• Tidak ada hasil yang ditemukan

Faktor Keamatan Tegasan Daya Tegangan

KAJIAN KEPUSTAKAAN

2.7 ANALISIS FAKTOR KEAMATAN TEGASAN RETAK PERMUKAAN

2.7.1 Faktor Keamatan Tegasan Daya Tegangan

ialah fungsi penentukuran plastik penuh dan dipanggil sebagai fungsi-h. Ia penting untuk menganggarkan kamiran-J untuk bentuk dan geometri retak tertentu. Walau bagaimanapun, Lei (2004a; 2004b; 2004c) menyatakan penyelesaian terhadap

fungsi-h masifungsi-h lagi terfungsi-had dan banyak kajian perlu dijalankan untuk tujuan tersebut.

2.7 ANALISIS FAKTOR KEAMATAN TEGASAN RETAK PERMUKAAN

Tinjauan kepustakaan dijalankan ke atas bar berbentuk silinder padu yang mengandungi retak permukaan dengan menggunakan pendekatan mekanik patah anjal-lelurus. Faktor keamatan tegasan (SIF) digunakan sebagai parameter patah yang mana ubah bentuk plastik di sekitar retak berada pada tahap yang paling minimum. Tinjauan kepustakaan ini dijalankan secara berasingan mengikut jenis beban yang dikenakan ke atas bar iaitu daya tegangan, momen lentur dan momen kilas.

2.7.1 Faktor Keamatan Tegasan Daya Tegangan

Rajah 2.8 menunjukkan bar berbentuk silinder yang dikenakan daya tegangan. Retak permukaan adalah terletak di tengah-tengah bar dengan kedalaman dan bentuk retak yang tertentu.

Rajah 2.8 Bar silinder padu yang mengandungi retak dikenakan daya tegangan Dalam menganalisis kelakuan retak berkenaan, SIF ditentukan di sepanjang retak depan retak dan analisis unsur terhingga digunakan untuk tujuan tersebut. Kebiasaanya, SIF dinormalkan untuk mendapatkan SIF yang umum seperti berikut

, , I a I a a K F a    (2.19) P P a D

21

yang mana, FI,a ialah SIF ternormal daya tegangan, KI,a ialah faktor keamatan tegasan kenaan daya tegangan, a ialah kedalaman retak dan a ialah tegasan tegangan yang diberikan seperti berikut

2 4 a P D    (2.20)

yang mana, P ialah daya tegangan yang digunakan dan D ialah garis pusat bar. Pada peringkat awal analisis, retak diandaikan berbentuk lurus (Daoud et al. 1978; Bush 1981; Carpinteri 1992a; Carpinteri 1992b) atau pun berbentuk lengkungan bulat (Daoud & Cartwright 1985; Raju & Newman 1981; Newman & Raju 1979; Raju & Newman 1982; Raju & Newman 1986). Andaian bentuk retak tersebut adalah tidak selari dengan bentuk retak yang diperhatikan daripada ujikaji seperti dalam Rajah 2.9, Rajah 2.10 dan Rajah 2.11. Ini seterusnya menyumbang kepada ketidaktepatan penyelesaian terhadap SIF. Semenjak 30 tahun lalu, masalah yang berkaitan dengan bentuk retak diselesaikan dengan pengenalan kepada lengkungan semi elips untuk memodelkan bentuk retak (Athanassiadis et al. 1981; Astiz 1986; Shiratori et al. 1992; Murakami & Tsuru 1987; Caspers et al. 1990; Carpinteri 1992b; Carpinteri & Brighenti 1996; Couroneau & Royer 1998; Shih & Chen 2002; Shin & Cai 2004).

Carpinteri & Vantadori (2009) kemudiannya mengandaikan bentuk model retak diandaikan seperti Rajah 2.12 untuk dimodelkan seperti dalam pemerhatian eksperimen. Manakala, model retak juga diberikan oleh Shih & Chen (2002) dan Findley et al. (2007) seperti dalam Rajah 2.13. Penyelesaian SIF daripada tinjauan kepustakaan ini menunjukkan untuk retak permukaan dalam rod berbentuk silinder mempunyai beberapa kekurangan. Sebagai contoh, SIF hanya terhad pada titik terdalam retak sahaja dan juga terhad kepada beberapa nisbah bidang retak, a/b dan kedalaman relatif retak, a/D (Daoud & Cartwright 1985; Wilhem et al. 1982; Murakami & Tsuru 1987; Couroneau & Royer 1998; Carpinteri et al. 2000; Iranpour & Taheri 2006; Lin & Smith 1998; Lin & Smith 1999).

22

(a) (b)

Rajah 2.9 Mekanisme kegagalan lesu bar, (a) retak semi-elips sebagai permulaan retak dan (b) perambatan retak yang bermula daripada permukaan yang licin

Sumber: Shin & Chai 2004; Findley et al. 2007

(a) (b)

Rajah 2.10 Mekanisme perambatan retak lesu yang bernisbah bidang retak besar dari satu untuk dua jenis tempat permulaan retak, (a) retak bermula di permukaan luar dan (b) retak bermula pada bawah permukaan

Sumber: Findley et al. 2007

23

(a) (b)

Rajah 2.11 Permukaan patah (a) bar silinder padu dan (c) plat kenaan momen lentur Sumber: Luke et al. 2011; Liu et al. 2010

Rajah 2.12 Bentuk andaian retak, (a) depan lurus dan (b) semi elips Sumber: Carpinteri & Vantadori 2009

24

(a) (b)

Rajah 2.13 Pencirian keratan rentas bar bulat sesatah dengan retak permukaan. (a) retak berbentuk semi-elips dan (b) retak berbentuk depan lurus

Sumber: Shih & Chen 2002; Findley et al. 2007

Tinjauan perkembangan terkini SIF kenaan daya tegangan pada bar berbentuk silinder padu dengan retak permukaan (Toribio et al. 2009a; Toribio et al. 2009b) menunjukkan yang nisbah bidang retak, a/b yang digunakan adalah dalam julat di antara 0.0 hingga 1.0. Dengan perkembangan kemajuan teknologi bahan terkini, bentuk retak dalam julat berkenaan perlu dipertimbangkan semula. Ini adalah kerana berdasarkan kepada pemerhatian ujikaji menunjukkan yang a/b > 1.0 boleh terjadi. Ini adalah salah satu daripada faktor motivasi dalam menjalankan penyelidikan ini seperti dalam Rajah 2.10 dan Rajah 2.14.

Sebagai perbandingan, Rajah 2.15 masing-masing menunjukkan SIF kenaan daya tegangan untuk retak depan lurus dan semi-elips. Untuk retak depan lurus (a/b = 0.0), menunjukkan yang SIF adalah bertepatan di antara satu sama lain sehingga a/D = 0.3. Jika a/D > 0.3, kebanyakan SIF semakin mencapah dan menjauhi di antara satu sama lain. Perbezaan yang lebih ketara berlaku untuk SIF yang didapati daripada Levan & Royer (1993). Manakala, retak berbentuk semi-elips (a/b = 0.5) juga menunjukkan kelakuan yang sama. Ia juga menunjukkan yang Levan & Royer (1993) memberikan keputusan yang lebih tinggi dan Shin & Cai (2004) pula memberikan keputusan yang lebih rendah. Contoh model unsur terhingga yang dikenakan daya tegangan ditunjukan dalam Rajah 2.16.

RUJUKAN

Ainsworth, R.A. 1984. The assessment of defects in structures of strain hardening material. Engineering Fracture Mechanics 19:633-42.

Anderson, T.L. & Glinka, G. 2006. A closed-form method for integrating weight functions for part-through cracks subject to Mode I loading. Engineering

Fracture Mechanics 73(15):2153-2165.

Anderson, T.L. 2005. Fracture mechanics: fundamentals and applications. Ed. ke-3. Boca Raton (FL): Taylor & Francis.

Astiz, M.A. 1986. An incompatible singular elastic element for two- and three-dimensional crack problems. International Journal of Fracture 31:105-124. Athanassiadis, A., Boissenot, J.M., Brevet, P., Francois, D. & Raharinaivo, A. 1981.

Linear elastic fracture mechanics computations of cracked cylindrical tensioned bodies. International Journal of Fracture 17:553-566.

Barsoum, R.S. 1976. On the use of isoparametric finite elements in linear fracture mechanics. International Journal for Numerical Methods in Engineering 10:551-564.

Barsoum, R.S. 1977. Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements. International Journal for Numerical Methods in

Engineering 11:85-98.

Bazant, Z.P. & Estenssoro, L.F. 1979. Surface singularoty and crack propagation.

International Journal of Solids and Structures 15(5):405-426.

Benhamena, A., Aminallah, L., Bachir Bouiadjra, B., Benguediab, M., Amrouche, A. & Benseddiq, N. 2011. J integral solution for semi-elliptical surface crack in high density poly-ethylene pipi under bending. Materials & Design 32(5):2561-2569.

Benthem, J.P. 1977. State of stress at the certex of a quarter-infinite crack in a half-space. International Journal and Structures 13:479-492.

Bush, J. 1981. Stress intensity factors for single-edge-crack solid and hollow round bars loaded in tension. Journal of Testing and Evaluation 9, 216-223.

Branco, R., Antunes, F.V., Ricardo, L.C.H. & Costa, J.D. 2012. Extent of surface regions near corner points of notched cracked bodies subjected to mode-I loadings. Finite Elements in Analysing and Design 50:147-160.

Cai, C.Q. & Shin, C.S. 2004. A discussion on the stress intensity factor study of an elliptical cracked shaft by Shih, Y.S. and Chen, J.J. Nuclear Engineering and

240

Carpinteri, A. & Brighenti, R. 1996. Part-through cracks in round bars under cyclic combined axial and bending loading. International Journal of Fatigue 18(1):33-39.

Carpinteri, A. & Brighenti, R. 1998. Circumferential surface flaws in pipes under cyclic axial loading. Engineering Fracture Mechanics 60(4):383-96.

Carpinteri, A. & Brighenti, R. 2000. A three-parameter model for fatigue behaviour of circumferential surface flaws in pipes. International of Mechanical Science 42:1255-1324.

Carpinteri, A. & Vantadori, S. 2009. Sickle-shaped cracks in metallic round bars under cyclic eccentric axial loading. International Journal of Fatigue 31:759-765.

Carpinteri, A. 1992a. Stress intensity factors for straight-fronted edge cracks in round bars. Engineering Fracture Mechanics 42:1035-1040.

Carpinteri, A. 1992b. Elliptical-arc surface cracks in round bars. Fatigue and Fracture

of Engineering Materials and Structures 15:1141-1153.

Carpinteri, A., Brighenti R. & Spagnoli, A. 1998. Part-through cracks in pipes under cyclic bending. Nuclear Engineering and Design 185:1-10.

Carpinteri, A., Brighenti, R. & Spagnoli, A. 2000. Fatigue growth simulation of part-through flaws in thick-walled pipes under rotary bending. International

Journal of Fatigue 22:1-9.

Carpinteri, A., Brighenti, R. & Vantadori, S. 2006. Surface cracks in notched round bars under cyclic tension and bending. International Journal of Fatigue 28:251-260.

Caspers, M., Mattheck, C. & Munz, D. 1990. Propagation of surface cracks in notched and unnotched rods. Dlm. Reuter, W.G., Underwood, J.H. & Newman, J.C. (pynt.). Surface-Crack Growth: Models, Experiments, and Structures, hlm. 365-389. Philadelphia, PA: American Society for Testing and Materials. Chakraborty, A. & Rahman, S. 2008. Stochastic multiscale models for fracture

analysis of functionally graded materials. Engineering Fracture Mechanics 75:2062-2086.

Chang, E. & Dover, W.D. 2005. Weight function and stress intensity factor for a semi-elliptical surface saddle crack in a tubular welded joint. The Journal of Strain

Analysis for Engineering Design 40(4):301-326

Choi, S.K., Grandhi, R.V. & Canfield, R.A. 2007. Reliability-based structural design. London: Springer-Verlag.

241

Couroneau, N. & Royer, J. 1998. Simplified model for the fatigue growth analysis of surface cracks in round bars under mode I. International Journal of Fatigue 10:711–718.

Courtin, S., Gardin, C., Bézine, G. & Hamouda H.B.G. 2005. Advantages of the J-integral approach for calculating stress intensity factors when using the commercial finite element software ABAQUS. Engineering Fracture

Mechanics 72(14):2174-2185.

Daoud, O.E.K. & Cartwright, D.J. 1985. Strain energy release rate for a circular-arc edge crack in a bar under tension or bending. Journal of Strain Analysis 20:53-58

Daoud, O.E.K., Cartwright, D.J. & Carney, M. 1978. Strain-energy release rate for a single edge-cracked circular bar in tension. Journal of Strain Analysis 13:83-89.

Der Kiureghian, A., Haukaas, T. & Fujimura, K. 2006. Structural reliability software at the University of California, Berkeley. Structural Safety 28:44-67.

Dowling, N.E. 2006. Mechanical behaviour of materials: Engineering methods for

deformation, fracture and fatigue. Ed. ke-3. New Jersey: Pearson Prentice

Hall.

Easley, S.K., Saikat, P., Tomaszewski, P.R., Petrella, A.J., Rullkoetter, P.J. & Laz, P.J. 2007. Finite element-based probabilistic analysis tool for orthopaedic applications. Computer Methods and Programs in Biomedicine 85:32-40. Fillery, B.P. & Hu, X.Z. 2012. Complience based assessment of stress intensity factor

in cracked hollow cylinders with finite boundary restraint: Application to thermal shock part II. Engineering Fracture Mechanics 79:18-35.

Findley, K.O., Koh S.W. & Saxena, A. 2007. J-integral expressions for semi-elliptical cracks in round bars. International Journal of Fatigue 29:822-828.

Fonte, M.A. & Freitas, M.M. 1994. Fatigue crack growth under rotating bending and steady torsion. Proceedings of 4th International Conference on Biaxial/ Multiaxial Fatigue, hlm. 159-70.

Fonte, M.A. & Freitas, M.M. 1997. Semi-elliptical crack growth under rotating or reversed bending combined with steady torsion. Fatigue and Fracture of

Engineering Materials and Structures 20(6):895-906.

Fonte, M.A. & Freitas, M.M. 1999. Stress Intensity Factors for semi-elliptical surface cracks in round bars under bending and torsion. International Journal of

Fatigue 21:457-463.

Fonte, M.D., Reis, L., Romeiro, F., Li, B. & Freitas, M. 2006. The effect of steady torsion on fatigue crack growth in shafts. International Journal of Fatigue 28:609-617.

242

Francis, M. & Rahman, S. 2000. Probabilistic analysis of weld cracks in center-cracked tension specimens. Computers and Structures 76:483-506.

Freitas, M.D., Reis, L., Fonte, M.D. & Li, B. 2011. Effect of steady torsion on fatigue crack initiation and propagation under rotating bending: Multiaxial fatigue and mixed-mode cracking. Engineering Fracture Mechanics 78:826-835.

Freitas, M.M. & Francois, D. 1995. Analysis of fatigue crack growth in rotary bend specimens and railway axles. Fatigue and Fracture of Engineering Materials

and Structures 18:171-179.

Fuchs, H.O. & Stephans, I. 1980. Metal fatigue in engineering. New York: John Wiley & Sons.

Gao, Z., Cai, G., Liang, L. & Lei, Y. 2008. Limit load solutions of thick-walled cylinders with fully circumferential cracks under combined internal pressure and axial tension. Nuclear Engineering and Design 238(9):2155-2164.

Glodez, S., Sraml, M., & Kramberger, J. 2002. A computational model for determination of service life of gears. International Journal of Fatigue 24:1013-1020.

Gollwitzer, S., Kirchgäßner, B., Fischer, R. & Rackwitz, R. 2006. PERMAS-RA/STRUREL system of programs for probabilistic reliability analysis.

Structural Safety 28(1-2):108-129.

Gray, G.T., Thompson, A.W. & William, J.C., 1985. Influence of microstructure on fatigue crack initiation in fully pearlitic steels. Metallurgical Transaction A 16:753-760.

Guinea, G.V., Planas J., & Elices, M. 2000. KI evaluation by the displacement extrapolation technique. Engineering Fracture Mechanics 66(3):243-255. Hartranft, R.J. & Sih, G.C. 1973. Alternating method applied to edge and surface

crack problems. Dordrecht: Noordhoff International Publishing.

He, M.Y. & Hutchinson, J.W. 2000. Surface crack subject to mixed mode loading.

Engineering Fracture Mechanics 65(1):1-14.

Henshell, R.D. & Shaw, K.G. 1975. Crack tip finite elements are unnecessary.

International Journal for Numerical Methods in Engineering 9:495-507.

Hutchinson, J.W. 1968. Singular behaviour at the end of a tensile crack in hardening materials. Journal of Mechanics and Physics of Solids 16:13-31.

Iannitti, G., Bonora, N. & Gentile, D. 2012. Assessment of an engineering approach to the evaluation of the cod of off-centered crack in pipes under bending for LBB design. Engineering Fracture Mechanics 81:69-79.

243

Iranpour, M. & Taheri, F. 2006. A study on crack front shape and the correlation between the stress intensity factors of a pipe subject to bending and a plate subject to tension. Marine Structures 19:193-216.

James, L.A. & Mills, W.J. 1988. Review and synthesis of stress intensity factor solutions applicable to cracks in bolts. Engineering Fracture Mechanics 30:641-54.

Kabo, E. 2002. Material defect in rolling contact defects - influence of overload and defect cluster. International Journal of Fatigue 24(8):887-894.

Kermanidis, T.B. & Mavrothanasis, F.I. 1995. Calculation of mode III stress intensity factor by BEM for cracked axisymmetric bodies. Computational Mechanics 16(2):124-131.

Kim, N.H., Oh, C.S., Kim, Y.J., Kim, J.S., Jerng D.W. & Budden, P.J. 2011. Limit loads and fracture mechanics parameters for thick-walled pipes. International

Journal of Pressure Vessels and Piping 88(10):403-414.

Kim, Y.J. & Budden, P.J. 2002. Reference Stress Approximations for J and COD of Circumferential Through-Wall Cracked Pipes. International Journal of

Fracture 116(3):195-218.

Kim, Y.J. & Shim, D.J. 2005. Relevance of plastic limit loads to reference stress approach for surface cracked cylinder problems International Journal of

Pressure Vessels and Piping 82:687-699.

Kim, Y.J., Huh, N.S., Park, Y.J. & Kim, Y.J. 2002. Elastic-plastic J and COD estimates for axial through-wall cracked pipes. International Journal of

Pressure Vessels and Piping 79(6):451-464.

Kim, Y.J., Song, T.K., Kim, J.S. & Jin, T.E. 2007. Limit loads and approximate J estimates for axial through-wall cracked pipe bends. International Journal of

Fracture 146(4):249-264.

Kumar, V., German, M.D. & Shih, C.F. 1981. An engineering approach for elastic–

plastic fracture analysis. EPRI NP-1931, Project 1237.

Laham, S.A. 1998. Stress intensity factor and limit load handbook. British Energy Generation. SINTAP Issue 2.

Lei, Y. 2004a. J-integral and limit load analysis of semi-elliptical surface cracks in plates under combined tension and bending. International Journal of Pressure

Vessels Piping 81(1):31-41.

Lei, Y. 2004b. J-integral and limit load analysis of semi-elliptical surface cracks in plates under bending. International Journal of Pressure Vessels and Piping 81(1):31-41.

244

Lei, Y. 2004c. J-integral and limit load analysis of semi-elliptical surface cracks in plates under tension. International Journal of Pressure Vessels and Piping 81(1):21-30.

Lei, Y. 2007. Use of local and global limit load solutions for plates with surface cracks under tension. International Journal of Pressure Vessels and Piping 84:545-559.

Lei, Y. 2008. A review of limit load solutions for cylinders with axial cracks and development of new solutions. International Journal of Pressure Vessels and

Piping 8:825-850.

Lei, Y. & Budden, P.J. 2004a. Limit load solutions for plates with embedded cracks under combined tension and bending. International Journal of Pressure

Vessels and Piping 81:589-597.

Lei, Y. & Budden, P.J. 2004b. Limit load solutions for thin-walled cylinders with circumferential cracks under combined internal pressure, axial tension and bending. Journal of Strain Analysis 39(6):673-683.

Lei, Y. & Fox, M.J.H. 2011. A global limit load solution for plates with surface cracks under combined end force and cross thickness bending. International Journal

of Pressure Vessels and Piping 88(8-9):348-355.

Levan, A. & Royer, J. 1993. Part-circular surface cracks in round bars under tension, bending and twisting. International Journal of Fracture 61:71-99.

Lin, X.B. & Smith, R.A. 1998. Fatigue growth simulation for cracks in notched and unnotched round bars. International Journal of Mechanical Science 40:405-424.

Lin, X.B. & Smith, R.A. 1999. Shape evolution of surface cracks in fatigued round bars with a semicircular circumferential notch. International Journal of

Fatigue 21:965-973.

Liu, Y. 2006. Stochastic modeling of multiaxial fatigue and fracture. Disertasi Ph.D. Vandebilt University, Tennessee.

Liu, Y.P., Chen, C.Y., Li, G.Q. & Li, J.B. 2010. Fatigue life prediction of semi-elliptical surface crack in 14MnNbq bridge steel. Engineering Failure Analysis 17:1413-1423.

Livieri, P. & Segala, F. 2012. Evaluation of stress intensity factors from elliptical notches under mixed mode loadings. Engineering Fracture Mechanics 81:110-119.

Luke, M., Varfolomeev, I., Lütkepohl, K. & Esderts, A. 2011. Fatigue crack growth in railway axles: Assessment concept and validation tests. Engineering Fracture

245

Madia, M., Beretta, S., Schodel, M., Zerbst, U., Luke, M. & Varfolomeev, I. 2011. Stress intensity factor solutions for cracks in railway axles. Engineering

Fracture Mechanics 78(5):764-792.

Mahmoud, K.M. 2007. Fracture strength for a high strength steel bridge cable wire with a surface crack. Theoretical and Applied Fracture Mechanics 48:152-160. Miller, A.G. 1988. Review of limit loads of structures containing defects.

International Journal of Pressure Vessels and Piping 32:191-327.

Millwater, H.R. Wu, Y.T., Cardinal, J.W. & Chell, G.G. 1996. Application of Advanced Probabilistic Fracture Mechanics to Life Evaluation of Turbine Rotor Blade Attachments. Journal of Engineering for Gas Turbines and Power 118:394-398.

Murakami, Y. & Tsuru, H. 1987. Stress-Intensity factor equations for semi-elliptical

surface crack in a shaft under bending, Stress Intensity Factors Handbook.

Oxford: Pergamon Press, hlm. 657-658.

Murakami, Y., Takada, M. & Toriyama, T. 1998. Super-long life tension–compression fatigue properties of quenched and tempered 0.46% carbon steel. International

Journal of Fatigue 20(9):661-667.

Myeong, M.S., Kim, Y.J. & Budden, P.J. 2011. Plastic limit loads for cracked large bore branch junction. Engineering Fracture Mechanics 78(11):2298-2309. Myeong, M.S., Kim, Y.J. & Budden, P.J. 2012. Limit load interaction of cracked

branch junctions under combined pressure and bending. Engineering Fracture

Mechanics 86:1-12.

Nakajima, M., Tokaji, K., Itoga, H. & Shimizu, T. 2010. Effect of loading condition on very high cycle fatigue behavior in a high strength steel. International

Journal of Fatigue 32(2):475-480

Newman, J.C. & Raju, I.S. 1981. An empirical stress-intensity factor equation for the surface crack. Engineering Fracture Mechanics 15(1-2):185-92.

Newman, Jr. J.C. 1979. A review and assessment of the stress-intensity factors for surface cracks. Dlm. Chang, J.B. (pynt.). Part-through crack fatigue life

prediction, hlm. 16-42. Philadelphia PA: American Society for Testing and

Materials.

Onkar, A.K., Upadhyay, C.S. & Yadav, D. 2007. Stochastic finite element buckling analysis of laminated plates with circular cut out under uniaxial compression.

Journal of Applied Mechanics 74(4):798-809.

Parks, D.M. 1977. The virtual crack extension method for nonlinear material behavior. Computer Methods in Applied Mechanics and Engineering 12:353-364.

246

Park, S., Yoo, S.S., Min, J.K., Koo, J.M. & Seok, C.S. 2012. Evaluation of fracture toughness characteristics for nuclear piping using various types of specimens.

International Journal of Pressure Vessels and Piping 90-91:9-16.

Pook, L.P. 1992. A note on corner point singularities. International Journal of Fatigue 53:3-8.

Pook, L.P. 2007. Metal fatigue: what it is, why it matters. The Netherlands: Springer. Proppe, C., Schueller, G.I., Hartl, J. & Kargl, H. 2002. Probabilistic design of

mechanical components. Structural Safety 24:363-376.

Qian, J. & Fatemi, A. 1996. Mixed mode fatigue crack growth: A literature survey.

Engineering Fracture Mechanics 55:969-990.

Rackwitz, R. 2001. Reliability analysis - a review and some perspectives. Structural

Safety 23:365-395.

Rahman, S. & Brust, F. 1992. Elastic-plastic fracture of circumferential through-wall cracked pipe welds subject to bending. International Journal of Pressure

Vessel Technology 114:410-416.

Rahman, S. & Rao, B.N. 2006. A mode decoupling continuum shape sensitivity method for fracture analysis of functionally graded materials. Computer

Methods in Applied Mechanics and Engineering 195:5962-5982.

Rahman, S. 1995. A stochastic model for elastic-plastic fracture analysis of circumferential through-wall-cracked pipes subject to bending. Fracture

Mechanics 52(2):265-288.

Rahman, S. 1997. Probabilistic fracture analysis of cracked pipes with circumferential flaws. International Journal of Pressure Vessel Technology 70:233-236. Rahman, S. 2000. Probabilistic elastic-plastic fracture analysis of circumferentially

cracked pipes with finite-length surface flaws. Nuclear Engineering and

Design 195:239-260.

Rahman, S. 2001. Probabilistic fracture mechanics: J-estimation and finite element methods. Engineering Fracture Mechanics 68:107-125.

Rahman, S. 2006. A dimensional decomposition method for stochastic fracture mechanics. Engineering Fracture Mechanics 73:2093-2109.

Rahman, S., Chen, G. & Firmature, R. 2000. Probabilistic analysis of off-center cracks in cylindrical structures. International Journal of Pressure Vessel Technology 77:3-16.

Raju, I.S. & Newman, J.C. 1982. Stress-intensity factor for internal and external surface cracks in cylindrical vessels. International Journal of Pressure Vessels

247

Raju, I.S. & Newman, J.C. 1986. Stress intensity factors for circumferential surface cracks in pipes and rods under tension and bending loads. Fracture Mechanics 17:89-805.

Rao, B.N. & Rahman, S. 2005. A continuum shape sensitivity method for fracture analysis of orthotropic functionally graded materials. Mechanics of Materials 37:1007-1025.

Rice, J.R. 1968. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics 35:379-386.

Rice, J.R. & Rosengren, G.F. 1968. Plane strain deformation near a crack tip in a power law hardening material. Journal of the Mechanics and Physics of Solids 16:1-12.

Riha, D.S., Thacker, B.H., Hall, D.A., Auel, T.R. & Pritchard, S.D. 2001. Capabilities and applications of probabilistic methods in finite element analysis.

International Journal of Materials and Product Technology 16(4/5):358-369.

Riha, D.S., Thacker, B.H., Huyse, L.J., Enright, M.P., Waldhart, C.J. Francis, W.L., Nicolella, D.P., Hudak, S.J., Liang, W. & Fitch, S.H.K. 2008. Applications of reliability assessment for aerospace, automotive, bioengineering and weapon systems. Dlm. Efstratios Nikolaidis, Dan M. Ghiocel, & Suren Singhal (pynt.).

Engineering Design Reliability Applications: For the Aerospace, Automotive and Ship Industries, hlm. 1-13. Tylor & Francis Group.

Ruggieri, C. 2011. Comparison between fully-plastic solutions and the reference stress approach to evaluate J in circumferentially cracked pipes under bending.

Procedia Engineering 10:1703-1708.

Ruggieri, C. 2012. Further results in J and CTOD estimation procedures for SE(T) fracture specimens – Part I: Homogeneous materials. Engineering Fracture

Mechanics 79:245-265.

Sandvik, A., Ostby, E. & Thaulow, C. 2006. Probabilistic fracture assessment of surface cracked pipes using strain-based approach. Engineering Fracture

Mechanics 73:1491-1509.

Saxena, S. 2011. Assessing the accuracy of fatigue life in surface-cracked straight

Dokumen terkait