• Tidak ada hasil yang ditemukan

Abdulrachman A. 1979. Kerangka Pokok-Pokok Management Umum. Penerbit Ichtiar Baru. Jakarta

Alimudin. 2012. Sistem Supervisori Kendali Lingkungan pada Model Closed House untuk Ayam Broiler. Desertasi. Institut Pertanian Bogor.

Alimudin, Seminar KB, Subrata IDM, Nomura N, Sumiati. 2012. A Supervisory Control System for Temperature and Humidity in a Closed House Model for Broilers. International Journal of Electrical and Computer Science IJECS-IJENS Vol: 11 No.06 ISSN : 2077-1231.

Anonym. 2012. Environmental conditions and windspeeds. Department of Agriculture and Food. Australia. http://www.agric.wa.gov.au/ PC_93684.html?s=1001. Selasa, 18 Desember 2012.

Arie S. dan kawan-kawan. 2010. Arti Penting Gulma Golongan Daun Lebar dan Rumput pada Media Tanam Tanaman Padi. Fakultas Pertanian Universitas Jember. http://ariesudirowisudo.blogspot.com/.Selasa, 18 Mei 2010. Arymurthy AM, dan Suryana S. 1992. Pengantar Pengolahan Citra. PT Elex

Media Komputindo. Jakarta.

Astika IW. (2010). The Use of Hand Phone Camera to Determine Leaf Color Level as a Reference for Fertilizing Dosage. Proceedings of AFITA 2010 International Conference The Quality Information for Competitive Agriculture Based Production System and Commerce. 105 – 108.

Atkinson D. dan Mc Kinlay RG. 1997. Crop protection and its integration within sustainable farming systems. Agriculture, Ecosystems and

Environment.Volume 64, Issue 2, Juli 1997, Halaman 87-93. Atmel. 2011. AT89S51 Datasheet, revision C.

http://www.atmel.com/dyn/resources/prod_documents/doc2487.pdf . 23 Mar 2011.

Blackmore S. 1994. Precision Farming : an overview. Agricultural Engineer 49(3):86-88

Buldan S. 2006. Prototipe Mobile Robot Penjinak Bom [skripsi]. Bandung: Universitas Komputer Indonesia Bandung.

Clematis A, Agostino DD, Galizia A. 2005. A Parallel IMAGE Processing Server for Distributed Applications. Proceedings of the International Conference ParCo 2005. John von Neumann Institute for Computing, J¨ulich, NIC Series, Vol. 33, ISBN 3-00-017352-8, pp. 607-614, 2006.

Cristina N, Jonker P. 2008. Parallel low-level image processing on a distributed- memory system. Delft University of Technology.

Critten DL. 1996. Fourier Based Techniques for the Identification of Plants and Weeds. Journal Agricultural Engineering Research . (1996) 64 , 149 – 154. Silsoe Research Institute. Bedford MK45 4HS , UK.

169 de Gunts. 1994. Statistische Data Analyse. Facultie Wiskunde en Informatica,

Vrije Universiteit, Amsterdam.

Erida, G. dan hasanuddin. 1996. Penentuan Periode Kritis Tanaman Kedelai (Glycine max) terhadap Kompetisi Gulma. Prosiding Konf. 13 HIGI : 14- 18.

Eussen, JHH. 1972. Losses Due to Weeds. Sec. Weed Sci. Training Course, BIOTROP. 4pp.

Fadhly A.F. dan Fahdiana Tabri. 2005. Pengendalian Gulma pada Pertanaman Jagung. Balai Penelitian Tanaman Serealia, Maros.

Ghazali KH, Marzuki MM dan Hussain A. 2008. Machine Vision System for Automatic Weeding Strategy using Image Processing Technique. American-Eurasian J. Agric. & Environ. Sci., 3 (3): 451-458, 2008 ISSN 1818-6769.

Greco J. 2005. Parallel Image Processing and Computer Vision Architecture. University of Florida. USA.

Grisso RB et al. 2009. Precision Farming: A Comprehensive Approach. Virginia Cooperative Extension. publication 442-500.

Heap IM. 2007. International Survey of Herbicide Resistant Weeds online. Weed Science Society of America. http://www.weedscience.org/ln.asp. 17/07/2012.

Imran A, Adnan A, Islam M, and Salim G. 2008. Edge based Real-Time Weed Recognition System for Selective Herbicides. Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I.IMECS 2008, 19-21 March, 2008, Hong Kong.

Ito H, Shimizu M, and Iida. 2011. Parallel Algorithms of Basic Image Processing Implemented on a Linearly Connected Parallel Processor. Journal of Next Generation Information Technology. Volume 2, Number 2, May 2011 Jacto team. 2008. Condor B-12/BX-12/EM Operator’s Manual. Maquinas

Agricolas Jacto. Brasil.

Jafari A, Saeid S., Jahromi HE and Omid M. 2006. Weed Detection in Sugar Beet Fields Using Machine Vision. International Journal of Agricultural and Biology. Vol. 8, No. 5, 2006.

Jason ST. 2009. How Weather Conditions Affect Spray Applications. http://www.omafra.gov.on.ca/english/crop/. Juli 2009.

Johnston, J. dan J. Dinardo. 1997. Economic Methods 4th edition. MacGraw-Hill Companies Inc. New York.

Khawarizmie AM. 2006. Uji dan Aplikasi Komputasi Paralel pada Jaringan Syaraf Probabilistik (PNN) untuk Proses Klasifikasi Mutu Buah Tomat Segar. Skripsi. Fakultas Teknologi Pertanian. IPB. Bogor.

170 Krishnan MH dan Viswanathan. 2010. Applications of Advanced Fuzzy Logic Techniques in Fuzzy Image Processing Scheme. Advances in Fuzzy Mathematics ISSN 0973-533X Volume 5, Nomor 1 (2010), pp. 71–76. Krokar Z. 2008. Theory of Pulse Width Modulated Control Systems. Personal

Manuscript

Kuhar JE, editor 1997. The Precision-Farming : Guide for Agriculturist. Illinois: John Deer Publishing.

Kusumadewi, S. 2003. Artificial Intelligence (Teknik dan Aplikasinya). Graha Ilmu. Yogyakarta

Kusumadewi, S dan Purnomo, H. 2004. Aplikasi Logika Fuzzy untuk Pendukung Keputusan – edisi pertama. Graha Ilmu. Yogyakarta.

Lanlan W, Youxian W, Xiaoyan D and Hui P. 2009. Identification of weed/corn using BP network based on wavelet features and fractal dimension. Scientific Research and Essay Vol.4 (11), pp. 1194-1200, November, 2009. Wuhan, P. R. China.

Lauwerier H. 1991. Fractals, Endlessly Repeated Geometrical Figures. Princeton University Press, Princeton-New Jersey.

Ligtenberga A, Wachowicza M, Bregt A. 2004. A design and application of a multi-agent system for simulation of multi-actor spatial planning. Journal of Environmental Management. Volume 72 . Halaman 43–55.

Lloyd E. 1993. Crop Evolution, Adaptation and Yield. Cambridge University Press. UK.

Marchant JA. 2003. Comparison of a Bayesian classifier with a multilayer feed- forward neural network using the example of plant/weed/next termsoil discrimination. Computers and Electronics in Agriculture. Volume 39, Issue 1, April 2003, Pages 3-22.

Martin J. 2006. Dasar-dasar Kuliah Gulma. Jurusan Biologi. Universitas Udayana. Bali.

McBratney, AB, Prongle,MJ. 1997. Spatial Variability in Soil Implication for Precision Agriculture. Proceeding Precision Agriculture, BIOS Scientific Publiser Ltd, Oxford.

Miller A and Bellinder R. 2001. Herbicide application using a knapsack sprayer. India: Rice-Wheat Consortium for the Indo-Gangetic Plains. pp 12

Nathan S and Janusz M and Milind T and Paul S. 2005. The DEFACTO System, Coordinating Human-Agent Teams for The Future of Disaster Response. Springer Press Book.

Padgham L. and Winikof M. 2004. Development Intelligent Agent System a Practical Guide. John Wiley and Sons, Ltd. England.

Paice MER. 1996. Control requirements for spatially selective herbicide sprayers next term. Computers and Electronics in Agriculture.Volume 14, Issues 2- 3, Februari 1996, Halaman 163-177.

171 Pérez AJ, López F, Benlloch JV, Christensen S. 1997. Colour and Shape Analysis Techniques for Weed Detection in Cereal Fields. First European Conference for Information Technology in Agriculture, Copenhagen, 15- 18 June, 1997.

Purbasari A. 2002. Teknis dan Strategi Pembangunan Algoritma Paralel. Kuliah Ilmu Komputer. www.ilmukomputer.com.

Rahimizadeh H, Marhaban MH, Kamil RM, Ismail NB. 2009. Color Image Segmentation Based on Bayesian Theorem and Kernel Density Estimation. European Journal of Scientific Research, ISSN 1450-216X Vol.26 No.3 (2009), pp.430-436.

Romi SW. 2003. Pengantar Multy Agent System. http://www.ilmukomputer.com

Saputra I. 2011. Pengembangan Sensor Warna Daun Untuk Pemetaan Kepadatan Serangan Gulma Pada Lahan Terbuka. Skripsi. Fakultas Teknologi Pertanian. IPB. Bogor.

Seminar KB. 2011. Paradigma Pendayagunaan Teknologi Informasi untuk Pertanian. Prosiding Seminar Nasional Seminar Informatika Pertanian Indonesia. Halaman 34-42.

Seminar KB., Suhardiyanto H, Hardjoamidjojo S, Tamrin. 2006. A Supervisory Control System for Greenhouse. Proceeding of Regional Computer

Postgraduate Conference (ReCSPC’06), Malaysia, pp.30-34.

Shibusawa S, Anom IM, Sasao A, Sakai K, Hache C. 2001. Sampling strategies in soil mapping with real-time soil spectrophotometer. Di dalam:

Intelligent Control for Agricultural Application. Proceeding of 2nd IFAC- CIGR Workshop on, Bali Indonesia 22-24 August 2001. Bali: IFAC- CIGR. hlm 40-43.

Silverman, W.B. 1986. Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman and Hall. London

Solahudin M., Seminar KB, Rotinsulu Y. 2011. Development of Variable Rate Liquid Applicator for Sensor-based Precision Farming. Prosiding Seminar Nasional Seminar Infromatika Pertanian Indonesia. Halaman 293.

Solahudin M., Seminar KB . 2010. Analisis Dimensi Fraktal untuk Identifikasi Tanaman dengan Pendekatan Pemrosesan Citra Secara Paralel. Jurnal Teknik Pertanian Vol. 24, No. 2.

Solahudin M, Seminar BS, Astika IW, Buono A. 2010. Pengendalian Gulma dan Tanaman dengan Segmentasi Bayes dan Analisis Dimensi Fraktal untuk Pengendalian Gulma Selektif. Jurnal Teknik Pertanian Vol. 24, No. 2. Solahudin M, Seminar BS, Astika IW, Buono A. 2010. Weeds and Plants

Recognition using Fuzzy Clustering and Fractal Dimension Methods for Automatic Weed Control. Proceedings of AFITA 2010 International Conference The Quality Information for Competitive Agriculture Based Production System and Commerce.

172 Steward B L and Tian LF. 1996. Real Time Machine Vision Weed-Sensing.

Department of Agricultural Engineering. University of Illinois at Urbana- Champaign USA.

Steward BL and Tian LF. 1999. Machine Vision Weed Density Estimation for Real-Time, Outdoor Lighting Conditions. American Society of Agricultural Engineers 0001-2351 / 99 / 4206-1897. USA.

Suroto D, Susilowati YE, dan Widanarti E. 1996. Pengaruh Kerapatam Awal dan waktu Infestasi Teki (Cyperus rotundus L.) terhadap Hasil kacang Tanah (Arachis hypogeae L.). Pros. Konf. 13 HIGI : 39-44.

Tangkowit R, Salokhe V,Jayasuria H. 2006. Development of Tractor Mounted Real-time Variable Rate Herbicide Applicator for Sugarcane Planting. Agricultural Engineering International : the CIGR Ejournal Vol. VIII, June, 2006.

Winandar R. 2011. Pengembangan Perangkat Sensor Tingkat Warna Daun untuk Menentukan Kebutuhan Pupuk Tanaman Kedelai. Skripsi. Departemen Teknik Mesin dan Biosistem. Fakultas Teknologi Pertanian. IPB.

Weibing X. 2005.Development and Implementation of Image Processing Delineation Tools Using MPI. School of Mathematical and Information Sciences,Coventry University.

Wolf SA, Wood SD. 1997. Precision farming : environmental legitimation, commodification of information, and industrial coordination. The Rural Sosiological Society. Rural Sociology 62(2):180-206.

Xavier PB, Angela R, Guijarrob M dan Pajaresb G. 2011. Real-time image processing for crop/weed discrimination in maize fields. Computers and Electronics in Agriculture. Volume 75, Issue 2, February 2011, Pages 337- 346.

Yang C. 2003. Development of a herbicide application map using artificial neural networks and fuzzy logic. Agricultural Systems Volume 76, Issue 2, Mei 2003, Halaman 561-574.

Zhu H, Erdal O. 2011. DRIFTSIM, A Computer Program for Estima-ting Drift Distances of Droplets. USDA-ARS Application Technology Research Unit, Wooster, Ohio, USA.

173 Lampiran 1. Spesifikasi mikrokontroler AT89S51 (Atmel Datasheet)

Deskripsi pin

Nama Pin Keterangan

VCC Tegangan supply +5V GND Ground

Port 0 Port 0 merupakan port paralel 8 bit dua arah (bi-directional) yang dapat digunakan untuk berbagai keperluan. Port 0 juga memultipleks alamat dan data jika digunakan untuk mengakses memori eksternal.

Port 1 Port 1 merupakan port paralel 8 bit dua arah dengan internal pull-up.

Port 1 juga digunakan dalam proses pemrograman P1.5 MOSI

P1.6 MISO P1.7 SCK

Port 2 Port 2 merupakan port paralel 8 bit dua arah dengan internal pull-up.

Port 2 akan mengirim byte alamat jika digunakaan untuk mengakses memori eksternal.

Port 3 Port 3 merupakan port paralel 8 bit dua arah dengan internal pull-up.

Port 3 juga bida difungsikan untuk keperluan khusus yaitu : P3.0 RXD (Receive Data) P3.1 TXD (Transmit Data) P3.2 INT0 (Interrupt 0) P3.3 INT1 (Interrupt 1) P3.4 T0 (Timer 0) P3.5 T1 (Timer 1) P3.6 WR (Write Strobe) P3.7 RD (Read Strobe)

RST Pulsa dari low ke high akan mereset mikrokontroler ALE/PROG Address Latch Enable, digunakan untuk menahan alamat

memori eksternal selama pelaksanaan instruksi PSEN Program Store Enable, merupakan sinyal kendali yang

memperbolehkan program memori eksternal masuk ke dalam bus selama proses pengambilan instruksi

EA/VPP Jika EA=1 maka mikrokontroler akan melaksanakan instruksi dari ROM internal

Jika EA=0 maka mikrokonttoler akan melaksanakan instruksi dari ROM eksternal

XTAL1 Intput ke rangkaian osilator internal XTAL 2 Output dari rangkaian osilator internal

174 Lampiran 1. Spesifikasi mikrokontroler AT89S51 (lanjutan)

Special function register

Simbol Nama Alamat Nilai Awal

ACC Akumulator E0H 00000000

B B Register F0H 00000000

PSW Program Status Word D0H 00000000

SP Stack Pointer 81H 00000111

DPTR0

Data Pointer 0 16 bit DP0L Byte Rendah DP0H Byte Tinggi 82H 83H 00000000 00000000 DPTR1

Data Pointer 1 16 bit DP1L Byte Rendah DP1H Byte Tinggi 84H 85H 00000000 00000000 P0 Port 0 80H 11111111 P1 Port 1 90H 11111111 P2 Port 2 A0H 11111111 P3 Port 3 B0H 11111111

IP Interrupt Priority Control B8H xx000000 IE Interrupt Enable Control A8H 0x000000 TMOD Timer/Counter Mode Control 89H 00000000 TCON Timer/Counter Control 88H 00000000 TH0 Timer/Counter 0 High Byte 8CH 00000000 TL0 Timer/Counter 0 Low Byte 8AH 00000000 TH1 Timer/Counter 1 High Byte 8DH 00000000 TL1 Timer/Counter 1 Low Byte 8BH 00000000

SCON Serial Control 98H 00000000

SBUF Serial Data Buffer 99H xxxxxxxx

PCON Power Control 87H 0xxx0000

WDTRST Watchdog Timer Reset A6H xxxxxxxx

175 Lampiran 1. Spesifikasi mikrokontroler AT89S51 (lanjutan)

Timer Mode

TxM1 TxM0 Mode Timer Deskripsi

0 0 0 13-bit Timer

0 1 1 16-bit Timer

1 0 2 8-bit auto reload

1 1 3 Split timer

Register TCON

Bit Nama Fungsi Timer

7 TF1 Timer 1 Overflow. Bit ini diatur oleh

mikrokontroler 1

6 TR1 Timer 1 Run. Timer akan aktif jika bit ini bernilai 1 1 5 TF0 Timer 0 Overflow. Bit ini diatur oleh

mikrokontroler 0

4 TR0 Timer 1 Run. Timer akan aktif jika bit ini bernilai 1 0 Register TMOD

Bit Nama Fungsi Timer

7 GATE1 Jika bernilai 1, timer hanya akan mulai ketika INT1 pada kondisi high. Jika bernilai 0, timer akan mulai tanpa pengaruh kondisi INT1.

1 6 C/T1 Timer akan mencacah kejadian melalui T1 ketika

bit ini bernilai 1 dan akan mencaca setiap siklus mesin jika bit bernilai 0.

1 5 T1M1 Penentu mode timer yang akan digunakan 1 4 T1M0 Penentu mode timer yang akan digunakan 1 3 GATE0 Jika bernilai 1, timer hanya akan mulai ketika

INT1 pada kondisi high. Jika bernilai 0, timer akan mulai tanpa pengaruh kondisi INT1.

0 2 C/T0 Timer akan mencacah kejadian melalui T1 ketika

bit ini bernilai 1 dan akan mencaca setiap siklus mesin jika bit bernilai 0.

0 1 T0M1 Penentu mode timer yang akan digunakan 0 0 T0M0 Penentu mode timer yang akan digunakan 0

176 Lampiran 1. Spesifikasi mikrokontroler AT89S51 (lanjutan)

Mode pilihan komunikasi data serial

SM1 SM0 Mode Deskripsi

0 0 0 Shift register, baud = f/12

0 1 1 8-bit UART, baud = variabel

1 0 2 9-bit UART, baud = f/32 atau f/64

1 1 3 9-bit UART, baud = variabel

Register SCON

Bit Simbol Fungsi

7 SM0 Serial port mode bit 0 6 SM1 Serial port mode bit 1

5 SM2 Pengaktif komunikasi multiprosesor

4 REN Receive Enable bit. Beri nilai 1 untuk mengaktifkan penerimaan data serial

3 TB8 Transmitted bit 8. Pengaturan dilakukan oleh program pada mode 2 dan 3

2 RB8 Received bit 8. Bit ke-8 dari data yang diterima pada mode 2 dan 3. Berupa stopbit pada mode 1 dan tidak digunakan pada mode 0

1 TI Transmit Interrupt flag. Harus dikontrol oleh program 0 RI Receive Interrupt flag. Harus dikontrol oleh program

Register PCON

Bit Simbol Fungsi

7 SMOD Serial baudrate modify bit. Bernilai 1, program akan

menggandakan timer 1 sebagai baudrate pada mode 1,2 dan 3. Bernilai 0, untuk menggunakan baudrate timer 1.

6-4 - Tidak digunakan 3 GF1 General purpose user flag bit 1 2 GF0 General purpose user flag bit 0

1 PD Power down bit. Beri nilai 1, untuk masuk konfigurasi power down

0 IDL Idle mode bit. Beri nilai 1, jika ingin masuk konfigurasi mode idle

177 Lampiran 1. Spesifikasi mikrokontroler AT89S51 (lanjutan)

Register IE

Bit Simbol Fungsi

7 EA Enable Interrupts bit. Beri nilai 1, untuk mengaktifkan interrupt sesuai enable bit interrupt terkait.

6 - Tidak digunakan 5 ET2 Penggunaan pada 8052

4 ES Enable serial port interrupt. Beri nilai 1 untuk mengaktifkan interrupt

3 ET1 Enable timer1 overflow interrupt. Beri nilai 1 untuk mengaktifkan interrupt

2 EX1 Enable external1 interrupt. Beri nilai 1 untuk mengaktifkan interrupt (INT1)

1 ET0 Enable timer0 overflow interrupt. Beri nilai 1 untuk mengaktifkan interrupt

0 EX0 Enable external0 interrupt. Beri nilai 1 untuk mengaktifkan interrupt (INT0)

Register IP

Bit Simbol Fungsi

7-6 - Tidak digunakan 5 PT2 Penggunaan pada 8052

4 PS Prioritas interrupt untuk serial port 3 PT1 Prioritas interrupt untuk timer1 overflow 2 PX1 Prioritas interrupt untuk external1 1 PT0 Prioritas interrupt untuk timer0 overflow 0 PX0 Prioritas interrupt untuk external0

178 Lampiran 2. Citra sebaran gulma pada lahan terbuka.

25 26 24 23 22 21 15 16 14 13 12 11 5 6 4 3 2 1 10 9 8 7 20 19 18 17

179 Lampiran 3. Data pengolahan citra sebaran gulma

Citra ke- Baris ke-

Kolom Kanan Kolom Kiri waktu

Rata-rata R Rata-rata G Rata-rata B Rata-rata R Rata-rata G Rata-rata B t (mdet)

1 1 99.19 125.12 69.94 74.95 86.77 49.96 196.01 2 105.65 126.25 71.84 53.29 60.59 34.93 2 3 90.32 117.54 79.97 74.78 89.85 63.53 197.01 4 93.74 114.32 79.06 84.21 99.46 70.54 3 5 105.71 135.97 78.43 64.32 78.94 45.96 196.01 6 77.32 97.38 56.88 57.15 70.56 41.04 4 7 119.93 152.89 89.89 111.35 139.67 82.79 194.01 8 117.70 147.47 87.43 103.59 129.79 76.96 5 9 75.35 91.62 65.37 29.13 29.51 21.60 198.01 10 56.58 60.98 44.70 14.63 15.65 11.17 6 11 90.29 111.06 70.53 44.38 49.25 32.39 199.01 12 47.81 53.14 35.20 57.88 66.45 43.44 7 13 76.12 90.36 61.70 50.35 50.69 36.19 196.01 14 107.36 110.52 78.89 98.36 98.92 71.21 8 15 22.87 27.40 20.40 84.22 74.15 61.39 198.01 16 18.99 17.71 14.35 82.16 73.59 60.37 9 17 104.35 130.84 81.34 87.47 104.07 65.44 197.01 18 77.37 93.59 59.44 72.64 85.72 53.75 10 19 44.97 53.26 40.24 89.19 82.43 67.51 196.01 20 66.54 61.52 50.28 114.43 106.56 86.88 11 21 79.81 102.96 66.68 60.78 66.68 44.82 196.01 22 49.67 59.82 39.84 31.69 33.34 22.81 12 23 67.30 85.83 58.70 17.03 16.90 12.27 195.01 24 78.43 82.96 59.69 20.78 20.03 14.73

180 Lampiran 3. Data pengolahan citra sebaran gulma (lanjutan)

Citra ke- Baris ke-

Kolom Kanan Kolom Kiri waktu

Rata-rata R Rata-rata G Rata-rata B Rata-rata R Rata-rata G Rata-rata B t (mdet)

13 25 56.37 65.05 50.30 130.41 124.19 100.73 195.01 26 33.31 33.24 26.34 123.76 119.02 96.21 14 27 61.66 76.37 53.04 30.50 28.20 21.49 194.01 28 40.85 42.65 30.96 19.44 19.96 14.61 15 29 11.16 11.75 10.15 104.06 84.74 70.16 199.01 30 11.87 9.82 8.07 48.14 38.74 31.81 16 31 11.38 12.14 9.46 60.19 46.85 39.39 194.01 32 21.48 17.00 14.28 74.90 58.99 49.65 17 33 60.87 83.12 60.48 69.90 75.92 55.65 194.01 34 19.21 17.49 13.46 68.71 67.99 52.36 18 35 27.06 32.17 24.54 52.49 43.63 36.09 195.01 36 29.66 26.24 21.33 31.43 26.11 21.60 19 37 19.14 23.73 18.30 29.16 25.04 19.13 196.01 38 48.79 41.26 31.88 24.75 20.39 15.78 20 39 45.52 53.57 36.01 61.03 55.03 40.68 193.01 40 52.46 51.35 36.75 90.52 79.10 59.63 21 41 21.09 25.14 18.26 45.17 37.11 29.86 195.01 42 8.66 7.42 5.89 57.17 50.43 39.33 22 43 43.14 61.02 40.66 26.52 24.09 18.31 195.01 44 38.53 40.71 29.11 21.70 21.72 16.16 23 45 50.99 60.40 42.72 100.94 94.06 72.72 196.01 46 81.12 77.78 58.89 96.63 89.03 69.51

181 Lampiran 3. Data pengolahan citra sebaran gulma (lanjutan)

Citra ke- Baris ke-

Kolom Kanan Kolom Kiri waktu

Rata-rata R Rata-rata G Rata-rata B Rata-rata R Rata-rata G Rata-rata B t (mdet)

24 47 72.69 99.03 66.46 30.82 37.22 25.53 199.01 48 45.68 53.14 37.58 23.29 26.76 18.92 25 49 102.83 125.27 84.50 118.96 134.82 93.58 198.01 50 98.93 110.78 76.94 109.67 124.56 86.31 26 51 35.64 42.27 30.44 43.28 39.53 29.96 197.01 52 18.37 17.43 13.41 45.55 41.63 31.82

182 Lampiran 4. Data penentuan nilai segmentasi

Kolom ke- Rata-rata R Rata-rata G Rata-rata B

0 152.44 124.28 97.76 1 154.03 125.66 99.14 2 153.79 125.05 98.44 3 153.99 124.92 98.28 4 155.11 125.66 99.22 5 156.70 126.96 101.18 6 156.14 126.30 101.14 7 157.86 128.00 103.45 8 159.86 129.73 104.55 9 158.61 128.46 103.48 10 157.99 128.39 103.58 11 158.08 129.07 104.73 12 159.55 130.99 106.95 13 161.70 132.75 108.90 14 160.36 130.60 106.08 15 160.47 129.87 105.21 16 164.43 134.24 108.06 17 163.05 132.84 106.80 18 160.08 129.75 103.87 19 161.88 131.17 105.67 20 161.97 131.17 106.02 21 162.39 131.14 106.08 22 165.18 133.86 109.00 23 163.31 132.08 107.13 24 163.74 132.87 107.56 25 164.70 133.93 108.35 26 164.60 133.86 107.96 27 163.31 132.73 106.47 28 166.23 135.50 110.18 29 167.95 137.32 112.15 30 164.78 134.01 108.22 31 166.09 135.24 109.75 32 168.73 138.54 113.8 33 168.55 138.24 113.17 34 167.75 137.35 112.19 35 169.76 139.13 114.31 36 169.95 139.18 114.12 37 171.61 140.59 115.63 38 172.01 140.83 116.05 39 170.95 139.85 114.74

Dokumen terkait