• Tidak ada hasil yang ditemukan

BERBASIS BAGAS TEBU

2. Jumlah produksi aktual 30.000 kg dengan penerimaan aktual

Rp 30.000.000.000,00 telah melebihi titik impasnya, yaitu 2.682 kg dan Rp 2.682.448.009,00.

3. Kegiatan yang dilakukan dalam usaha memproduksi material separator berbasis bagas tebu telah menghasilkan nilai tambah sebesar Rp 469.709,44 atau 57,30%. Kenaikan upah tenaga kerja, bahan baku, dan sumbangan input lain sebesar 10% menghasilkan nilai tambah sebesar Rp 437.157,89/kg atau sebesar 53,33%.

Simpulan

1. Selulosa berhasil diisolasi dari ela sagu, bagas tebu, dan jerami padi. Tahap isolasi dipantau dengan teknik spektroskopi. Evaluasi keberhasilan juga ditunjukkan melalui nilai rendemen polisakarida, penurunan kadar lignin, dan peningkatan kadar selulosa alfa.

2. Rendemen hasil isolasi untuk ela sagu, bagas tebu, dan jerami padi berturut-turut adalah 5, 41, dan 11% dengan kandungan selulosa alfa 62,53; 72,80; dan 77,47%.

3. Delignifikasi dengan H2O2 5% pada pH 12, suhu 70 °C, dan waktu 3 jam dengan nisbah bobot contoh dan volume larutan H2O2 sebesar 1:25 mampu menghilangkan lignin sampai lebih dari 90%.

4. Derajat polimerisasi dan bobot molekul isolat selulosa dari ela sagu, bagas tebu, dan jerami padi berturut-turut adalah 194,7 dan 31.541,4 g/mol; 586,5 dan 95.013 g/mol, serta 67,6 dan 10.951,6 g/mol. Indeks kristalinitas isolat selulosa dari ela sagu, bagas tebu, dan jerami padi berturut-turut adalah 16,01; 16,69; dan 20,96%. Analisis termal menunjukkan semua isolat akan terdegradasi di atas suhu 197 °C.

5. Kondisi rekayasa dengan teknik kopolimerisasi cangkok dan taut silang yang menunjukkan swelling factor terkecil adalah kondisi pada jumlah penaut silang MBAm sebesar 1 g, rasio monomer:substrat 1:1, dan inisiator APS 250 mg.

6. Material separator potensial yang dievaluasi kinerjanya adalah material separator berbasis bagas tebu. Material separator menunjukkan kinerja yang baik dan mampu memisahkan komponen aktif dalam ekstrak temu lawak dengan resolusi pemisahan sebesar 6,44. Namun, efisiensi material separator masih perlu ditingkatkan.

104  

7. Material separator berbasis limbah bagas tebu berpotensi untuk dikembangkan dalam rangka mendukung teknologi separasi di Indonesia. Material separator ini memiliki nilai tambah sebesar Rp 469.709,44 per kg bahan baku.

Saran

1. Optimasi proses rekayasa perlu dilakukan. Variabel optimasi ditetapkan berdasarkan pengaruh variabel terhadap tujuan akhir yang ingin dicapai, yaitu pola pemisahan yang baik.

2. Kajian lanjut perlu dilakukan terkait dengan karakteristik selulosa sebagai polimer backbone dari material separator, seperti ukuran partikel, tingkat kemurnian, derajat polimerisasi, serta sebaran bobot molekul.

3. Uji coba material separator sebagai fasa stasioner pada instrumen HPLC perlu diidentifikasi.

4. Eksplorasi sumber-sumber polisakarida alami lain perlu dilakukan untuk memperoleh beragam karakteristik polimer backbone material separator

[AOAC] Association of Official Analytical Chmistry. 2005. Official Methodes of

Analysis of AOAC International. Ed ke-18. Maryland: AOAC International.

[ASTM] American Society for Testing and Materials. 1981. Annual Book of

ASTM Standards. Wood: Adhesives .Vol 22. Philadelphia: American Society

for Testing and Material.

[TAPPI] Technical Association of The Pulp and Paper Industry. 1961. TAPPI

Standards and Suggested Methods. New York: Technical Association of The

Pulp and Paper Industry.

Abdel-Mohdy FA, Abdel-Halim ES, Abu-Ayana YM, El-Sawy SM. 2009. Rice straw as a new resource for some beneficial uses. Carbohydrate Polymers 75: 44-51.

Achmadi SS. 1990. Kimia Kayu. Bogor: PAU Ilmu Hayat IPB.

Aguilar MI, Guillermo D, Maria LV. 2001. New bioactive derivatives of xanthorizhol. J Mex Chem Soc 45: 56-59.

Ahuja S.2002. Chromatography and Separation Science. Vol 4. New York: Elsevier.

Ali I, Aboul-Enein HY. 2007. Immobilized Polysaccharide CSPs: An Advancement in Enantiomeric Separations. Current Pharmaceutical Analysis 3:71-82.

Awg-Adeni DS, Abd-Aziz S, Bujang K, Hassan MA. 2010. Bioconversion of sago residue into value added products. African Journal of Biotechnology 9:2016-2021.

Badan Pusat Statistik. 2010. Produksi Padi Tahun 2010. [terhubung berkala].

www.bps.go.id [28 Agustus 2010]

Basta AH, Fierro V, El-Saied H, Celzard A. 2009. 2-Steps KOH Activation of rice straw: An efficient method for preparing high-performance activated carbon.

Bioresource Technology 100:3941-3947.

Bhattacharya A, Rawlins JW, Ray P. 2009. Polymer Grafting and Crosslinking. New Jersey:J. Wiley & Sons.

Bhattacharya D, Germinario LT, Winter WT. 2008. Isolation, preparation, and characterization of cellulose microfibers obtained from bagasse. Carbohydrate

Polymers 73:371-377

106  

Campos MG et al. 2000. Xanthorrhizol induces endothelium-independent relaxation of rat thoracic aorta. Life Sci 67: 327-333.

Center for Drug Evaluation and Research, U.S. Food and Drug Administration. 1994. Reviewer Guidance, Validation of Chromatographic Methods. Rockville MD: Food and Drug Administration

Chen X, Yu J, Zhang Z, Lu C. 2011. Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydrate Polymers 85:245-250

Chung WY et al. 2007. Xanthorrhizol inhibits 12-O-tetradecanoylphorbol-13-acetate-induced acute inflammation and two-stage mouse skin carcinogenesis by blocking the expression of ornithine decarboxylase, cyclooxygenase-2, and inducible nitric oxide synthase through mitogen-activated protein kinases and/or the nuclear factor kB. Carcinogen Advance Acces 18: 1-29.

Crini G. 2005. Recent development in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym Sci. 30: 38-70.

de Paula MP, Lacerda TM, Frollini E. 2008. Sisal cellulose acetates obtained from heterogeneous reactions. eXPRESS Polymer Letters 2:423-428

Direktorat Jenderal Perkebunan. 2010. Luas areal dan produksi perkebunan seluruh Indonesia menurut pengusahaan. [terhubung berkala]

www.ditjenbun.deptan.go.id[28 Januari 2010]

Doane WM. 2009. Superabsorbent polymers in agricultural applications. US Patent US2009/0069185 A1

Elanthikal S, Gopalakrishnapanicker U, Varghese S, Guthrie JI. 2010. Cellulose microfibres produces from banana plant wastes: Isolation and Characterization.

Carbohydrate Polymers 80:852-859.

El-Mohdy HIA, El-Rehim HAA. 2009. Radiation synthesis of kappa-carragenan/acrylamide graft copolimers as superabsorbents and their possible applications. J Polym Res. 16:63-72.

Enomoto-Rogers Y, Kamitakahara H, Nakayama K, Takano T, Nakatsubo F. 2009. Synthesis and thermal properties of poly(methyl methacrylate)-graft-(cellobiosylamine-C15). Cellulose 16:519-530.

Fengel D, Wegener G. 1995. Kayu:Kimia, Ultrastruktur, Reaksi-Reaksi. Penerjemah H. Sastrohamidjojo. Penyunting: S. Prawirohatmodjo. Yogyakarta: Gadjah Mada University Press.

Ficarra R, Calabró ML, Alcaro S, Tommasini S, Melardi S, Ficarra E. 2000. Diastereo-enantioseparation of novel 7-lactamic derivatives on cellulose chiral stationary phases. Chromatographia 51:411-416

 

Fierro V, Muniz G, Basta AH, El-Said H, Celzard A. 2010. Rice straw as precursor of activated carbons: Activation with ortho-phosphoric acid. Journal

of Hazardous Materials 181:27-34.

Gong R, Zhong K, Hu Y, Chen J, Zhu G. 2008. Thermochemical esterifying citric acid onto lignocellulosic for enhancing methylene blue sorption capacity of rice straw. Journal of Environmental Management 88:875-880.

Gumbira E, Intan AH. 2000. Menghitung nilai tambah produk agribisnis.

Komoditas 11(19):48.

Hamid MS, Pandare KV, Nair G, Varma AJ. 2009. Utilization of sugarcane bagasse cellulose for producing cellulose acetates:Novel use of residual hemicellulose as plasticizer. Carbohydrate Polymer 76(1): 23-29.

Hayami Y, Kawagoe T, Marooka Y, Siregar M. 1987. Agricultural Marketing and

Processing in Upland Java. A Prespective From A Sunda Village. CGPRT

Center:Bogor.

Hayami Y, Kawagoe T. 1993. The agrarian origins of commerce and industry (a

study of Peaseant Marketing in Indonesia). St Martins’s Press.

He Y, Pang Y, Liu Y, Li X, Wang K. 2008. Physicochemical characterization of rice straw pretreated with sodium hidroxide in the solid state for enhancing biogas production. Energy & Fuels 22:2775-2781.

Hesse G, Hagel R. 1973. A complete separation of a recemic mixture by elution chromatography on cellulose acetate. Chromatographia 6:277-280.

Hesse G, Hagel R. 1976. Inclusion Chromatography and a New Retention mechanism for benzene derivatives. Chromatographia 9:62-68.

Hiserodt R, Hartmann TG, Ho C-T, Rosen RT. 1996. Characterisation of powered turmeric by liquid chromatography–mass spectrometry and gas chromatography–mass spectrometry. Chromatogr A 740: 51–63.

Holmes P. 1998. Investment Appraisal International. London: Thomson Business Press.

Hon DNS. 1996. Chemical Modification of Lignocellulosic Materials. New York: Marcel Dekker, Inc.

Hu G, Heitmann JA, Rojas OJ. 2008. Feedstock pretreatment strategies for producing ethanol frooom wood, bark, and forest residues. BioResouces 3:270-294.

Huang YF, Kuan WH, Lo SL, Lin CF. 2010. Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis. Bioresource Technology 101:1968-1973.

108  

Huang Z, Liang X, Hu H, Gao, L Chen Y, Tong Z. 2009. Influence of mechanical activation on the graft copolymerization of sugarcane bagasse and acrylic acid.

Polymer Degradation and Stability 94:1737:1745.

Husin. 2007. Ampas Tebu [terhubung berkala]. http://bioindustry.blogspot.com

/2008/04/ampas-tebu.html. [28 Januari 2010]

Hwang JK, penemu; LG Household & Healthcare. 24 Feb 2004. Antibacterial composition having xanthorhizol. US Patent 6 696 404.

Irawati I. 2008. Perbandingan metode penentuan aktivitas antioksidan rimpang Temulawak [Skripsi]. Bogor: Departemen Kimia FMIPA IPB.

Itokawa H. et al. 1984. Studies on the antitumor bisabolane sesquiterpene isolated from Curcuma xanthorriza. Chem Pharm Bull: 3488-3492.

Jadhav BK, Mahadik KR, Paradkar AR. 2007. Development and validation of improved reversed phase-HPLC method for simultaneous determination of curcumin, demetoksikurkumin, dan bisdemetoksikurkumin. Chromatographia 65:483-488

Jahan MS, Lee ZZ, Jin Y. 2006. Organic acid pulping of rice straw. I: Cooking.

Turk J Agric For 30:231-239.

Jahan MS, Saeed A, He Z, Ni Y. 2011. Jute as material for the preparation of microcrystalline cellulose. Cellulose 18:451-459.

Jiang M, Zhao M, Zhou Z, Huang T, Chen X, Wang Y. 2011. Isolation of cellulose with ionic liquid from steam exploded rice straw. Industrial Crops

and Products 33:734-738.

Kadariah, L. Karlina dan C. Gray. 1999. Pengantar Evaluasi Proyek. Jakarta:FE UI

Kadokawa J, Murakami M, Kaneko Y. 2009. Preparation of cellulose-starch composite gel and fibrous material from a mixture of the polysaccharides in ionic liquid. Carbohydrate Polymers 75:180-183.

Kham L, le Bigot Y, Delmas M, Avignon G. 2005. Delignification of wheat straw using a mixture of carboxylic acids and peroxoacids. Industrial Crops and

Products 21:9-15

Khan GMA, Shaheruzzaman M, Rahman MH, Razzaque SMA, Islam MS, Alam MS. 2009. Surface modification of Okra bast fiber and its physic-chemical characteristics. Fiber and Polymer. 10: 65-70.

Kim S, Dale BE. 2004. Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy 26:361-375.

 

Klemm D, Philipp B, Heinze T, Heinze U, dan Wagenknecht W. 1998

Comprehensive Cellulose Chemistry:Fundamentals and Analytical Methods.

Vol.1. Weiheim:Wiley-VCH Verlag GmBH.

Kumar V, Naithani S, Pandey D. 2011. Optimization of reaction conditions for grafting of α-cellulose isolated from Lantana camara with acrylamide.

Carbohydrate Polymers 86:760-768.

Kuznetsova SA, Danilov VG, Kuznetsov BN, Yatsenkova OV, Alexandrova NB, Shambasov VK, Pavlenko NI. 2003. Environmentally Friendly Catalytic Production of Cellulose by Abies Wood Delignification in “Acetic Acid-Hydrogen Peroxide-Water” media. Chemistry for Sustainable Development 11:141-147.

Lanthong P, Nuisin R, Kiatkamjornwong S. 2006. Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itacoic acid superabsorbents. Carbohydrate Polymers 66:229-245

Le Digabel F, Avérous L. 2006. Effects of lignin content on the properties of lignocellulose-based biocomposites. Carbohydrate Polymers 66:537-545

Lehninger AL. 1993. Dasar-Dasar Biokimia. Jilid 1. Thenawidjaja M, penerjemah; Jakarta: Erlangga. Terjemahan dari: Principles of Biochemistry. Li A, Zhang J. Wang A. 2007. Utilization of starch and clay for the preparation of

superabsorbent composite. Bioresource Technology 98:327-332.

Li X, Cai Z, Winandy JE, Basta AH. 2011. Effect of oxalic acid and steam pretreatment the primary properties of UF-bonded rice straw particleboards.

Industrial Crops and Products. 33:665-669.

Liang R, Yuan H, Xi G, Zhou Q. 2009. Synthesis of wheat straw-g-poly(acrylic acid) superabsorbent composite and release of urea from it. Carbohydrate

Polymers 77:181-187

Lipka E, Descamps C, Vaccher C, Bonte JP. 2005. Reversed-phase liquid chromatographic separation, on cellulose chiral stationary phases, of the stereoisomers of methoxytetrahydronaphtalene derivatives, New Agonist and Antagonist ligands for melatonin receptors. Chromatographia 61:143-149. Liu Z, Miao Y, Wang Z, Yin G. 2009. Synthesis and characterization of a novel

super-absorbent based on chemically modified pulverized wheat straw and acrylic acid. Carbohydrate Polymer 77:131-135

Lu P, Hsieh YL. 2012. Preparation and characterization of cellulose nanocrystal from rice straw. Carbohydrate Polymer 87:564-573.

110  

Maharjan P. Woonton BW, Bennett LE, Smithers GW, DeSilva K, Hearn MTW. 2008. Novel chromatographic separation-The potential of smart polymers.

Innovative Food Science and Emerging Tenchnologies 9:232-242.

Matitaputty PR, Alfons JB. 2006. Inovasi Teknologi Pakan Berbahan Dasar Ela Sagu Untuk Ternak. Di dalam: Hetharia MET et al., editor. Prosiding Sagu dalam Revitalisasi Pertanian Maluku; Ambon, 29-31 Mei 2006. Ambon:Badan Penerbit Fakultas Pertanian Universitas Patimura. hlm 100-106.

Matsumura H, Sugiyama J, Glasser WG. 2000. Cellulosic nanocomposites. I. Thermally deformable cellulose hexanoates from heterogeneous reaction.

Journal of Applied Polymer Science 78:2242-2253.

Miller JM. 1975. Separation Methods in Chemical Analysis. New York:J.Wiley & Sons, Inc.

Mishra A, Clark JH, Pal, S. 2008. Modification of Okra mucilage with acrylamide: Synthesis, characterization and swelling behavior. Carbohydrate

Polymers 72:608:615.

Mostafa KM, Samerkandy AR, El-sanabay. 2007. Modification of Carbohydrate Polymers Part 2: Grafting of Methacrylamide onto Pregelled Starch Using Vanadium-mercaptosuccinic Acid Redox Pair. J Appl Sci Res 3(8): 681-689. Mubin A dan Fitriadi R. 2005. Upaya penurunan biaya produksi dengan

memanfaatkan ampas tebu sebagai pengganti bahan penguat dalam proses produksi asbes semen. Gelagar. 16(1): 10-19.

Mulinari DR, da Silva MLCP. 2008. Adsorption of sulphate ions by modification of sugarcane bagasse cellulose. Carbohydrate Polymers 74:617-620

Nada AMA, Alkady M, Fekry HM. 2007. Synthesis and characterization of grafted cellulose for use in water and metal ions sorption. BioResources 3:46-59.

Nascimento EA, Machado AEH, Morais SAL. 1995. Photochemical hydrogen peroxide bleaching of Eucalyptus organosolv pulp. J. Braz. Chem. Soc 6:365-371.

Papilaya EC. 2009. Sagu Untuk Pendidikan Anak Negeri. Bogor:IPB Press.

Princi E, Vicini S, Proietti N, Capitani D. 2005. Grafting polymerization on cellulose based textiles: a 13C solid state NMR characterization. European

Polymer Journal. 41:1196-1203.

Pushpamalar V, Langford SJ, Ahmad M, Lim YY. 2006. Optimization of reaction conditions for preparing carboxymethylcellulose from sago waste.

 

Ratanakamnuan U, Atong D, Aht-Ong D. 2012. Cellulose esters from waste cotton fabric via conventional and microwave heating. Carbohydrate Polymers 87:84-94

Ravindran PN, Babu KN, Sivaraman K. 2007. Turmeric: The Genus Curcuma. America: CRC.

Rodrigues FG et al. 2000. Water flux through cellulose triacetate film produced from heterogenous acetylation of sugarcane bagasse. Journal of Membrane

Science 177:225-231.

Rowell RM. 2005. Handbook of Wood Chemistry and Wood Composites. Florida:CRC Pr

Saikia CN, Ali F. 1999. Graft copolymerization of methylmethacrylate onto high α-cellulose pulp extracted from Hibiscus sabdariffa and Gmelina arborea.

Bioresource Technology 68:165-171

Samsuri M, Gozan M, Mardias R, Baiquni M, Hermansyah H, Wijanarko A, Prasetya B, Nasikin M. 2007. Pemanfaatan selulosa bagas untuk produksi etanol melalui sakarifikasi dan fermentasi serentak dengan enzim xylase.

Makara Teknologi 11(1):17-24

Sangnark A, Noomhorm A. 2004. Chemical, physical and baking properties of dietary fiber prepared from rice straw. Food Research International. 37:66-74. Sastrohamidjojo H. 1991. Kromatografi. Yogyakarta:Liberty

Scandinavian Pulp, Paper, and Board Testing Committee. 1988. SCAN-CM 15:88

Viscosity in cupri-ethylenediamine solution. Scandinavian Pulp, Paper, and

Board Testing Committee.

Shen DK, Gu S, Bridgwater AV. 2010. The thermal performance of the polysaccharides extracted from hardwood: cellulose and hemicelullose.

Carbohydrate Polymers 82:39-45

Shimizu T, Hirata H, Nakajima K. 1989. Thin-layer chromatography of inorganic ions on polyethyleneimine cellulose in mixed sulfuric acid-organic solvent media. Chromatographia. 28:620-622.

Shimizu T, Kogure Y, Arai H. 1976. Thin-layer chromatographic behavior of a number of metals on carboxymethyl-cellulose in sulfuric acid and ammonium sulfate media. Chromatographia. 9:85-88.

Shimizu T. Miyazaki A, Saitoh I. 1980. Thin-layer chromatography of inorganic ions phosphate on cellulose in acetic acid and in acetic acid-amonium acetate media. Chromatographia. 13:119-121.

Sidik, Mulyono MW, Muhtadi A. 1995. Temulawak (Curcuma xanthorriza Roxb). Jakarta: Yayasan Pengembangan Obat Bahan Alam Phytomedica

112  

Silahooy C. 2006. Mungkinkan sagu dilirik lagi sebagai makanan pokok masyarakat Maluku. Di dalam: Hetharia MET et al., editor. Prosiding Sagu dalam Revitalisasi Pertanian Maluku; Ambon, 29-31 Mei 2006. Ambon:Badan Penerbit Fakultas Pertanian Universitas Patimura. hlm 100-106.

Silverstein RM, Bassler GC, Morrill TC. 1986. Penyidikan Spektrometrik

Senyawa Organik. Ed ke-4. Hartomo AJ dan Purba AV (Penerjemah).

Jakarta:Penerbit Erlangga.

Song Y. Zhou J, Zhang L, Wu X. 2008. Homogenous modification of cellulose with acrylamide in NaOH/urea aqueous solutions. Carbohydrate Polymers 73:18-25.

Su-lian G, Ning-guo Z, Xiu-zhen Z, Wei Z. 2007. Interfacial Properties of Ethyl Cellulose/Cellulose Acetate Blends by HPLC. The Chinese Journal of Process

Engineering. 7:152-154.

Sun JX, Sun XF, Zhao H, Sun RC. 2004a. Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability 84:331-339.

Sun JX, Xu F, Sun XF, Xiao B, Sun RC. 2005. Physico-chemical and thermal characterization of cellulose from barley straw. Polymer Degradation and

Stability 88:521-531.

Sun RC, Tomkinson J, Ma PL, Liang SF. 2000. Comparative study of hemicellulose from rice straw by alkali and hydrogen peroxide treatments.

Carbohydrate Polymers 42:111-122.

Sun XF, Sun RC, Fowler P, Baird MS. 2004b. Isolation and characterization of cellulose obtained by a two-stage treatment with organosolv and cynamide activated hydrogen peroxide from wheat straw. Carbohydrate Polymers 55:379-391.

Supriadi. 2001. Tumbuhan Obat Indonesia: Penggunaan dan Khasiatnya. Jakarta: Pustaka Populer Obor.

Sutojo S. 2002. Studi Kelayakan Proyek:Konsep Teknik & Kasus. Jakarta: PT Damar Mulia Pustaka

Szcześniak L, Rachocki A. Tritt-Goc J. 2008. Glass transition temperature and thernal decomposition of cellulose powder. Cellulose 15:445-451.

Tarmidi AR. 2004. Pengaruh ransum yang mengandung ampas tebu hasil biokonversi oleh jamur tiram putih (Pleurotus ostreatus) terhadap

permformans Doba Priangan. JITV. 9(3):157-163

Teli MD, Waghmare NG. 2009. Synthesis of superabsorbent from carbohydrate waste. Carbohydrate Polymers 78:492-496

 

Tong CC, Hamzah NM. 1989. Delignification pretreatment of Palm-press fibres by chemical method. Pertanika 12:399-403.

van Soest PJ. 2006. Rice straw, the role of silica and treatments to improve quality. Animal Feed Science and technology.130:137-171.

Viera RGP, Filho GR, Assunc Ao RMN, Meireles C, Viera JG, Oliviera GS. 2007. Synthesis and characterization of methylcellulose from sugarcane bagasse cellulose. Carbohydrate polymer 67:182-189

Widodo Y. 2006. Penggunaan bagas tebu teramoniasi dan terfermentasi dalam ransum ternak domba. Lampung: Fakultas Pertanian, Universitas Lampung. Wijanarko A, Witono JA, Wiguna MS. 2006. Tinjauan komprehensif perancangan

awal pabrik furfural berbasis ampas tebu di Indonesia. Indonesian Oil and Gas

Community 8:1-10

Williams DH, Fleming I. 1980. Spectroscopic Methods in Organic Chemistry. 3rd Ed. London:McGraw Hill Company.

Wu J, Wei Y, Lin J, Lin S. 2003. Study on starch-graft-acrylamide/mineral powder superabsorbent composite. Polymer 44:6513-6520.

Yang G, Zhou L, Wei D, Li G, Vazquez PP, Frenich AG. 2002. Effect of the structure of organic phosponate compounds on chiral separations on derivatized cellulose chiral stationary phase. Chromatographia. 56:143-145. Yang H, Yan R, Chen H, Dong HI, Zheng C. 2007. Characteristic of

hemicellulose, cellulose, and lignin pyrolisis. Fuel 86:1781-1788.

Yazdani-Pedram M, Lagos A, Retuert PJ. 2002. Study of the effect of reaction variables on grafting of polyacrylamide onto chitosan. Polymer Bulletin 48:93-98.

Zayed G, Abdel-Motaal H. 2005. Bio-active composts from rice straw enriched with rock phosphate and their effect on the phosphourous nutrition and microbial coomunity in rhizosphere of cowpea. Bioresource Technology. 96:929-935.

Zhang M, Qi W, Liu R, Su R, Wu S, He Z. 2010. Fractionating lignocelloluse by formic acid: Characterization of major components. Biomass and Bioenergy 34:525-532.

Zhou Y, Stuart-Williams H, Farquhar GD, Hocart CH. 2010. The use of natural abundance stable isotopic ratio to indicate the presence of oxygen-containing chemical linkages between cellulose and lignin in plant cell walls.

 

 

11

7

Lampiran 1 Analisis proksimat, komponen kimia, rendemen hasil

a. Analisis proksimat dan komponen kimia

Parameter

Ampas Sagu Ampas Tebu Jerami Padi

Metode Acuan Bahan Baku Isolat Selulosa Bahan Baku Isolat Selulosa Bahan Baku Isolat Selulosa

Kadar air (%) 10,17 t.d 3,96 t.d 8,42 t.d SNI 01-2891-1992 (Gravimetri)

Kadar abu (%) 4,30 t.d 0,77 t.d 26,92 t.d SNI 01-2891-1992 (Gravimetri)

Kadar protein (%) 1,01 t.d 1,08 t.d 7,43 t.d IK LT-III-5.4.1.3-G (Titrimetri – Kjeldahl)

Kadar lemak (%) 0,30 t.d 0,15 t.d 0,58 t.d AOAC (2005) 989.05 (33.2.26)- Modified mojonier ether

extraction method

Kadar Karbohidrat (%) 80,66 t.d 95,45 t.d 57,04 t.d IK LT-III-5.4.1.3-F (Spektrometri)

α-selulosa (%) 22,45 72,80 43,06 77,47 34,19 62,53 TAPPI standard T 203 os-61 Holoselulosa (%) 33,63 90,87 69,27 98,41 71,26 92,27 TAPPI standard T 9 m-51

Hemiselulosa (%) 11,18 18,07 26,23 20,94 37,07 29,74 Selisih holoselulosa & α-selulosa

Lignin (%) 11,52 1,62 22,28 0,96 32,07 0,81 TAPPI standard T13 m-45

Lampiran 1 Analisis proksimat, komponen kimia, rendemen hasil

b. Rendemen hasil

Contoh Bobot Contoh (g)*) Rendemen

(%)

Bahan Awal Pulp bahan Selulosa

Ela Sagu 120 12 6 5

Bagas Tebu 120 54 49 41

Jerami Padi 120 25 12,5 11

*)Bobot basis kering

Contoh perhitungan: 5% 00% x1 120 6 (%) hasil Rendemen 100% x awal bahan Bobot akhir hasil Bobot (%) hasil Rendemen = = =

119  

 

Lampiran 2 Serapan vibrasi FTIR ela sagu, pulp ela sagu, dan selulosa ela sagu

No Bilangan Gelombang (cm-1)

Gugus Fungsi Acuan Ela Sagu Pulp Ela

Sagu

Selulosa Ela Sagu

1 3320 3320 3321 O−H ulur Sun et al. (2004a); Sun et al. (2005); Zhang et al. (2010) 2 2890 2889 2893 C−H ulur Sun et al. (2004a); Sun et al. (2005);

Zhang et al. (2010)

3 1728 t.d* t.d*

ikatan ester dari gugus karboksil senyawa asam ferulat dan asam p-kumarat dari senyawa lignin dan/atau hemiselulosa

Sun et al. (2004b); Wang et al. (2009); Zhang et al. (2010) Gugus asetil dan ester uronat

dari senyawa hemiselulosa 4 1631 1598 1627 H2O terjerap

Sun et al. (2004a); Sun et al. (2005); Zhang et al. (2010) 5 1516 t.d*  t.d* gugus guaiasil pada senyawa

lignin Sun et al. (2004b); Sun et al. (2005); Zhang et al. (2010)   cincin aromatik senyawa

lignin

6 1454 t.d*  t.d* gugus –CH3 pada cincin

aromatik senyawa lignin Wang et al. (2009) 7 1427 1427 1427 −CH2 tekuk Pushpamalar et al.

(2006) 8 1369 1369 1369 C−H asimetrik atau –OH

tekuk

Sun et al. (2005); Wang et al. (2009) 9 1319 1317 1315 C−C dan C−O Wang et al. (2009) 10 t.d* 1276 1265 −OH tekuk pada senyawa

selulosa Sun et al. (2004a) 11 t.d*  1238 1226 gugus samping -C-OH yang

terikat pada suatu cincin Wang et al. (2009) 12 t.d*  1200 1199 gugus samping -C-OH yang

terikat pada suatu cincin Wang et al. (2009) 13 1155 1155 1157 −CO antiasimetrik Sun et al. (2005) 14 1076 1056 1057 C−O−C dari suatu cincin

piranosa

Sun et al. (2004a); Sun et al. (2005)

15 898 898 894

Ikatan β-glikosida antar senyawa glukosa pada selulosa

Sun et al. (2004a); Sun et al. (2004b); Sun et al. (2005); Wang et al. (2009); 16 790 790 t.d* −OH tekuk dari gugus

siringil pada senyawa lignin Zhang et al. (2010)

Lampiran 3 Serapan vibrasi FTIR bagas tebu, pulp, dan selulosa bagas tebu

No

Bilangan Gelombang (cm-1)

Gugus Fungsi Acuan

Bagas Tebu Pulp Bagas Tebu Selulosa Bagas Tebu

1 3336 3307 3298 O−H ulur Sun et al. (2004a); Sun et al. (2005); Zhang et al. (2010) 2 2916 2893 2901 C−H ulur Sun et al. (2004a); Sun et al. (2005);

Zhang et al. (2010)

3 1732 t.d* t.d*

ikatan ester dari gugus

karboksil senyawa asam ferulat dan asam p-kumarat dari senyawa lignin dan/atau hemiselulosa

Sun et al. (2004b); Wang et al. (2009); Zhang et al. (2010) Gugus asetil dan ester uronat

dari senyawa hemiselulosa 4 1604 t.d* t.d* Cincin aromatik senyawa

lignin Zhang et al. (2010) 5 t.d* 1631 1635 H2O terjerap

Sun et al. (2004a); Sun et al. (2005); Zhang et al. (2010) 6 1512 t.d*  t.d* gugus guaiasil pada senyawa

lignin

Sun et al. (2004a); Sun et al. (2005); Zhang et al. (2010)   cincin aromatik senyawa lignin

7 1458 t.d*  t.d* gugus –CH3 pada cincin

Dokumen terkait