6.12. Diskusi
6.12.4. FANOVA and the linear model
Regresi linear fungsional dan FANOVA menunjukkan tidak ada hasil yang signifikan dari 20° dan 40° zenith sudut. Hal ini menunjukkan bahwa untuk memprediksi tren di tanah spektral reflektansi menggunakan ANOVA konvensional akan menaksir terlalu tinggi pentingnya nilai. Namun, di zenith 60° sudut perbedaan yang signifikan antara sudut zenith dan Azimut dan reflektansi spektral sampel tanah jelas (gambar 6.21).
Model linear fungsional sampel tanah menunjukkan efek Azimut sudut pada spektrum reflektansi. Azimut sudut di balik matahari penerangan arah memiliki korelasi negatif ke arah matahari, ketika menghadapi target. Bagian dari spektrum yang terletak di 400-450 nm memiliki korelasi positif ke arah maju. Kebanyakan sudut Azimut, maju, mundur, dan di belakang matahari, memiliki koefisien regresi linear di bawah 0, korelasi
106 negatif fungsional, kecuali zenith 40 ° di Azimut 90 °.
Hasil FANOVA gelombang dasar analisis menunjukkan bahwa ada perbedaan yang signifikan terjadi pada 20° zenith, tetapi ada perbedaan yang signifikan untuk sudut zenith 40° dan 60°. Hal ini jelas bahwa sudut zenith 20° tidak mempengaruhi reflektansi spektrum. Hasil ini bertentangan dengan tes ANOVA konvensional bahwa semua sudut Azimut menunjukkan perbedaan yang signifikan.
Hasil fungsional linier pemodelan menggunakan fungsi-fungsi dasar sudut Azimut menunjukkan bahwa ada tidak ada perbedaan yang signifikan antara hijau, merah dan NIR reflektansi dan sensor yang berbeda zenith dan Azimut sudut ketika memperoleh tanah spektrum. Namun, reflektansi spektral Azimut 90° dan 270° dan sudut zenith 20°
memiliki nilai tinggi reflektansi dibandingkan dengan sudut yang lain Azimut. Azimut 180° memiliki nilai tertinggi dibandingkan dengan sudut Azimut yang lain di sudut zenith ini di zenith 40°. Hasil FANOVA bertentangan dengan ANOVA konvensional, mana sudut Azimut dan zenith terpengaruh secara signifikan reflektansi spektral tanah.
Masih ada sejumlah besar mendasar pembangunan harus dilakukan di daerah analisis regresi fungsional (Ramsay & Dalzell 1991). Prosedur inferential yang disajikan di sini tentatif. Penyelidikan lebih teoritis, terutama untuk multi - sudut data, akan bermanfaat bagi masa depan aplikasi dalam analisis data hyperspectral. Seperti dibahas lebih khusus lagi pada Ramsay & Dalzell (1991), beberapa struktur parametrik perlu dikenakan pada model. Model linear fungsional juga dapat digunakan sebagai analisis eksplorasi sebagai pendahuluan untuk analisis parametrik data hyperspectral.
Perlu dicatat bahwa hasil yang berbeda antara analisis multivariat konvensional dan FDA berhubungan dengan asumsi-asumsi, kesalahan, dan variabel independen dalam data. Sebagai contoh, statistika multivariat konvensional menganggap kesalahan independen untuk setiap titik data mana kesalahan harus membatalkan keluar di setiap analisis, menghasilkan hasil yang tidak bias. Namun, independensi tidak mungkin untuk hyperspectral data. Di FDA, kesalahan tidak diperlakukan sebagai independen. Hal ini penting untuk dicatat bahwa akurasi hasil analisis spektral tidak hanya ditentukan oleh kesalahan (yaitu, kesalahan sisa dari fungsi dasar yang berbeda) tapi juga sumber-sumber lain. Misalnya, contoh pengobatan, pengukuran dan bebas-respon: istilah yang digunakan secara umum Statistik sastra untuk menunjukkan situasi dimana untuk
107 beberapa alasan tidak ada data dapat diperoleh dari sampel elemen (de Gruijter tahun 1999). Dalam sampling tanah, hal ini terjadi ketika titik di bidang tidak dapat mengunjungi atau diverifikasi atau ketika itu imposs.
6,13, Rangkuman
Hyperspectral multi sudut tanah data telah dianalisis dalam bab ini dalam rasa multivarian konvensional dan menggunakan FDA. Perbedaan yang signifikan ditemukan antara Azimut dan zenith sudut menggunakan statistika multivariat konvensional.
Pearson produk-saat korelasi antara sudut Azimut menunjukkan korelasi positif antara Azimut sudut untuk sampel tanah. Distribusi nilai korelasi untuk soil1 bervariasi antara zenith sudut dan sudut Azimut. Korelasi antara soil2 Azimut sudut tinggi. Pearson korelasi analisis menunjukkan bahwa sudut Azimut memiliki dampak pada tanah spektral reflektansi.
Penggunaan fungsi dasar yang berbeda mempengaruhi cocok fungsi spektral kurva yang Diperoleh dari posisi delapan-Azimut sudut. 20-dasar fungsi adalah paling cocok untuk spektrum sampel tanah. Ada batasan penggunaan Azimut sudut dasar fungsi karena sampel data terbatas, seperti jumlah azimuths terlalu kecil untuk fiit fungsi dasar.
Hasil fPCA telah menunjukkan bahwa lebih dari 92% dari varians muncul dalam fPCA pertama untuk panjang gelombang dasar analisis, dan lebih dari 81% untuk Azimut dasar analisis. Varians terjadi sepanjang panjang gelombang dan sudut Azimut.
Ada tidak ada perbedaan yang signifikan antara azimuths ketika dinilai menggunakan FANOVA untuk semua sampel tanah, kecuali zenith 60 ° dari soil3.
Implikasi dari analisis ini arah SPEKTRA tanah adalah bahwa data reflektansi spektral yang dapat dianggap sebagai fungsi. Oleh pemodelan dalam pendekatan fungsional, smoothing, prediksi dan analisis data sederhana. Ada hanya sejumlah sangat kecil dari informasi tambahan yang disediakan oleh multi sudut pengukuran dalam kisaran Azimut dan sudut zenith dinilai.
108
APENDIKS
109
REFERENSI
Abuelgasim, A. A., Gopal, S., Irons, J. & Strahler, A. H. (1996). Classification of ASAS multiangle and multispectral measurements using artificial neural network.
Remote Sensing of Environment, 57, 79-87.
Adam, J. B., Sabol, D. E., Kapos, V., Filho, R. A., Roberts, D. A., Smith, M. O. & Gillespie, A. R. (1995). Classification of multispectral images based on fractions of endmembers: application to land-cover change in Brazilian Amazon. Remote Sensing of Environment, 52, 137-145.
Ahlrichs, J. S. & Bauer, M. E. (1983). Relation of agronomic and multi-spectral reflectance characteristics of spring wheat canopies. Agronomy Journal, 75, 987-993.
Ahn, C. W., Baumgardner, M. F. & Biehl, L. L. (1999). Delineation of soil variability using geostatistics and fuzzy clustering analysis of hyperspectral data. Soil Science of America Journal, 63, 142-150.
Aparicio, N., Villegas, D., Royo, C., Casadesus, J. & Araus, J. L. (2004). Effect of sensor view angle on the assessment of agronomic trait by ground level hyperspectral reflectance measurements in durum wheat under contrasting Mediterranean conditions. International Journal of Remote Sensing, 25, 1131- 1152.
Asd (1999). Analytical Spectral Devices, Inc (ASD). Technical Guide, 3rd edn.
Asner, G. P. (1998). Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment, 64, 234-253.
Asner, G. P. (2000). Contributions of multi-view angle remote sensing to land surface and biochemical research. Remote Sensing Reviews, 18, 137-162.
Bach, H. & Mauser, W. (1997), Improvement of plant parameter estimations with hyperspectral data compared to multispectral data: Remote Sensing of Vegetation and Sea, Proceedings of SPIE 2959, p. 59-67.
Bach, H., Begiebing, S., Waldmann, D. & Rowotzki, B. (2005), Analyses of hyperspectral and directional data for agricultural monitoring using the canopy reflectance model SLC progress in the Upper Rhine valley and Baasdorf testsites:
Proceedings of 3rd ESA CHRIS/Proba Workshop, p. CD-ROM.
Baret, F. & Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 35, 161- 173. 280
Barnes, E. M. & Baker, M. G. (2000). Multispectral data for mapping texture: Possibilities and limitation. Applied Engineering Agriculture, 16, 731-741.
Barnsley, M. J. (1994), Environmental monitoring using multi-view-angle (MVA) remotely-sensed data. In G. Foody, &P. J. Curran (Eds) Environmental remote sensing from global to regional scale (pp. 181-201).Chichester: John Wiley & Sons.
Barnsley, M. J., Allison, D. & Lewis, P. (1997a). On the information content of multiple view angle (MVA) images. International Journal of Remote Sensing, 18, 1937-1960.
Barnsley, M. J., Lewis, M., Sutherland, M. & Muller, J. (1997b). Estimating land surface albedo in the HAPEX-Sahel southern super-site: Inversion of two BRDF models against multiple angle ASAS images. Journal of Hydrology, 189, 749- 778.
110 Barnsley, M. J., Lewis, P., O'dwyer, S., Disney, M. I., Hobson, P., Cutter, M. & Lobb, D.
A. (2000). On the potential of CHRIS/Proba for estimating vegetation canopy properties from space. Remote Sensing Reviews, 19, 171-189. Barnsley, M.
J., Settle, J., Cutter, M., Lobb, D. R. & Teston, F. (2004). The PROBA/CHRIS Mission : a low cost smallsat for hyperspectral, multi-angle observation of the Earth surface and atmosphere. IEEE Transactions on Geoscience and Remote Sensing, 42, 1512-1520.
Bauman, B. A. M. (1992). Linking physical remote sensing models with crop growth simulation models applied for sugarbeat. International Journal of Remote Sensing, 14, 2565-2581.
Baumgardner, M. F., Silva, L. F., Biehl, L. L. & Stoner, E. R. (1995). Reflectance properties of soils. Advanced Agronomy, 38, 1-43.
Bausch, W. C. & Duke, H. R. (1996). Remote sensing of plant nitrogen status in corn.
Transactions of ASAE, 39, 1869-1875.
Beale, P. (1998), Western Murray Valley yield lift project 1994 to 1998, NSW Agriculture and CSIRO.
Begiebing, S. & Bach, H. (2004), Analyses of hyperspectral and directional CHRIS data for agriculture monitoring using canopy reflectance model: Proceeding of the 2nd CHRIS/PROBA Workshop, p. CD-ROM.
Begue, A. (1993). Leaf area index, intercepted photosynthetic active radiation, and spectral vegetation indices: A sensitivity analysis for regular-clumped canopy.
Remote Sensing Environment, 46, 213-222.
Ben-Dor, E. & Banin, A. (1994). Visible and near-infrared (0.4-1.1 m) analysis of arid and semi arid soils. Remote Sensing of Environment, 48, 261-274.
Ben-Dor, E. & Levin, N. (2000). Determination of surface reflectance from raw hyperspectral data without simultaneous ground data measurement: a case study of the GER 63-channel sensor data acquired over Naan, Israel.
International Journal of Remote Sensing, 21, 2053-2074.
Ben-Dor, E. (2003), First evaluation of CHRIS data quality at Makhes Ramon Israel:
Proceedings of 1st ESA CHRIS/Proba Workshop.
Ben-Dor, E., Goldlshleger, N., Benyamini, Y., Agassi, M. & Blumberg, D. G. (2003).The spectral reflectance properties of soil structure crusts in the 1.2-to 2.5-um spectral region. Soil Science of America Journal, 67, 289-299.
Ben-Dor, E., Patkin, K., Banin, A. & Karnieli, A. (2002). Mapping of several soil properties using DAIS-hyperspectral scanner data- case study over clayey soils in Israel. International Journal of Remote Sensing, 23, 1043-1062.
Berk , A., Anderson, G. P., Acharya, P. K., Chetwynd, J. H., L.S., B., Shettle, E.
P.,Matthew, M. W. & Adler-Golden, S. M. (2000). MODTRAN4 Users Manual (Hanscom AFB, Massacusstae: Air Force Research Laboratory, Space Vehicles Directorate).
Besse, P., Cardot, H. & Ferraty, F. (1997). Simultaneous non-parametric regressions of unbalanced longitudinal data. Computational Statistic Data Analysis, 24, 255-270.
Bicheron, P. & Leroy, M. (in press). BRDF of major biomes observed from space. Journal of Geophysical Research.
111 Bicheron, P., Leroy, M. & Hautecoeur, O. (1997). Enhanced discrimination of borealforest covers with directional reflectance from airborne polarization and directionality of Earth reflectances (POLDER) instrument. Journal of Geophysical Research, 102, 29517-29528.
Blackburn, G. A. & Steele, C. M. (1999). Towards the remote sensing of matoral vegetation physiology: relationships between spectral reflectance, pigment, and biophysical characteristics of semiarid bushland canopy. Remote Sensing of Environment, 70, 278-292.
Blackburn, G. A. (1998). Spectral indices for estimating photosynthetic pigment concentration test using tree leaves. International Journal of Remote Sensing, 19, 657-675.
Boardman, J. W. & Kruse, F. A. (1994), Automated spectral analysis: A geological example using AVIRIS data, North Grapevine Mountains, Nevada: 10th Thematic conference on geological remote sensing.
Boardman, J. W. (1993), Automating spectral unmixing of AVIRIS data using convex geometry concepts: Proceedings of the Fourth Annual JPL Airborne Geoscience Workshop, p. 11-14.
Boardman, J. W. (1998), Post-ATREM polishing of AVIRIS apparent reflectance data using EFFORT: a lesson in accuracy versus precision: Summaries of the Seventh JPL Airborne Earth Science Workshop, p. 53.
Boardman, J. W., Kruse, F. A. & Green, R. O. (1995), Mapping target signatures via partial unmixing of AVIRIS data: Summaries, Fifth JPL Airborne Earth Science Workshop, p. 23-26.
Boente, G. & Fraimana, R. (2000). Kernel-based functional principal components.
Statistics & Probability Letters, 48, 335-345. Boochs, F., Docker, K. &
Kuhbauch, W. (1990). Shape red edge as vitality indicator for plants.
International Journal of Remote Sensing, 11, 1741-1753.
Bort, J., Casadesus, J., Araus, J. L., Grando, S. & Ceccareli, S. (2001), Spectral vegetation indices as non-destructive indicators of barley yield in Mediterranean rainfed conditions. In G. A. Slafer, J. L. Molina-Cano, R. Savin, J. L. Araus, &I. Romagosa (Eds) Barley Science: Recent advances from molecular biology to agronomy of yield and quality (pp. 339-360).New York Bosq, D. (1991), Modelization, non-parametric estimation and prediction for continuous
time processes. In G. Roussas (Eds) Nonparametric Functional Estimation and Related Topics (pp. 509-529)
Bousquet, L., Lache’Rade, S., Jacquemoud, S. & Moya, I. (2005). Leaf BRDF measurements and model for specular and diffuse components differentiation. Remote Sensing of Environment, 98, 201-211.
Breon, F. M., Vanderbilt, V., Leroy, M., Bicheron, P., Walthall, C. L. & Kalshoven, J. E.
(1997). Evidence of hot spot directional signature from airborne POLDER measurements. IEEE Transactions on Geoscience and Remote Sensing, 35, 479-484.
Broge, N. H. & Leblanc, E. (2000). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76, 156-172.
112 Bruegge, C. J., Helmlinger, M. C., Conel, J. E., Gaitley, B. J. & Abdou, W. A. (2000).
PARABOLA III: a sphere-scanning radiometer for field determination of surface anisotropic reflectance functions. Remote Sensing Reviews, 19, 75-94.
Camille, C., Lelong, D., Pinet, P. C. & Poilve, H. (1998). Hyperspectral imaging and stress mapping in agriculture : A case study on wheat in Beauce (France). Remote Sensing of Environment, 66, 179-191.
Campbell, J. B. (2002). Introduction to remote sensing (3rd ed.). The Guilford Press.
ISBN1-57230-640-8.
Cardot, H., Faivre, R. & Goulard, M. (2003a). Functional approaches for predicting land use with the temporal evolution of coarse resolution remote sensing. Journal of Applied Statistics, 30, 1185-1199.
Cardot, H., Ferraty, F. & Mas, A. (2003b). Testing hypotheses in functional linear model.
Scandinavian Journal of Statistics, 30, 241-255.
Cardot, H., Ferraty, F. & Sarda, P. (2003c). Spline estimators for the functional linear model. Statistica Sinica, 13, 571-591.
Carter, G. A. (1994). Ratio of leaf reflectance in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing, 15, 697-703.
Casa, R. & Jones, H. G. (2004). Retrieval of crop canopy properties: a comparison between model inversion from hyperspectral data and image classification.
International Journal of Remote Sensing, 25, 1119-1130.
Cavalli, R., L., F. & Pascucci, S. (2005), Comparative evaluation of MIVIS and Hyperion hyperspectral data (0.4-2.4 μm) on the Pollino National Park (Italy: 25th EARSel Symposium, Global Developments in Environmental Earth Observation from Space, p. CD-rom.
Chapelle, E. W., Kim, M. S. & Mcmurtrey, J. E. I. (1992). Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll multispectral scanner data. Photogrammetric Engineering and Remote Sensing, 42, 679-684.
Chen, J. M. & Cihlar, J. (1997). A hot spot function in a simple bidirectional reflectance model for satellite applications. Journal of Geophysical Research, 102, 25907- 25913.
Chooping, M. J. (2000). Testing a LiSK BRDF model with in situ bidirectional reflectance factor measurements over semiarid grassland. Remote Sensing of Environment, 74, 287-312.
Chooping, M. J., Rango, A., Havstad, K. M., Schiebe, F. R., Ritchie, J. C., Schmugge, T.
J., French, A. N., Su, L. H., Mckee, L. & Davis, M. R. (2003). Canopy attributes of desert grassland and transition communities derived from multiangular airborne imagery. Remote Sensing of Environment, 85, 339-354.
Cierniewski, J., Gdala, T. & Karnieli, A. (2004). A hemispherical–directional reflectance model as a tool for understanding image distinctions between cultivated and uncultivated bare surfaces. Remote Sensing of Environment, 90, 505-523.
Cierniewski, J., Verbrugghe, M. & Marlewski, A. (2002). Effect of farming works on soil surface bidirectional reflectance measurements and modelling. International Journal of Remote Sensing, 23, 1075-1094.
113 Clark, R. N. & Roush, T. L. (1984). Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 89, 6329-6340.
Clark, R. N. (1999), Spectroscopy of rocks and minerals, and principles of spectroscopy.
In A. N. Rencz (Eds) Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Science (pp. 3-58).New York: John Wiley
Clark, R. N., Swayze, G. A., Gallagher, A., King, T. V. V. & Calvin, W. M. (1993), The U.S.
Geological Survey Digital Spectral Library, Version 1: 0.2 to 3.0 m, U. S.
Geological Survey.
Clarkson, B. D., Fraley, C., Gu, C. C. & Ramsay, J. O. (2004). Functional Data Analysis User’s Manual: Beta Release 1 (Seattle, WA.: Insightful Corporation).
Clevers, J. G. P. W. & Jongschaap, R. (2003), Imaging spectrometry for agricultural application. In F. D. van der Meer, &S. M. de Jong (Eds) Imaging Spectrometry: Basic Principle and Prospective Applications (pp. 157-200):
Kluwer Academic Publishers.
Clevers, J. G. P. W., Buker, C., Van Leeuwin, H. J. C. & Bouman, B. A. M. (1994). A framework for monitoring crop growth by combining directional and spectral remote sensing information. Remote Sensing of Environment, 50, 161-170.
Cochrane, M. A. (2000). Using vegetation reflectance for species level classification of hyperspectral data. International Journal of Remote Sensing, 21, 2075-2087.
Cocks, T., Jenssen, R., Stewart, A., Wilson, I. & Shields, T. (1998), The HyMap airborne hyperspectral sensor: the system, calibration and performance: Proceedings 1st EARSeL Workshop on Imaging Spectroscopy, p. 37-43.
Collins, W. (1978). Remote sensing of crop type and maturity. Photogrammetric Engineering and Remote Sensing, 44, 43-55.
Colwell, J. E. (1974). Vegetation canopy reflectance. Remote Sensing of Environment, 3, 175-183.
Conel, J. E., Bruegge, C. J. & Curtiss, B. (1997a), Correcting airborne imaging spectrometer measurements for the atmosphere: a comparison of methods:
Proceedings of 3th. S.P.I.E. International Technical Symposium on Optical and Optoelectronic Applied Science and Engineering.
Conel, J. E., Green, R. O., Vane, G., Bruegge, C. J., Alley, R. E. & Curtiss, B. (1997b), AIS-2 Radiometry and a comparison of methods for the recovery of ground reflectance: Proceedings of the Third Airborne Imaging Spectrometer Data Analysis Workshop.
Curran, P. J. (1983). Multispectral remote sensing for the estimation of green leaf area index. Philisophical Transactions of the Royal Society, 309, 257-270.
Curran, P. J., Dungan, J. L., Macer, B. A., Plummer, S. E. & Peterson, D. L. (1992).
Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration. Remote Sensing of Environment, 39, 153-166.
Cutter, M. A., Lobb, D. A. & Cockshott, R. A. (2000). Compact high resolution imaging spectrometer (CHRIS). Acta Astronautica, 46, 263-268.
Daniel, K., Tripathi, N. K., Honda, K. & Apisit, E. (2001), Analysis of spectral reflectance and absorption patterns of soil organic matter: 22nd Asian Conference on Remote Sensing, p. CDROM.
114 Danson, F. M., Rowland, C. S. & Baret, F. (2003). Training a neural network with canopy reflectance model to estimate crop leaf area index. International Journal of Remote Sensing, 24, 4891-4905.
Darvishsefat, A. A., Kellenberger, T. W. & Itten, K. I. (2002), Application of Hyperspectral data for forest stand mapping: Symposium on Geospatial Theory, Processing and Application, p. 35-41.
Daughtry, C. S., Walthall, C. L., Kim, M. S., De Colstoun, E. B. & Mcmurtyey, J. E. (2000).
Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74, 229-239.
De Gruijter, J. (1999), Spatial sampling scheme for remote senisng. In A. Stein, F. van de Meer, &B. Gorte (Eds) Saptial statistics for remote sensing (pp. 211- 242).Dordrecht: Kluwer Academic Publishers
De Jong, S. M. (1992). The analysis of spectroscopical data to map soil types and soil crust of Mediterranean eroded soil. Soil Technology, 5, 199-211.
Deering, D. W., Eck, T. F. & Grier, T. (1992). Shimery oak bidirectional reflectance properties and canopy model inversion. IEEE Transactions on Geoscience and Remote Sensing, 30, 339-348.
Deering, D. W., Eck, T. F. & Otterman, J. (1989), Bidirectional reflectance of three soil surfaces and their characterization through model inversion.: Proceedings of the 1989 Symposium of the IEEE Geoscience and Remote Sensing Society, p. 670-673.
Dehaan, R. & Taylor, G. (2002). Field-derived spectral endmembers as indicators of irrigation induced soil salinity. Remote Sensing of Environment, 80, 406-417.
Dehaan, R. & Taylor, G. (2003). Image-derived spectral endmember as indicators of salinity. International Journal of Remote Sensing, 24, 775-794.
Demmig-Adams, B. & Adams Iii, W. W. (1996). The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science, 1, 21-26.
Dennison, P. E. & Robert, D. A. (2003). The effects of vegetation phenology on endmember selection and species mapping in southern California chaparral.
Remote Sensing of Environment, 87, 295-309.
Deschamps, P. Y., Breon, F. M., Leroy, M., Podaire, A., Bricaud, A., Buriez, J. C. & Seze, G. (1994). The POLDER mission: Instrument characteristics and scientific objectives. IEEE Transactions on Geoscience and Remote Sensing, 32, 598-615.
Diner, D. J., Asner, G. P., Davies, R., Knyazikhin, Y., Muller, J. P., Nolin, A., Pinty, B., Schaaf, C. B. & Stroeve, J. (1999). New directions in Earth observing:
Scientific applications of multi-angle remote sensing. Bulletin of American Meteorological Society,
Diner, D. J., Martonchika, J. V., Kahna, R. A., Pinty, B., Gobron, N., Nelson, D. L. &
Holben, B. N. (2005). Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land. Remote Sensing of Environment, 94, 155-171.
Dixit, L. & Ram, S. (1985). Quantitaitive analysis by derivative electronic spectroscopy.
Applied Spectroscopy Reviews, 21, 311-418.
Doraiswamy, P. C., Akhmedov, B., Stern, A., Hatfield, J. L. & Prueger, J. (2003), MODIS application for mapping regional crop yields: IGARSS 2003, p. CDROM.
115 Duke, C. & Guerif, G. (1998). Crop reflectance estimate errors from the SAIL model due to spatial and temporal variability of canopy and soil characteristics. Remote Sensing of Environment, 66, 268-297.
D'urso, G., Dini, L., Vuolo, F., Alonso, L. & Guanter, L. (2003), Retrieval of leaf area index by inverting hyperspectral, multi-angular CHRIS/PROBA data from SPARC 2003: Proceedings of 2nd CHRIS/Proba Workshop,, p. CD-ROM.
Elmore, A. J., Mustard, J. F., Manning, S. J. & Lobell, D. B. (2002). Quantifying vegetation change in a semiarid environment: Precision and accuracy of spectral mixture analysis and the normalized different vegetation index. Remote Sensing of Environment, 73, 87-102.
Elvidge, C. D. & Chen, Z. (1995). Comparison of broadband-band and narrow-band red and near-infrared vegetation indices. Remote Sensing of Environment, 54, 38-48.
Envi (2002). The Environment for Visualizing Images (ENVI):User’s Guide, Version 3.6.:
Research System Institute, USA).
Estec (1999), Exploitation of CHRIS data from the PROBA mission for science applications experimenters handbook.
Faraway, J. (1997). Regression analysis for functional response. Technometrics, 39, 254-261.
Fernandes, R. & Leblanc, S. G. (2005). Parametric (modified least squares) and nonparametric (Theil-Sen) linear regresions for predictiction biophysical parameters in the presence of measurement errrors. Remote Sensing of Environment, 95, 303-316.
Frank, I. E. & Friedman, J. H. (1993). A statistical view of some chemometrics regression tools. Technometrics, 35, 109-148.
Gabell, A. R. (1986). High-resolution remote senisng applied to minral exploration in Australia [unpublished PhD thesis]: The University of Adelaide, Adelaide, 320p.
Gamon, J. A., Lee, L.-F., Qiu, H.-L., Davis, S., Roberts, D. A. & Ustin, S. L. (1998), A multi-scale sampling strategy for detecting physiologically significant signals in AVIRIS imagery: Proceedings of the Seventh Annual JPL Airborne Earth Science Workshop, p. 23-27.
Gamon, J. A., Penuelas, J. & Field, C. B. (1992a). A Narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41, 35-44.
Gamon, J. A., Penuelas, J. & Field, C. B. (1992b). A narrow-waveband spectral index that tracks diurnal changes in photosynthesis efficiency. Remote Sensing of Environment, 41, 34-44.
Gamon, J. A., Roberts, D. A. & Green, R. O. (1995), Evaluation of the Photochemical Reflectance Index in AVIRIS imagery: Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, p. 55-58.
Gamon, J. A., Serrano, L. & Surfus, J. S. (1997). The Photochemical Reflectance Index:an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oceologia, 112, 492-501.
116 Gao, B. C. & Goetz, A. F. H. (1990). Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data. Journal of Geophysical Research, 95, 3549-3564.
Gao, B. C. (1996). NDWI : a normalized different water index for remote senisng of vegetation liquid water from space. Remote Sensing of Environment, 58, 257-266.
Garcia, J. C. & Moreno, J. (2004), Removal of noises in CHRIS/PROBA images:
Application on the SPARC campaign data: Proceeding of the 2nd CHRIS/PROBA Workshop, p. CD-ROM.
Gat, N., Erives, H., Mass, S. J. & Fitzgerald, G. J. (1999), Application of low altitude AVIRIS imagery of agricultural field in the San Joaquin Valley, CA to precision farming: Summaries of 8th JPL Airborne Earth Science Workshop, p. 145-150.
Gausman, H. W., Allen, W. A. & Cardenas, R. (1969). Reflectance of cotton leaves and their structure. Remote Sensing of Environment, 1, 19-22.
Gausman, H. W., Allen, W. A., Cardenas, R. & Richardson, A. J. (1970). Relationship of light refletcance to histological and physical eveluation of cotton leaf maturity.
Applied Optics, 9, 545-552.
Gerstl, S. A. W. (1990). Physical concepts of optical and radar reflectance signatures.
International Journal of Remote Sensing, 7, 1109-1117.
Girolamo, L. D., Bond, T. C., Bramer, D., Diner, D. J., Fettinger, F., Kahn, R. A., Martonchik, J. V., Ramana, M. V., Ramanathan, V. & Rasch, P. J. (2004).
Analysis of multi-angle imaging spectro radiometer (MISR) aerosol optical depths over greater India during winter 2001–2004. Geophysical Research Letters, 31, 1-5.
Gitelson, A. A. & Merzlyak, M. N. (1996a). Detection of red-edge position and chlorophyll content by reflectance measurements near 700 nm. Journal of Plant Physiology, 148, 501-508.
Gitelson, A. A. & Merzlyak, M. N. (1996b). Signature analysis of leaf reflectance spectra:
Algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology, 148, 494-500.
Gitelson, A. A. & Merzlyak, M. N. (1997). Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 18, 2691-2697.
Gitelson, A. A., Merziyak, M. N. & Lightenthaler, H. (1996). Detection of Red Edge position and chlorophyll content by reflectance measurement near 700 nm. Journal of Plant Physiology, 148, 501-508.
Gitelson, A. A., Stark, R., Grits, U., Rundquist, D., Kaufman, Y. & Derry, D. (2002).
Vegetation and soil lines in visible spectral space: a concept and techniques for remote estimation of vegetation fraction. International Journal of Remote Sensing, 23, 2537-2562.
Goel, N. S. (1989), Inversion of canopy reflectance models for estimation of biophysical parameters from reflectance data. In G. Asrar (Eds) Theory and Applications of Optical Remote Sensing (pp. 205-248).New York: John Wiley
Goetz, A. F. H. (1992), Imaging spectroscopy for earth remote sensing. In F. Toselli, &J.
Bodechtel (Eds) Imaging spectroscopy: Fundamental and Prospective Applications (pp. 1-19).New York: Kluwer Academic Publishers
117 Goetz, A. F. H., Vane, G., Solomon, J. E. & Rock, B. N. (1985). Imaging spectrometry for
Earth remote sensing. Science, 228, 1147-1153.
Gong, P. & Howarth, P. J. (1992). Frequency-based contextual classification and graylevel vector reduction for land-use identification. Photogrammetric Engineering and Remote Sensing, 58, 423–437.
Goodin, D. G., Gao, J. & Henebry, G. (2004). The effect of solar illumination angle and sensor view angle on observed pattern of spatial structure Tallgrass Prairie.
IEEE Transactions on Geoscience and Remote Sensing, 42, 154-165.
Green, A. A., Berman, M., Switzer, P. & Craig, M. D. (1988). A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 26, 65-74.
Green, P. J. & Silverman, B. W. (1994). Nonparametric regression and generalized linear models: a roughness penalty approach (London: Chapman and Hall).
Green, R. O., Pavri, B., Roberts, D. & Ustin, S. (1998), Mapping agricultural crops with AVIRIS spectra in Washington State: Summaries of 7th JPL Airborne Earth Science Workshop, p. 213-220.
Grove, C. I., Hook, S. J. & Paylor Ii, E. D. (1992), Laboratory reflectance spectra of 160 minerals, 0.4 to 2.5 micrometers, Jet Propulsion Laboratory Publication 92- 2.
Guanter, L., Alonso, L. & Moreno, J. (2004), Atmospheric correction of CHRIS/Proba data acquired in the Sparc campaign: Proceedings of 2nd CHRIS/PROBA workshop, p. CDROM.
Guanter, L., Alonso, L. & Moreno, J. (2005). First results from the PROBA/CHRIS hyperspectral/multiangular satellite system over land and water targets. IEEE Geoscience and Remote Sensing Letters, 2, 250-254.
Gutman, G., Tarpley, D., Ignatov, A. & Olson, S. (1995). The enhanced NOAA global land data set from the advanced very high resolution radiometer. Bulletin of American Meteorological Society, 76, 1141-1156.
Guyot, G. (1983), Angular and spatial variability of spectral data in visible and near infrared: Proceedings of the International Colloquium on Spectral Signatures of Objects in Remote Sensing, p. 27-44.
Haboudane, D., Miller, J. R., Pattey, E., Zacro-Tejada, P. J. & Strachan, I. B. (2004).
Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modelling and validation in the context of precision agriculture. Remote Sensing of Environment, 90, 337-352.
Hansen, P. M. & Schjoerring, J. K. (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 86, 542-553.
Hapke, B. (1986). Bidirectional reflectance spectroscopy 4: the extinction coefficient and the opposition effects. Icarus, 69, 264-280.
Hapke, B. (1993). Theory of reflectance and emittance spectroscopy (New York:
Cambrige university press).
Hastie, T. & Mallows, C. (1993). A discussion of a statistical view of some chemometrics regression tools" by I.E. Frank and J.H. Friedman. Technometrics, 35, 140-143.