• Tidak ada hasil yang ditemukan

[BPOM] Badan Pengawasan Obat dan Makanan. 2010. Audit BPOM : Makanan Kadaluwarsa Mayoritas Jenis Biskuit, Coklat dan Permen. [diacu 2012 Januari 7]. Tersedia dari: http://www.detiknews.com/read/2010/09/05/ 095925/1435192/10/makanan-kadaluwarsa-mayoritas-jenis-biskuit-coklat- permen.

Berbert PA, Queiroz DM, Sousa EF, Molina MB, Melo EC, Faroni LRD. 2001. Dielectric properties of parchment coffee. Journal of Agricultural Engineering Research, 80(1):65-80.

Bila S, Y Harkouss, Y Ibrahim M, Rousset J, N‟Goya E, Baillargeat D, Verdeyme

S, Aubourg M, Guillon P. 1999. An accurate wavelet neural-network-based model for electromagnetic optimization of microwave circuits. International Journal of RF and Microwave Computer-Aided Engineering. 93: 297–306. Bhothmange M, Shastri P. 2011. Application of artificial neural networks to food

and fermentation technology. Artificial Neural Networks - Industrial and Control Engineering Applications. Intech, April 2011.

Chen Y, Donald AJ. 2000. An empirical study on estimators for liniear regression analysis in fisheries and ecology. Fisheriees Research, 49:193- 206.

Cordoba BV, GE Arteaga, S Nakai. 1995. Predicting milk shelf-life based on artificial neural networks and headspace gas chromatographic data. Journal of Food Science. 60(5): 885–888.

Coulibaly P, Bobe´e B, Anctil F. 2001. Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection.

Hydrocarbon Processing. 15:1533–1536.

De Canete JF, S Gonzalez-Perez, P del Saz-Orozco. 2008. Software tools for system identification and control using neural networks in process engineering. World Academy of Science, Engineering and Technology, No 47.

Desai, KM, Survase, Shrikant A, Saudagar, Parag S, Lele SS, Singhal RS. 2008. Comparison of artificial neural network (ann) and response surface metodhology (rsm) in fermentation media optimizatition : case study of fermentative production of scleroglucan. Biochemical Engineerning Journal, 41:266-273.

Floros JD dan V Gnanasekharan. 1993. Shelf Life Prediction of Packaged Foods: Chemichal, Biological, Physical, and Nutritional Aspects. G. Chlaralambous (Ed.). Elsevier Publ., London.

Goyal S, GK Goyal. 2011a. Radial basis artificial neural network computer engineering approach for predicting shelf life of brown milk cakes decorated with almonds. International Journal of Latest Trends in Computing. 23: 434- 438.

Goyal S, GK Goyal. 2011b. Advanced computing research on cascade single and double hidden layers for detecting shelf life of kalakand: an artificial neural network approach. International Journal of Computer Science and Emerging Technologies. 2(5):292-295.

Goyal S, GK Goyal. 2011c. A new scientific approach of intelligent artificial neural network engineering for predicting shelf life of milky white dessert jeweled with pistachio. International Journal of Scientific and Engineering Research. 2(9):1-4.

Goyal S, GK Goyal. 2011d. Simulated neural network intelligent computing models for predicting shelf life of soft cakes. Global Journal of Computer Science and Technology 11(14):28-33.

Goyal S, GK Goyal. 2012. A novel method for shelf life detection of processed cheese using cascade single and multi layer artificial neural network computing models. ARPN Journal of Systems and Software. 2(2):79-83. Guo W, G Tiwari, J Tang, S Wang. 2008. Frequency, moisture and temperature-

dependent dielectric properties of chickpea flour. Biosystems Engineering, 101(2008):217-224.

Harmen.2001. Rancang Bangun Alat dan Pengukuran Nilai Dielektrik pada Kisaran Frekuensi Radio. [Tesis]. Program Pascasarjana IPB.

Harmen, AH Tambunan, Y Sebastian. 2004. Rancang Bangun Alat Ukur Nilai Dielektrik pada Kisaran Frekuensi Radio untuk Bahan pertanian. Laporan Penelitian Hibah Bersaing Tahun 2004. Politeknik Negeri Lampung 2004. Hartono D. 2008. Real Time System (RTS). [diacu 2013 Januari 16]. Tersedia

dari http://dwiishartono.wordpress.com/2008/09/17/ real-time-systemrts. Herv's CG,Zurera, Garcfa RM, Martinez JA. 2001. Optimization of computational

neural network for its application in the prediction of microbial growth in foods, Food Science and Technology International, 7: 159-163.

Hu X, Xuyin W, Lijun S. and Zhichao X. 2009. A real-time intelligent system for order processing in b2c e-commerce. International Journal Of Innovative Computing.Information and Control, 5(11(A)):3691–3706. Ikediala, JN, Tang J, Drake SR, Neven LG. 2000. Dielectric properties of apple

cultivars and codling moth larvae. Transactions of the ASAE, 43:1175-1184. Kira K, Rendell LA. 1992a. Practical approach to feature selection. proceedings

of the ninth international conference (ml92). Morgan Kaufmann Publishers Inc., 249-256.

Kira K, Rendell LA. 1992b. The feature selection problem : traditional methods and a new algorithm. Proceedings of Tenth National Conference on Artificial Intelligence. MIT Press, 129-134.

Ko S-H, Eun-Young Park, Kee-Young Han, Bong-Soo Noh, Suk-Shin Kim. 2000. Development of neural network analysis program to predict shelf-life of soymilk by using electronic nose. Food Engineering Progress, 4(3):193- 198.

Kononenko I. 1994. Estimating attributes: analysis and extensions of Relief. In: L.De Raedt and F. Bergadano (eds.): Machine Learning. ECML-94:171– 182, Springer Verlag.

Krishnakumar K. 2003. Intelligent systems for aerospace engineering-an overview. NASA Technical Report. Intelligent Systems for Aeronautics Conference 2003.

Lee CY. 2007. RC Circuits. [diacu 2013 Agustus 26]. Tersedia dari : http://www.isu.edu.tw/upload/52/35/files/dept_35_lv_2_4168.pdf

Li X, AS Zyuzin,AV Mamishev. 2003. Measuring moisture content in cookies using dielectric spectroscopy. Electrical Insulation and Dielectric Phenomena, 2003 Annual Report:459–462.

Liu Y, Tang J, Zhihuai M. 2009. Analysis of bread dielectric properties using mixture equations. Journal of Food Engineering, 93:72-79.

Mathworks. 2010. MATLAB Release 2010b. http://www.mathworks.com Muhidin AH, Indra J, T Hestirianoto. 2007. Identifikasi kawanan ikan lemuru

dari data hidroakustik dengan metode jaringan syaraf tiruan. Torani, 17(3):181-192.

Meshram CN. 2008. Studies on Dehydration of Agro Based Products Using Radio Frequency Dryer, M.Tech (ChemTech.) [Thesis], Nagpur University. Nelson SO. 2008. Dielectric properties of agricultural products and some

applications. RES. AGR. ENG., 54(2): 104–112.

Nelson SO, S Trablesi. 2012. Factors influencing the dielectric properties of agricultural and food products. Journal of Microwave Power and Electromagnetic Energy. 46(2):93-107.

Park EY, Bong-Soo Noh, Sanghoon Ko. 2002. Prediction of self life for soynean curd by the electronic nose and artificial neural network system. Food Science and Biotechnology, 11(3):245-251.

Robnik-Sikonja M, I. Kononenko. 2003. Theoretical and empirical analysis of ReliefF and RReliefF. Machine Learning Journal, 53:23-69.

Robertson GL. 2010. Food Packaging and Shelf Life: A Pratical Guide. Boca Raton, Florida: CRC Press.

Rojek I. 2008. Neural networks as prediction models for water intake in water supply system. ICAISC 2008, LNAI 5097:1109–1119.

Siang JJ. 2009. Jaringan Syaraf Tiruan dan Pemrograman Menggunakan Matlab. Andi Offset, Yogyakarta.

Sosa-Morales ME, Valerio-Junco L, López-Malo A, HS García. 2010. Dielectric properties of foods: reported data in the 21st century and their potential applications. LWT - Food Science and Technology, 43(2010):1169-1179 Subarna D. 2009. Aplikasi jaringan neural untuk pemodelan dan prediksi curah

Santoso I, U Effendi, C Fauziya. 2007. Penerapan jaringan syaraf tiruan untuk peramalan permintaan komoditas karet di Perkebunan Nusantara XII Surabaya. Jurnal Teknologi Pertanian, 8(1):46-54.

Siripatrawan U, Harte BR. 2007. Solid phase microextraction/gas chromatograph/mass spectrometer coupled with discriminant factor analysis and multilayer perceptron neural network for detection of Escherichia coli.

Analytica Chimica Acta, 581:63–70.

Siripatrawan U, Linz J, Harte BR. 2004. Rapid method for prediction of Escherichia coli numbers using an electronic sensor array and an artificial neural network. Journal of Food Protection, 67:1604–1609.

Siripatrawan U, Jantawat P. 2008. A novel method for shelf life prediction of a packaged moisture sensitive snack using multilayer perceptron neural network. Expert Systems with Applications, 34(2):1562-1567.

Toyoda K. 2003. The Utilization of Electric Properties. In: Sumio, K. (Ed). The Handbook Of Non-Destructive Detection. Science forum, Tokyo: 108–126 (Chapter 8)

SPSS. 2007. SPSS for Windows Release 16.0.[http://www-01.ibm.com/software/ analytics/spss/].

Terra MH, Tino´s R. 2001. Fault detection and isolation in robotic manipulators via neural networks: a comparison among three architectures for residual analysis. Journal of Robotic Systems, 18:357–374.

Wang S, Tang J, Johnson JA, Mitcham E, Hansen JD, Hallman G, Drake SR, Wang Y, 2003. Dielectric properties of fruits and insect pests as related to radio frequency and microwave treatments. Biosystems Engineering,

85(2):201-212.

Weka. 2010. Waikato Environment for Knowledge Analysis.

http://www.cs.waikato.ac.nz/~ml/weka/ [1 Mei 2011].

Wiryadinata R, DA Ratnawati. 2005. Simulasi jaringan syaraf tiruan berbasis metode backpropagation sebagai pengendali kecepatan motor DC. Prosiding Seminar Nasional Aplikasi Teknologi Informasi 2005 (SNATI 2005).Yogyakarta 18 juni 2005.

Lampiran 1 Coding program MATLAB lengkap desain model JST clear all; close all; clc; %DATA data=xlsread('D:\ummi\my desertasi\Penelitian\prediksiMKnorm0,1\transformSort.xlsx',1,'J:O' ); input=data(1:288,1:5); output=data(1:288,6); input=input'; output=output'; %INISIALISASI JARINGAN nodehidden1=10; nodehidden2=10; nodehidden3=10; nodehidden4=10; nodehidden5=10; nodeoutput=1; fgsaktivhidden1='tansig'; fgsaktivhidden2='tansig'; fgsaktivhidden3='tansig'; fgsaktivhidden4='tansig'; fgsaktivhidden5='tansig'; fgsaktivoutput='purelin'; fgstrain='trainlm'; epo=1000; goa=1e-4; lrate=0.05; for i=1:3 net_bagi=newff(minmax(input),[nodehidden1,nodehidden2,nodehidden3, nodehidden4,nodehidden5,nodeoutput],{fgsaktivhidden1,fgsaktivhidde n2,fgsaktivhidden3,fgsaktivhidden4,fgsaktivhidden5,fgsaktivoutput} , fgstrain); net_bagi=init(net_bagi);

%PREDIKSI TANPA LATIHAN

disp(i)

disp('prediksi tanpa latihan')

y=sim(net_bagi,input);

[y,Pf,Af,e,perf]=sim(net_bagi,input,[],[],output); mean_square_errornotrain=mse(e)

%PREDIKSI DENGAN LATIHAN

net_bagi.trainParam.epochs=epo; net_bagi.trainParam.goal=goa; net_bagi.trainParam.show=100; net_bagi.trainParam.lr=lrate;

net_bagi.trainParam.mu_max=1e+100; net_bagi=train(net_bagi,input,output);

disp('prediksi dengan latihan')

[ytrain,Pftrain,Aftrain,etrain,perftrain]=sim(net_bagi,input,[],[] ,output); mean_square_errortrain=mse(etrain) [m,b,r]=postreg(ytrain,output); R=r R2=r^2 save net_bagi.mat end %DATA PENGUJIAN inputuji=data(289:360,1:5); outputuji=data(289:360,6); inputuji=inputuji'; outputuji=outputuji';

%HASIL PREDIKSI PENGUJIAN

disp('prediksi dari pengujian')

yuji=sim(net_bagi,inputuji); [yuji,Pfuji,Afuji,euji,perfuji]=sim(net_bagi,inputuji,[],[],output uji) mean_square_erroruji=mse(euji) [muji,buji,ruji]=postreg(yuji,outputuji) %VERIFIKASI %dataver=xlsread('D:\ummi\my desertasi\Penelitian\prediksiMKnorm0,1\transformSort.xlsx',1,'J:O' ); inputver=data(362:373,1:5); outputver=data(362:373,6); inputver=inputver'; outputver=outputver'; %HASIL VERIFIKASI

disp('prediksi dari verifikasi')

yver=sim(net_bagi,inputver);

[yver,Pfver,Afver,ever,perfver]=sim(net_bagi,inputver,[],[],output ver)

Lampiran 2 Coding program MATLAB lengkap integrasi JST dengan sensor dielektrik dan desain GUI

%clear all; %close all; %clc;

function varargout = PrediksiGUI(varargin)

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton', gui_Singleton, ...

'gui_OpeningFcn', @PrediksiGUI_OpeningFcn, ...

'gui_OutputFcn', @PrediksiGUI_OutputFcn, ...

'gui_LayoutFcn', [] , ...

'gui_Callback', []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1}); end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else

gui_mainfcn(gui_State, varargin{:}); end

% End initialization code - DO NOT EDIT

% --- Executes just before PrediksiGUI is made visible.

function PrediksiGUI_OpeningFcn(hObject, eventdata, handles,

varargin)

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% --- Outputs from this function are returned to the command line.

function varargout = PrediksiGUI_OutputFcn(hObject, eventdata,

handles)

% varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.

function pushbutton5_Callback(hObject, eventdata, handles)

%–membuat sebuah object serial pada matlab dan mengatur setting

sesuai dengan setting

f=serial('COM10','BaudRate',9600,'DataBits',8,'StopBits',1,'InputB ufferSize',600);

%–membuka koneksi object dengan port serial

fopen(f)

%–meminta user untuk memasukkan sejumlah nilai pengambilan data

%SET = input('Tekan "ENTER"');

%–melakukan lopping sejumlah data yang dimasukkan

%while (j<=SET)

data=fread(f,400,'uint8');

%–menutup koneksi dengan serial

fclose(f)

%–menghapus object serial

delete(f);

%–menyimpan data hasil pengukuran

lihat = char(data)'; n=length(data);

if data(1)~= double('A')

k=1;

while(data(k)~=double('A'))

k=k+1; end data=data(k-1:end); end if data(end)~= double('D') k2=length(data); while(data(k2)~=double('D')) k2=k2-1; end data=data(1:k2); end lihat=char(data)'; n = length(data); z=[]; i2=0; j=0; z1=[]; V11=[];V22=[];V33=[]; V1=[];V2=[];V3=[]; for i=1:n

if data(i)== double('A')

V11=[];

while(i2<100)

i2=1+i2;

if i2+i > n || data(i2+i)==double('B'),break,end

V=data(i2+i); V11=[V11 V]; end V=str2double(char(V11)); V1 = [V1 V]; %i=i2+i; i2=0; end

if data(i)== double('B') V11=[];

while(i2<100)

i2=1+i2;

if i2+i > n || data(i2+i)==double('C'),break,end

V=data(i2+i); V11=[V11 V]; end V=str2double(char(V11)); V2 = [V2 V]; %i=i2+i; i2=0; end if data(i)== double('C') V11=[]; while(i2<100) i2=1+i2;

if i2+i > n || data(i2+i)==double('D'),break,end

V=data(i2+i); V11=[V11 V]; end V=str2double(char(V11)); V3 = [V3 V]; %i=i2+i; i2=0; end end % V3 = Vin % V2 = Vfrek % V1 = Vsen V = [V1' V2' V3'].*4.93./1023; V = mean(V); %V(1,3)=V(1,3)-1.2 Vin = (202e3+198e3)/202e3*V(3); f = sqrt( (Vin/V(2)).^2 - 1 ) ./ (2*pi*1.977e3*10.5e-9); VCnoninv = V(1)./(1+100.4e3./46.5e3); VClow = VCnoninv.*sqrt(1+(2*pi()*f*100e-9*559)^2); VChight = VClow.*sqrt(1+(2*pi()*f*100e- 9*253)^2)./(2*pi()*f*100e-9*253); C = sqrt( (Vin/VChight).^2 - 1 ) ./ (2*pi*0.998e6*f); Xc = 1./(2*pi*f*C); G =1./Xc; A = 4e-4;d = 0.25e-2;Eo=8.85e-12; k = C*d/Eo/A; set(handles.text11,'string',f); set(handles.text8,'string',C); set(handles.text21,'string',k);

set(handles.uipanel2,'Visible','on')

% --- Executes on button press in pushbutton4.

function pushbutton4_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

close;

% --- Executes on selection change in popupmenu1.

function popupmenu1_Callback(hObject, eventdata, handles)

indeks=get(handles.popupmenu1,'value');

handles.indeks=indeks; guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

function popupmenu1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Executes on selection change in popupmenu2.

function popupmenu2_Callback(hObject, eventdata, handles)

indeks2=get(handles.popupmenu1,'value');

handles.indeks2=indeks2; guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

function popupmenu2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Executes on button press in pushbutton6.

function pushbutton6_Callback(hObject, eventdata, handles)

load net_bagi.mat; indeks=get(handles.popupmenu1,'value'); indeks2=get(handles.popupmenu2,'value'); fr=str2num(get(handles.text11,'string')); cp=str2num(get(handles.text8,'string')); kd=str2num(get(handles.text21,'string'));

jkemasan=indeks; jbiskuit=indeks2; frek=(0.8*(fr-5840.3))/(6246.3-5840.3)+0.1; Cp=(0.8*(cp - (1.2075e-11)))/((2.9129e-11) - (1.2075e-11))+0.1; kdielektrik=(0.8*(kd-8.5279))/(20.5713-8.5279)+0.1; jkmsan=(0.8*(jkemasan-1))/(3-1)+0.1; jbisk=(0.8*(jbiskuit-1))/(4-1)+0.1;

matrikspred=[jkmsan jbisk frek Cp kdielektrik]; matrikspred=matrikspred';

ypred=sim(net,matrikspred);

hasilprediksi=(0.8*(-177)+((ypred-0.1)*(517-(-177))))/0.8;

Lampiran 3 Petunjuk penggunaan sistem real time cerdas prediksi masa kadaluarsa biskuit (user manual)

Untuk menggunakan sistem real time cerdas prediksi masa kadaluarsa biskuit, ikuti tahapan berikut :

1. Sensor dihubungkan dengan sumber listrik. 2. Hubungkan mikrokontroler dengan komputer.

3. Jalankan program prediksi dengan menekan dua kali file PrediksiGUI.fig yang terdapat pada folder C:/PrediksiMK. Sehingga muncul tampilan utama.

4. Selipkan sampel pada probe. Untuk biskuit yang diameternya lebih besar dari diameter probe, perlu ditipiskan sehingga dapat disisipkan pada probe.

5. Klik „UKUR‟ pada frame „Pengukuran‟ untuk mengukur beberapa nilai inputan frekuensi, kapasitansi dan konstanta dielektrik. Akan terlihat hasil pengukuran frekuensi, kapasitansi dan konstanta dielektrik pada text box.

6. Isi „Jenis kemasan‟ dan „Jenis biskuit‟ pada frame „Pengisisan data‟ dengan memilih item pada masing-masing input box. Pilihan Jenis kemasan yang tersedia adalah Kaleng, Alumunium foil, dan Plastik. Pilihan Jenis biskuit yang tersedia adalah Wafer, Cookies, Crackers, dan Biskuit keras.

7. Klik „PREDIKSI‟ pada frame „Keluaran‟ untuk menunjukkan hasil prediksi masa kadaluarsa biskuit tersebut dalam hari. 8. Jika akan mengukur sampel yang lain, dapat diulangi langkah 4

sampai 7. Jika telah selesai, dapat meng-klik „KELUAR‟

Mulai

Dokumen terkait