• Tidak ada hasil yang ditemukan

Penelitian ini diawali dengan melihat ketergantungan antar lokasi dan waktu. Lokasi-lokasi dalam penelitian ini saling berhubungan, hal ini ditunjukkan dengan nilai korelasi yang nyata. Hasil korelasi antar lokasi selengkapnya dapat dilihat pada Lampiran 1. Sedangkan untuk ketergantungan terhadap waktu dapat dilihat pada Lampiran 2. Plot CCF menunjukkan bahwa adanya korelasi antara jumlah data titik panas pada waktu-t dalam lokasi-lokasi tertentu, ini dapat dilihat dari plot CCF yang mempunyai pola yang hampir sama pada setiap lokasi.

Data jumlah titik panas dalam penelitian ini adalah data jumlah titik panas pada 6 kabupaten di Provinsi Riau selama periode 2007 - 2011 pada musim kemarau (Februari sampai Agustus) setiap tahunnya. Deskripsi data secara statistik dapat dilihat pada Gambar 2.

minggu ju m la h ho ts po t 400 200 0 400 200 0 400 200 0 400 200 0 400 200 0 400 200 0

Time Series Plot of data hotspot

Bengkalis Rohil Rohul Inhu Inhil Pelalawan

Gambar 2 memperlihatkan bentuk pola data jumlah titik panas kejadian kebakaran hutan di enam kabupaten di Provinsi Riau selama dari tahun 2007-2011 sesuai runtun waktu pada masing-masing kabupaten. Untuk analisis selanjutnya

jumlah titik panas pada masing-masing kabupaten disebut peubah. Z1 peubah untuk jumlah titik panas kebakaran hutan di kabupaten Bengkalis, Z2 peubah untuk jumlah titik panas kebakaran hutan di kabupaten Rokan Hulu, Z3 peubah untuk jumlah titik panas kebakaran hutan di kabupaten Rokan Hilir, Z4 peubah untuk jumlah titik panas kebakaran hutan di kabupaten Indragiri Hulu, Z5 peubah untuk jumlah titik panas kebakaran hutan di kabupaten Indragiri Hilir, Z5 peubah untuk jumlah titik panas kebakaran hutan di kabupaten Pelalawan. Keenam peubah memiliki pola yang hampir sama yaitu mengalami kenaikan serta penurunan pada waktu yang hampir sama.

Dari Gambar 2 juga terlihat bahwa secara visual pola data relatif fluktuatif. Untuk mengetahui kondisi kestasioneran data maka perlu dilakukan identifikasi terhadap kestasioneran data.

Tabel 1 memberikan informasi bahwa rata-rata jumlah hotspot pada setiap kebupaten berbeda. Rata-rata tertinggi terdapat pada peubah Z3 (kabupaten Rokan Hilir) yaitu sebanyak 17 titik api dengan jumlah tertinggi sebanyak 392 titik panas yang terjadi pada minggu ke 87 dan jumlah titik api yang terendah adalah sebanyak 0 titik panas yang terjadi beberapa minggu sepanjang tahun. Sedangkan rata-rata jumlah titik panas terendah terdapat pada peubah Z2 (kabupaten Rokan Hulu) dan peubah Z5 (kabupaten Indragiri Hilir) yaitu masing-masing dengan rata-rata sebanyak 4 titik api. Peubah yang mempunyai ragam paling besar yaitu pada peubah Z3.

Tabel 1. Statistik deskriptif jumlah data hotspot kebakaran hutan

Peubah Rata-rata Simpangan baku Minimum Maksimum

Z1 14.78 37.78 0 340 Z2 4.48 12.23 0 116 Z3 17.61 54.68 0 392 Z4 8.48 24.15 0 170 Z5 4.6 10.37 0 76 Z6 10.39 24.35 0 167

Statistik deskriptif mempunyai peranan penting khususnya dalam memberikan informasi mengenai gambaran secara umum terhadap jumlah hotspot mingguan di setiap kabupaten dari tahun 2007-2011. Dari hasil deskripsi dapat dilihat jumlah hotspot kebakaran hutan mingguan di setiap kabupaten.

Pada Gambar 2 dapat dilihat plot data jumlah hotspot di kabupaten Bengkalis dan Kabupaten Rokan Hilir. Jumlah titik api di Kabupaten Bengkalis tertinggi terlihat pada minggu-minggu awal dan antara minggu ke 50 dan minggu ke 100. Sedangkan untuk kabupaten Rokan Hilir jumlah titik api tertinggi juga terdapat pada minggu-minggu awal serta antara minggu ke 50 dan minggu ke 100, namun jumlah titik api tertinggi terjadi antara minggu ke 50 dan minggu ke 100.

Jumlah titik api di Kabupaten Rokan Hulu tertinggi terlihat antara minggu ke 50 dan minggu ke 100. Sedangkan untuk kabupaten Indragiri Hulu jumlah titik api tertinggi terdapat pada minggu-minggu awal serta antara minggu ke 50 dan minggu ke 100, namun jumlah titik api tertinggi terjadi antara minggu pertama dan minggu ke 50.

Jumlah titik api di Kabupaten Indragiri Hilir tertinggi terlihat antara minggu 25 sampai dengan minggu ke 100. Sedangkan untuk kabupaten Pelalawan jumlah titik api tertinggi terdapat pada minggu-minggu awal serta antara minggu ke 50 dan minggu ke 100 dan jumlah titik api tertinggi juga terjadi antara minggu pertama dan minggu ke 50.

Model GSTAR

Dalam analisis model GSTAR, proses pertama yang harus dilakukan adalah: pengujian kestasioneran data, jika data tidak stasioner maka harus distasionerkan melalui proses staioseritas. Tahap yang kedua adalah menentukan ordo GSTAR yang akan digunakan, baik ordo spasial maupun untuk ordo waktunya. Selanjutnya menerapakan bobot spasial pada model untuk membangun model GSTAR tersebut.

a. Pengujian Kestasioneran Data

Model GSTAR merupakan salah satu model yang ada dalam analisis deret waktu. Ada dua syarat utama yang harus dipenuhi dalam pemodelan deret waktu yaitu stasioner dan galat white noise. Asumsi yang harus dipenuhi pada langkah awal identifikasi model yaitu data harus stasioner dalam ragam maupun rataan.

Borovkova, dkk (2002) dan Ruchjana (2003) menyatakan bahwa model GSTAR, Khususnya GSTAR(11), merupakan model versi terbatas dari model VAR. oleh sebab itu, kondisi stasioner dari model GSTAR dapat diturunkan dari

kondisi stasioneritas pada VAR. Stasioneritas data pada penelitian ini dapat dilihat dengan menggunakan uji formal, yang dikenal dengan ‘uji Unit root’. Dengan melihat hasil uji Unit root dapat disimpulkan bahwa data dalam penelitian ini sudah stasioner. (Lampiran 3).

b. Ordo Model GSTAR

Ordo yang akan ditentukan dalam penelitian ini adalah ordo spasial dan ordo waktu. Ordo spasial pada umumnya terbatas pada ordo1, karena untuk ordo yang lebih tinggi akan sulit untuk diinterpretasikan. Sementara untuk ordo waktu pada GSTAR dapat diturunkan dari ordo pada VAR.

Tahapan penting pada pemodelan VAR adalah menentukan ordo model. Ordo model tidak lain adalah pada lag berapa masih terdapat pengaruh yang nyata dari salah satu peubah (series) terhadap series lainnya.

Kriteria pemilihan ordo optimum dapat dilakukan dengan menggunakan statistik FPE, AIC, SC maupun HQ. Model yang baik adalah model yang mampu memberikan tingkat galat yang paling kecil. Dalam hal ini diwakilkan dengan nilai-nilai statistik yang paling kecil.

Pada penelitian ini akan menggunakan ordo 1 untuk lag waktu dan juga ordo 1 untuk lag spasial. Jadi, ordo untuk model GSTAR yang diperoleh adalah ordo 1 untuk spasial maupun waktu, dapat ditulis dengan GSTAR(11).

Penerapan Bobot Lokasi Korelasi Silang

Bobot lokasi normalisasi korelasi silang antar lokasi pada lag waktu yang bersesuaian adalah bobot lokasi yang memberikan nilai koefisien sama pada hubungan antar lokasi yang berbeda. Nilai dari bobot lokasi normalisasi korelasi silang antar lokasi pada lag waktu yang bersesuaian yang digunakan pada penelitian ini dapat dilihat pada Tabel 2.

Tabel 2. Nilai matriks pembobot korelasi silang

Lokasi Z1 Z2 Z3 Z4 Z5 Z6 Z1 0 0.21 0.30 0.2 0.14 0.15 Z2 0.15 0 0.27 0.17 0.17 0.24 Z3 0.2 0.23 0 0.17 0.12 0.27 Z4 0.08 0.19 0.26 0 0.15 0.32 Z5 0.18 0.21 0.16 0.16 0 0.28 Z6 0.14 0.25 0.33 0.15 0.13 0

Tabel 3. Pendugaan parameter dengan pembobot korelasi silang

Berdasarkan matrik pembobot korelasi silang pada Tabel 2 dapat dilakukan taksiran parameter untuk model GSTAR(11) yaitu :

, parameter tidak berpengaruh nyata , parameter berpengaruh nyata t hitung :

Jika p-value < maka H0 ditolak, menyatakan bahwa parameter tersebut berpengaruh nyata. Sebaliknya jika H0 diterima menyatakan bahwa parameter tersebut tidak berpengaruh nyata.

Hasil pengujian parameter dengan menggunakan matrik pembobot korelasi silangdapat dilihat pada Tabel 3. Pada tabel ini dapat dilihat bahwa ada beberapa parameter yang tidak nyata. Hal ini disebabkan oleh nilai p-value > 0.05. Misalkan untuk peubah Z1, Z3, Z4 semua parameter tidak nyata sehingga model pada daerah tersebut tidak dapat dibentuk. Oleh karena itu dapat disimpulkan bahwa pada daerah tersebut jumlah titik api kebakaran hutan tidak dipegaruhi oleh waktu sebelumnya atau daerah lain.

Parameter Nilai

Pendugaan Galat baku t-hitung p-value

0.13 0.08 1.47 0.14 0.25 0.14 1.85 0.04* 0.15 0.31 0.49 0.63 0.16 0.15 1.05 0.23 0.45 0.06 7.13 0.00* 0.18 0.19 0.97 0.33 0.09 0.14 0.63 0.53 0.32 0.14 2.28 0.02* -0.02 0.38 -0.06 0.95 0.17 0.17 1 0.31 0.02 0.15 0.15 0.88 0.39 0.15 2.69 0.01*

Keterangan : * parameter yang nyata

Berdasarkan p-value dari masing-masing parameter yang disajikan dalam Tabel 3, parameter yang nyata adalah , , dan . Sehingga berdasarkan parameter-parameter tersebut didapatkan model GSTAR dengan

bobot lokasi normalisasi korelasi silang antar lokasi pada lag waktu yang bersesuaian pada Lampiran 4.

Dengan demikian model GSTAR yang diperoleh :

Z2(t) = 0.05Z1(t-1)+0.36Z2(t-1)+0.10Z3(t-1)+0.06Z4(t-1)+0.06Z5(t-1)+0.08Z6(t-1) Z5(t) = 0.49Z5(t-1)

Z6(t) = 0.06Z1(t-1)+ 0.10Z2(t-1)+ 0.14Z3(t-1)+ 0.06Z4(t-1)+ 0.05Z5(t-1)

Gambar 3 merupakan plot nilai asli data jumlah hotspot kebakaran hutan dan nilai peramalan model GSTAR dengan bobot korelasi silang. Dari gambar tersebut dapat dilihat bahwa penerapan masing-masing model pada data asli dengan menggunakan metode peramalan GSTAR (11) menghasilkan ramalan yang mengikuti pola data asli.

waktu (minggu) ju m lah h o ts po t 160 80 0 160 80 0 160 80 0 Variab le a d

Time S eries Plot of a; d

Ketetangan : a = nilai asli dan d = nilai dugaan

Penerapan Bobot Lokasi Invers Jarak

Bobot lokasi berikutnya yang diterapkan adalah bobot lokasi invers jarak. Model GSTAR dengan menggunakan invers jarak ini memperlihatkan keterkaitan antara keenam lokasi (kabupaten) berdasarkan jarak antar lokasi sebenarnya. Karena keenam lokasi mempunyai jarak yang berbeda maka bobot lokasi invers jarak dapat diterapkan dalampemodelan. Adapun jarak antar lokasi dapat dilihat pada Tabel 4, jarak antar lokasi pada tabel merupakan hasil konversi batas lintang bujur (derajat) lokasi (kabupaten) menjadi satuan jarak (kilometer).

Tabel 5. Nilai matriks pembobot lokasi invers jarak Tabel 4. Jarak antar lokasi dalam Kilometer

Lokasi Z1 Z2 Z3 Z4 Z5 Z6 Z1 0 153.52 152.1 156.47 120.89 113.42 Z2 153.52 0 300.2 227.1 356.1 42.89 Z3 152.1 300.2 0 272.5 407.62 263.1 Z4 153.52 156.47 272.5 0 136.49 164.3 Z5 120.89 356.1 407.62 136.49 0 298.62 Z6 113.42 42.89 263.1 164.3 298.62 0

Bobot invers jarak memberikan koefisien bobot yang lebih kecil untuk jarak yang lebih jauh, demikian pula sebaliknya. Hal ini disebabkan oleh untuk lokasi dengan jarak yang jauh diduga memiliki keterkaitan antar lokasi yang kecil. Sebaliknya, untuk lokasi dengan jarak yang dekat diduga memiliki keterkaitan antar lokasi yang besar. Dari hasil perhitungan tersebut terbentuk matrik bobot lokasi yang dapat dilihat pada Tabel 5.

Lokasi Z1 Z2 Z3 Z4 Z5 Z6 Z1 0 0.22 0.22 0.23 0.17 0.16 Z2 0.14 0 0.28 0.21 0.33 0.04 Z3 0.10 0.21 0 0.19 0.29 0.19 Z4 0.17 0.18 0.31 0 0.15 0.19 Z5 0.09 0.27 0.31 0.10 0 0.23 Z6 0.12 0.05 0.3 0.19 0.34 0 Berdasarkan matrik pembobot invers jarak diatas dapat dilakukan taksiran parameter untuk model GSTAR(11) sebagai berikut :

: = 0, parameter tidak berpengaruh nyata

: ∃ ≠0, parameter berpengaruh nyata

t hitung : = ( )

Jika p-value < maka H0 ditolak, menyatakan bahwa parameter tersebut berpengaruh nyata.

Berdasarkan hasil pengujian parameter dengan menggunakan matrik pembobot korelasi silang ada beberapa parameter yang tidak nyata. Hal ini disebabkan oleh nilai p-value > 0.05. Misalkan untuk peubah Z1, Z3, Z4 semua parameter tidak nyata sehingga model pada daerah tersebut tidak dapat dibentuk.

Tabel 6. Pendugaan parameter dengan pembobot invers jarak

Oleh karena itu dapat disimpulkan bahwa pada daerah tersebut jumlah titik api kebakaran hutan tidak dipegaruhi oleh waktu sebelumnya atau daerah lain.

Berdasarkan p-value dari masing-masing parameter yang disajikan dalam Tabel 6, parameter yang nyata adalah , , dan . Sehingga berdasarkan parameter-parameter tersebut didapatkan model GSTAR dengan bobot lokasi invers jarak.

Parameter Pendugaan Nilai Galat Baku t-hitung p-value

0.12 0.09 1.38 0.17 0.29 0.16 1.86 0.04* 0.15 0.32 0.49 0.63 0.16 0.16 1.00 0.32 0.46 0.06 7.40 0.00* 0.19 0.21 0.90 0.37 0.12 0.14 0.85 0.40 0.26 0.13 2.06 0.04* 0.08 0.33 0.24 0.81 0.12 0.13 0.87 0.38 0.00 0.16 0.03 0.98 0.44 0.17 2.62 0.01*

Keterangan : * parameter yang nyata

Berdasarkan nilai pendugaan parameter pada Tabel 6 maka didapatkan model GSTAR dengan bobot lokasi invers jarak pada lampiran 5. Dengan demikian model GSTAR yang diperoleh :

Z2(t) = 0.05Z1(t-1)+ 0.42Z2(t-1)+0.09Z3(t-1)+0.06Z4(t-1)+0.10Z5(t-1)+ 0.01Z6(t-1)

Z5(t) = 0.48Z5(t-1)

Z6(t) = 0.06Z1(t-1)+ 0.02Z2(t-1)+ 0.13Z3(t-1)+ 0.08Z4(t-1)+ 0.15Z5(t-1)

Gambar 4 merupakanplot nilai asli data jumlah titik panas kebakaran hutan dan nilai peramalan model GSTAR dengan bobot invers jarak. Dari gambar tersebut dapat dilihat bahwa penerapan masing-masing model pada data asli dengan menggunakan metode peramalan GSTAR (11) menghasilkan ramalan yang mengikuti pola data asli.

waktu ( minggu) Ju m lah H ot spo t 400 200 0 400 200 0 400 200 0 Variable s w

Time Series Plot of s; w

Keterangan : s = nilai asli dan w = nilai dugaan Pengujian Asumsi Galat

Asumsi galat yang harus dipenuhi dalam pengujian ini adalah white noise dan berdistribusi normal. Pengujian dilakukan terhadap model GSTAR yang telah terbentuk dengan bobot lokasi seragam dan bobot lokasi berdasarkan normalisasi korelasi silang antar lokasi pada lag yang sesuai.

a. Asumsi White Noise

Maksud dari asumsi white noise adalah hasil galat yang bersifat bebas satu sama lain (independen). Pemeriksaan white noise pada penelitian ini dengan menggunakan Ljung and Box test.

= ( + 2) ∑ ~ ,

= autokorelasi ke-j, = banyak pengamatan

= banyak lag yang diuji, = lag maksimum

dengan H0 = galat tidak bebas lawan H1 = galat bebas. Terima H0 jika p-value > 0.5 yang menyatakan bahwa antar galat bebas.

b. Asumsi Sebaran Normal

Setelah asumsi white noise dipenuhi, maka asumsi berikutnya yang harus dipenuhi adalah galat berdistribusi normal. Hasil pengujian tidak berdistribusi Gambar 4.Plot nilai asli dan nilai peramalan model GSTAR dengan bobot invers jarak

normal dari galat model GSTAR(11) dengan bobot lokasi invers jarak dan korelasi silang dapat dilaht pada Tabel 7.

Tabel 7. Nilai Shapiro-Wilk

Nilai Bobot korelasi silang Bobot invers jarak Shapiro-wilk W = 0.5943 W = 0.5429 Nilai P 4.148e-16 2.2e-16

Pemilihan Model Terbaik

Model terbaik adalah model dengan kesalahan ramalan terkecil. Oleh karena itu dilakukan perbandingan hasil ramalan dari tiap-tiap model yang terbentuk. Perbandingan hasil ramalan dilakukan dengan melihat nilai RMSE dari tiap-tiap model dapat dilihat pada Tabel 8.

Tabel 8. Nilai RMSE

Lokasi Nilai RMSE pembobot dari korelasi silang Nilai RMSE dari pembobot invers jarak

Z2 5.10 5.03

Z5 4.60 4.60

Z6 8.70 7.06

Rata-rata nilai RMSE model dengan menggunakan matriks bobot lokasi normalisasi korelasi silang antar lokasi pada lag waktu yang bersesuaian adalah 6.14. Sedangkan rata-rata nilai RMSE model dengan menggunakan matriks bobot invers jarak adalah 5.57.

Dari nilai RMSE untuk kedua pembobot diatas, dapat diketahui bahwa tingkat ketepatan ramalan untuk model GSTAR(11) dengan raat-rata RSME yang terkecil terletak pada bobot invers jarak yaitu sebesar 5.57. Dengan demikian dapat disimpulkan bahwa model terbaik adalah model GSTAR(11) dengan bobot lokasi lokasi invers jarak.

Dokumen terkait