Arcate, J. R. 1998. Biomass charcoal co-firing with coal. In Turbo Expo: Power for Land, Sea, and Air (Vol. 78644, p. V003T05A015). American Society of Mechanical Engineers.
Arena, N., Lee, J., & Clift, R. 2016. Life Cycle Assessment of Activated Carbon Production from Coconut Shells. Journal of Cleaner Production, 125, 68-77.
Ariyanti, M., Suherman, C., Maxiselly, Y., & Rosniawaty, S. 2018. Pertumbuhan Tanaman Kelapa (Cocos nucifera L.) Dengan Pemberian Air Kelapa. Jurnal Hutan Pulau-Pulau Kecil, 2(2), 201-212.
Asy’ari, M. A., & Hidayatullah, R. 2016. Geokimia batubara untuk beberapa industri. POROS TEKNIK, 8(1), 48-54.
Bamboriya, O. P., Thakur, L. S., Parmar, H., Varma, A. K., & Hinge, V. K. 2019. A review on mechanism and factors affecting pyrolysis of biomass. International Journal of Research in Advent Technology, 7, 1014 1024.
Basu, P. 2018. Biomass gasification, pyrolysis and torrefaction: practical design and theory. Academic press.
Claoston, N., A. W. Samsuri, M. H. A. Husni dan M. S. M. Amran. 2014. Effects of Pyrolysis Temperature on the Physicochemical Properties of Empty Fruit Bunch and Rice Husk Biochars. Waste Management and Research, 32(4):
331–339.
Daful, A. G., & Chandraratne, M. R. 2018. Biochar Production from Biomass Waste Derived Material. Encyclopedia of Renewable and Sustainable Materials.
Abu Dhabi: Elsevier Inc.
Dani, S., & Wibawa, A. 2018. Challenges and policy for biomass energy in indonesia. Int. J. Business, Econ. Law, 15(5), 41-47.
39
Devi, V. C., Mothil, S., Raam, R. S., & Senthilkumar, K. 2020. Thermochemical Conversion and Valorization of Woody Lignocellulosic Biomass in Hydrothermal Media. In Biomass Valorization to Bioenergy (pp. 45-63).
Singapore: Springer.
Direktorat Jenderal Perkebunan. 2019. Statistik Perkebunan Indonesia 2018-2020.
Jakarta: Kementerian Pertanian.
Dufour, A. 2016. Thermochemical conversion of biomass for the production of energy and chemicals. John Wiley & Sons.
Dusselier, M., Mascal, M., & Sels, B. F. 2014. Top Chemical Opportunities from ar ohy rate iomass: A chemist’s view of the iorefinery. In Selective Catalysis for Renewable Feedstocks and Chemicals (pp. 1-40). Springer, Cham.
Dwi, Y. M. P. B. 2017. Optimalisasi Bahan Baku Kelapa. Warta Ekspor. Jakarta:
Direktorat Jenderal Pengembangan Ekspor Nasional Kementerian Perdagangan.
Efiyanti, L., Wati, S. A., Setiawan, D., Saepuloh, S., & Pari, G. 2020. Sifat Kimia Dan Kualitas Arang Lima Jenis Kayu Asal Kalimantan Barat. Jurnal Penelitian Hasil Hutan, 38(1), 55-68.
Garg, R., Anand, N., & Kumar, D. 2016. Pyrolysis of babool seeds (Acacia nilotica) in a fixed bed reactor and bio-oil characterization. Renewable Energy, 96, 167-171.
Gronnow, M. J., u arin, V. L., Maše , O., rombie, K. N., Brownsort, P. A., Shuttleworth, P. S., Hurst, P. R & Clark, J. H. 2013. Torrefaction/Biochar Production By Microwave And Conventional Slow Pyrolysis–Comparison Of Energy Properties. Gcb Bioenergy, 5(2), 144-152.
Hashim, H., Yusup, S., & Arlabosse, P. 2020. Prediction of Oil Yield from Oil Palm Mesocarp Using Thermally Assisted Mechanical Dewatering (TAMD).
In Biomass Valorization to Bioenergy (pp. 65-75). Singapore: Springer.
40
Irawan, A. 2017. Effect of torrefaction process on the coconut shell energy content for solid fuel. In AIP Conference Proceedings (Vol. 1826, No. 1, p. 46). AIP Publishing LLC.
Iskandar, N., Nugroho, S., & Feliyana, M. F. 2019. Uji Kualitas Produk Briket Arang Tempurung Kelapa Berdasarkan Standar Mutu SNI. Jurnal Ilmiah MOMENTUM, 15(2).
Junaedi, RYP, L. J., Sudia, B., & Samhuddin, S. 2019. Pengaruh Penggunaan Uap Kering Pada Proses Pirolisis Limbah Plastik. ENTHALPY, 4(3).
Junary, E., Pane, J. P., & Herlina, N. 2015. Pengaruh suhu dan waktu karbonisasi terhadap nilai kalor dan karakteristik pada pembuatan bioarang berbahan baku pelepah aren (Arenga pinnata). Jurnal Teknik Kimia USU, 4(2).
Kantarelis, E., Yang, W., & Blasiak, W. 2013. Biomass pyrolysis for energy and fuel production. Series: Sustainable Energy Developments. Boca Raton: CRC Press.
Kha emi, Farsha & Yil iz, İlhami. 2018. Energy and Solid Wastes.
Comprehensive energy systems. Halifax: Elsevier.
Kumarathilaka, Prasanna., Mayakaduwa, Sonia., Herath, Indika & Vithanage, Meththika. 2016. Biochar: State of the Art. Biochar Production, Characterization, and Applications. Florida: CRC Press Taylor & Francis Group.
Kusuma, W., Wahyu, S., & Noriyati, R. D. 2012. Kajian Eksperimental Terhadap Karakteristik Pembakaran Briket Limbah Ampas Kopi Instan dan Kulit Kopi (Studi Kasus di Pusat Penelitian Kopi dan Kakao Indonesia). Seminar Tugas Akhir Jurusan Teknik Fisika STI-ITS Surabaya. Surabaya.
Lee, Y. E., Shin, D. C., Jeong, Y., Kim, I. T., & Yoo, Y. S. 2019. Effects of pyrolysis temperature and retention time on fuel characteristics of food waste feedstuff and compost for co-firing in coal power plants. Energies, 12(23), 4538.
41
Lempp, P. 2013. Biomass co-firing: Technology brief. IEA-ETSAP and IRENA.
Lestari, FL K. D., Ratnani, R. D., Suwardiyono, S., & Kholis, N. 2017. Pengaruh Waktu Dan Suhu Pembuatan Karbon Aktif Dari Tempurung Kelapa Sebagai Upaya Pemanfaatan Limbah Dengan Suhu Tinggi Secara Pirolisis. Jurnal Inovasi Teknik Kimia, 2(1).
Liu, Z., & Han, G. 2015. Production of solid fuel biochar from waste biomass by low. temperature pyrolysis. Fuel. 158, 159-165.
Nampoothiri, K. U. K., Krishnakumar, V., Thampan, P. K., & Nair, M. A. (Eds.).
2019. The Coconut Palm (Cocos Nucifera L.)--Research and Development Perspectives. Springer.
Noor, N. M., Shariff, A., Abdullah, N., & Aziz, N. S. M. 2019. Temperature effect on biochar properties from slow pyrolysis of coconut flesh waste. Malaysian Journal of Fundamental and Applied Sciences. 15(2). 153-158.
Nurhilal, O., & Suryaningsih, S. 2017. Karakterisasi biobriket campuran serbuk kayu dan tempurung kelapa. Jurnal Material dan Energi Indonesia, 7(02), 13-16.
Putra, Kadek Egy Adhiyatna.,Negara, D. N., I. M., & Kencanawati, C. I. 2018. “Pengaruh Waktu Karbonisasi Terhadap Karakteristik Karbon Aktif Bambu Swat (Gigantochloa verticillata)”.
Jurnal Ilmiah Teknik Desain Mekanika.
Rahmadani, R., Hamzah, F., & Hamzah, F. H. 2017. Pembuatan briket arang daun kelapa sawit (Elaeis guineensis Jacq.) dengan perekat pati sagu (Metroxylon sago Rott.) (Doctoral dissertation, Riau University).
Rahman, A. A., Sulaiman, F., & Abdullah, N. 2015. Effect of temperature on pyrolysis product of empty fruit bunches. In AIP Conference Proceedings (Vol. 1657, No. 1, p. 040011). AIP Publishing LLC.
Ronsse, F., Van Hecke, S., Dickinson, D., & Prins, W. 2013. Production and Characterization of Slow Pyrolysis Biochar: Influence Of Feedstock Type And Pyrolysis Conditions. Gcb Bioenergy, 5(2), 104-115.
42
Roy, P., & Dias, G. 2018. Prospects for pyrolysis technologies in the bioenergy sector: a review. Renewable and Sustainable Energy Reviews. 77, 59-69.
Sadaka, S., Sharara, M. A., Ashworth, A., Keyser, P., Allen, F., & Wright, A. 2014.
Characterization of biochar from switchgrass carbonization. Energies, 7(2), 548-567.
Sahat, Siska Fibriliani. 2017. Indonesian Various Coconut Products. Export News Indonesia. Jakarta: Direktorat Jenderal Pengembangan Ekspor Nasional Kementerian Perdagangan.
Siahaan, S., Hutapea, M., & Hasibuan, R. 2013. Penentuan kondisi optimum suhu dan waktu karbonisasi pada pembuatan arang dari sekam padi. Jurnal Teknik Kimia USU, 2(1), 26-30.
Singh, A., Biswas, A. K., Singhai, R., Lakaria, B. L., & Dubey, A. K. 2015. Effect of pyrolysis temperature and retention time on mustard straw derived biochar for soil amendment. J. Basic. Appl. Sci. Res, 5(9), 31-37.
Siwi, H., Sirun, A., & Arungpadang, T. A. 2017. Briket Campuran Arang Tempurung Kelapa dan Enceng Gondok Hasil Pirolisis. Seminar Nasional Rekayasa Proses Industri Kimia (Vol. 1, pp. 61-68).
SNI 01-6235-2000. Standar Nasional Indonesia. 1996. Bubuk Arang Tempurung Kelapa. Badan Standarisasi Nasional. Jakarta (ID).
Sudarlin. 2016. Eksplorasi Energi Pengembangan Energi Terbarukan. Yogyakarta:
Omah Ilmu.
Sudding, S., & Jamaluddin, P. 2016. The Processing of Coconut Shell Based on Pyrolysis Technology to Produce Reneweable Energy Sources. In Proceeding International Conference on Mathematic, Science, Technology, Education and their Applications (Vol. 1, No. 1).
Suganal, S., & Hudaya, G. K. 2019. Bahan Bakar Co-Firing dari Batubara dan Biomassa Tertorefaksi dalam Bentuk Briket (Skala Laboratorium). Jurnal Teknologi Mineral dan Batubara, 15(1), 31-48.
43
Sulistyani, E., Tamado, D. B., Wulandari, F., & Budi, E. 2015. Coconut Shell Activated Carbon as an Alternative Renewable Energy. KnE Energy, 76-81.
Udyani, K., Ningsih, E., & Arif, M. 2018. Pengaruh Temperatur Pirolisis Terhadap Yield Dan Nilai Kalor Bahan Bakar Cair Dari Bahan Limbah Kantong Plastik. In Prosiding Seminar Nasional Sains dan Teknologi Terapan (pp.
389-394).
Wardani, S., Pranoto, & Himawanto, D. A. 2018. Kinetic parameters and calorific value of biochar from mahogany (Swietenia macrophylla King) wood pyrolysis with heating rate and final temperature variations. In AIP Conference Proceedings (Vol. 2049, No. 1, p. 020034). AIP Publishing LLC.
Zhao, S. X., Ta, N., & Wang, X. D. 2017. Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies. 10(9), 1293.
LA-1