE(3) /INTERCEPT=EXCLUDE /POSTHOC=Sampel(DUNCAN) /CRITERIA=ALPHA(0.05)

/DESIGN=Sampel.

Univariate Analysis of Variance

Tests of Between-Subjects Effects

Dependent Variable:Kadar_Karbohidrat

Source Type III Sum of

Squares df Mean Square F Sig.

Model 108118.044a 7 15445.435 1.132E6 .000

Sampel 108118.044 7 15445.435 1.132E6 .000

Error .096 7 .014

Total 108118.140 14

a. R Squared = 1.000 (Adjusted R Squared = 1.000)

Kadar_Karbohidrat Duncan Sampel N Subset 1 2 3 4 K 2 85.98850 L3 2 86.24195 T1 2 87.91785 T2 2 88.47510 L1 2 88.60000 L2 2 88.68505 T3 2 89.19045 Sig. .067 1.000 .127 1.000

Means for groups in homogeneous subsets are displayed. Based on observed means.

42

Lampiran 10 Hasil Analisis Ragam dan Uji Lanjut Duncan Terhadap Kadar Karbohidrat Bobot Kering Tepung Ubi Jalar

UNIANOVA Kadar_Karbohidrat BY Sampel /METHOD=SSTYPE(3)

/INTERCEPT=EXCLUDE /POSTHOC=Sampel(DUNCAN) /CRITERIA=ALPHA(0.05)

/DESIGN=Sampel.

Univariate Analysis of Variance

Tests of Between-Subjects Effects

Dependent Variable:Kadar_Karbohidrat

Source Type III Sum of

Squares df Mean Square F Sig.

Model 105292.828a 7 15041.833 7.905E5 .000

Sampel 105292.828 7 15041.833 7.905E5 .000

Error .133 7 .019

Total 105292.961 14

a. R Squared = 1.000 (Adjusted R Squared = 1.000)

Kadar_Karbohidrat Duncan Sampel N Subset 1 2 3 4 L3 2 84.46875 K 2 84.73250 T1 2 86.85490 T2 2 87.41600 L1 2 87.63575 L2 2 87.68960 T3 2 88.18745 Sig. .097 1.000 .098 1.000

Means for groups in homogeneous subsets are displayed. Based on observed means.

43 Lampiran 11 Hasil Analisis Ragam dan Uji Lanjut Duncan Terhadap Indeks

Penyerapan Air (IPA) Tepung Ubi Jalar UNIANOVA IPA BY Sampel

/METHOD=SSTYPE(3) /INTERCEPT=EXCLUDE /POSTHOC=Sampel(DUNCAN) /CRITERIA=ALPHA(0.05)

/DESIGN=Sampel.

Univariate Analysis of Variance

Tests of Between-Subjects Effects

Dependent Variable:IPA

Source Type III Sum of

Squares df Mean Square F Sig.

Model 113.787a 7 16.255 1.452E4 .000

Sampel 113.787 7 16.255 1.452E4 .000

Error .008 7 .001

Total 113.795 14

a. R Squared = 1.000 (Adjusted R Squared = 1.000)

IPA Duncan Sampel N Subset 1 2 3 4 5 L1 2 2.342933 K 2 2.548874 L3 2 2.779540 T1 2 2.808217 T3 2 3.022763 L2 2 3.148403 T2 2 3.200967 Sig. 1.000 1.000 .420 1.000 .160

Means for groups in homogeneous subsets are displayed. Based on observed means.

44

Lampiran 12 Hasil Analisis Ragam dan Uji Lanjut Duncan Terhadap Indeks Kelarutan Air (IKA) Tepung Ubi Jalar

UNIANOVA IKA BY Sampel /METHOD=SSTYPE(3) /INTERCEPT=EXCLUDE /POSTHOC=Sampel(DUNCAN) /CRITERIA=ALPHA(0.05)

/DESIGN=Sampel.

Univariate Analysis of Variance

Tests of Between-Subjects Effects

Dependent Variable:IKA

Source Type III Sum of

Squares df Mean Square F Sig.

Model .001a 7 .000 1.615E3 .000

Sampel .001 7 .000 1.615E3 .000

Error 6.250E-7 7 8.929E-8

Total .001 14

a. R Squared = .999 (Adjusted R Squared = .999)

IKA Duncan Sampel N Subset 1 2 3 4 5 6 L2 2 .000200 L3 2 .000925 T3 2 .001375 T2 2 .007050 L1 2 .009125 T1 2 .010200 K 2 .016275 Sig. 1.000 .176 1.000 1.000 1.000 1.000

Means for groups in homogeneous subsets are displayed. Based on observed means.

45 Lampiran 13 Hasil Analisis Ragam dan Uji Lanjut Duncan Terhadap Kelarutan

Tepung Ubi Jalar UNIANOVA Kelarutan BY Sampel /METHOD=SSTYPE(3)

/INTERCEPT=EXCLUDE /POSTHOC=Sampel(DUNCAN) /CRITERIA=ALPHA(0.05)

/DESIGN=Sampel.

Univariate Analysis of Variance

Tests of Between-Subjects Effects

Dependent Variable:Kelarutan

Source Type III Sum of

Squares df Mean Square F Sig.

Model 1402.804a 7 200.401 4.218E4 .000

Sampel 1402.804 7 200.401 4.218E4 .000

Error .067 14 .005

Total 1402.871 21

a. R Squared = 1.000 (Adjusted R Squared = 1.000)

Kelarutan Duncan Sampel N Subset 1 2 3 4 5 6 L1 3 .172418 L3 3 .206553 L2 3 .519665 T3 3 8.028069 T1 3 9.930405 K 3 11.78171 T2 3 12.86031 Sig. .554 1.000 1.000 1.000 1.000 1.000

Means for groups in homogeneous subsets are displayed. Based on observed means.

46

Lampiran 14 Hasil Analisis Ragam dan Uji Lanjut Duncan Terhadap Swelling Power Tepung Ubi Jalar

UNIANOVA Swelling_Power BY Sampel /METHOD=SSTYPE(3)

/INTERCEPT=EXCLUDE /POSTHOC=Sampel(DUNCAN) /CRITERIA=ALPHA(0.05)

/DESIGN=Sampel.

Univariate Analysis of Variance

Tests of Between-Subjects Effects

Dependent Variable:Swelling

Source Type III Sum of

Squares df Mean Square F Sig.

Model 2751.282a 7 393.040 4.635E4 .000

Sampel 2751.282 7 393.040 4.635E4 .000

Error .119 14 .008

Total 2751.401 21

a. R Squared = 1.000 (Adjusted R Squared = 1.000)

Swelling Duncan Sampel N Subset 1 2 3 4 5 6 T3 3 4.741304 T2 3 5.682146 L3 3 10.36160 K 3 12.46845 L2 3 12.51884 T1 3 14.04718 L1 3 15.66709 Sig. 1.000 1.000 1.000 .514 1.000 1.000

Means for groups in homogeneous subsets are displayed. Based on observed means.

47 Lampiran 15 Hasil Analisis Ragam dan Uji Lanjut Duncan Terhadap Stabilitas

Beku dan Thawing Tepung Ubi Jalar UNIANOVA Stabilitas_beku BY Sampel

/METHOD=SSTYPE(3) /INTERCEPT=EXCLUDE /POSTHOC=Sampel(DUNCAN) /CRITERIA=ALPHA(0.05)

/DESIGN=Sampel.

Univariate Analysis of Variance

Tests of Between-Subjects Effects

Dependent Variable:Stabilitas_Beku

Source Type III Sum of

Squares df Mean Square F Sig.

Model 92570.225a 7 13224.318 4.845E4 .000

Sampel 92570.225 7 13224.318 4.845E4 .000

Error 3.821 14 .273

Total 92574.046 21

a. R Squared = 1.000 (Adjusted R Squared = 1.000)

Stabilitas_Beku Duncan Sampel N Subset 1 2 3 4 L3 3 59.64464 L1 3 65.52381 T1 3 66.22222 66.22222 K 3 66.85678 T3 3 66.89903 L2 3 69.51838 T2 3 69.58730 Sig. 1.000 .124 .154 .874

Means for groups in homogeneous subsets are displayed. Based on observed means.

48

Lampiran 16 Hasil Analisis RVATepung Ubi Jalar Tepung Ubi Jalar Kontrol

Tepung Ubi Jalar T1

49 Tepung Ubi Jalar T3

Tepung Ubi Jalar L1 dan L2

50

Lampiran 18 Hasil Analisis Ragam dan Uji Lanjut Duncan Derajat PutihTepung Ubi Jalar

UNIANOVA Derajat_Putih BY Sampel /METHOD=SSTYPE(3)

/INTERCEPT=EXCLUDE /POSTHOC=Sampel(DUNCAN) /CRITERIA=ALPHA(0.05)

/DESIGN=Sampel.

Univariate Analysis of Variance

Tests of Between-Subjects Effects

Dependent Variable:Derajat_Putih

Source Type III Sum of

Squares df Mean Square F Sig.

Model 149617.975a 7 21373.996 2.914E6 .000

Sampel 149617.975 7 21373.996 2.914E6 .000

Error .103 14 .007

Total 149618.078 21

a. R Squared = 1.000 (Adjusted R Squared = 1.000)

Derajat_Putih Duncan Sampel N Subset 1 2 3 4 5 6 7 K 3 65.6743 T1 3 84.4083 L1 3 84.8223 T2 3 86.9317 L3 3 88.2957 L2 3 88.5033 T3 3 89.7433 Sig. 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Means for groups in homogeneous subsets are displayed. Based on observed means.

51

Dokumen terkait