• Tidak ada hasil yang ditemukan

II. TINJAUAN PUSTAKA

2.7. Kegunaan Surfaktan dalam Proses EOR

Surfaktan memegang peranan penting di dalam proses Enhanced Oil

Recovery (EOR) dengan cara menurunkan tegangan antarmuka, mengubah

kebasahan (wettability), bersifat sebagai emulsifier, menurunkan viskositas dan menstabilkan dispersi sehingga akan memudahkan proses pengaliran minyak bumi dari reservoir untuk di produksi. Minyak yang terjebak di dalam pori-pori batuan disebut blobs atau ganglia. Untuk mendorong ganglia maka gaya kapilaritas dalam pori-pori harus diturunkan yakni dengan cara menurunkan nilai IFT antara minyak sisa dengan brine di dalam reservoir. Surfaktan mampu menurunkan IFT dan menurunkan saturasi minyak. Surfaktan yang berada di dalam slug harus dibuat agar membentuk micelle yaitu surfaktan yang aktif dan mampu mengikat air dan minyak pada konsentrasi tertentu. Jika konsentrasinya masih kecil, maka campuran surfaktan tersebut masih berupa monomer (belum aktif). Untuk itu setiap slug perlu diketahui critical micelles concentration (CMC) yaitu konsentrasi tertentu, sehingga surfaktan yang semula monomer berubah

menjadi micelles. Hal yang penting dalam proses penggunaan surfaktan untuk menghasilkan perolehan (recovery) minyak yang tinggi adalah: (a) memiliki IFT yang sangat rendah (minimal 10-3 dyne/cm) antara chemical bank dan residual oil dan antara chemical bank dan drive fluid, (b) memiliki kecocokan/kompatibiliti dengan air formasi dan kestabilan terhadap temperatur, (c) memiliki mobility control dan (d) kelayakan ekonomis proses (Pithapurwala et al., 1986).

Proses injeksi surfaktan perlu memperhatikan besar bilangan kapiler terhadap penurunan saturasi minyak tersisa (Sor). Biasanya reservoir yang diinjeksi surfaktan memiliki harga saturasi minyak tersisa di bawah 45% dengan harga bilangan kapiler berkisar 10-4 – 10-2, sehingga pendesakan surfaktan dapat optimal. Semakin rendah saturasi minyak tersisa pada suatu reservoir, maka semakin besar bilangan kapiler yang dibutuhkan agar pendesakan surfaktan optimal (Lake, 1989). Untuk memperbesar bilangan kapiler diperlukan tegangan antarmuka yang rendah, dengan pendekatan rumus Nc = µv/σ, dimana Nca adalah bilangan kapiler, µ adalah viskositas fluida pendesak (cP), v adalah laju injeksi fluida pendesak, dan σ adalah tegangan antarmuka (dyne/cm). Penurunan nilai tegangan antarmuka dapat dilakukan dengan menambahkan surfaktan. Surfaktan yang baik adalah mampu menurunkan nilai tegangan antarmuka hingga ultra low IFT yaitu lebih rendah dari 10-2 dyne/cm, karena pada kondisi tersebut maka capillary number (Nc) akan semakin tinggi sehingga recovery factor (RF) juga akan makin meningkat. Grafik hubungan bilangan kapiler terhadap saturasi minyak tersisa (Sor) disajikan pada Gambar 6.

27

Menurut Syahrial (2008), proses screening surfaktan di laboratorium perlu dilakukan sebelum aplikasi surfaktan dilakukan di lapangan, dengan tujuan untuk mencari surfaktan yang memiliki kinerja sesuai untuk aplikasi di reservoir yang diujikan. Beberapa parameter yang diuji pada tahapan proses screening surfaktan meliputi uji tegangan antarmuka (interfacial tension, IFT), kompatibilitas (compatibility), kelakuan fasa (phase behavior), ketahanan panas (thermal stability), laju alir filtrasi (filtration flow test), dan adsorpsi. IFT merupakan parameter terpenting untuk chemical EOR ((Nedjhioui et al., 2005). Uji kompatibilitas dilakukan bertujuan untuk mengetahui kecocokan antara larutan surfaktan dengan air formasi dari reservoir yang diujikan. Uji dilakukan dengan mencampurkan larutan surfaktan pada air formasi pada perbandingan tertentu kemudian dipanaskan pada suhu reservoar selama waktu tertentu. Makin kompatibel larutan surfaktan yang diujikan maka surfaktan makin efektif dalam menurunkan tegangan antarmuka.

Kelakuan fasa menunjukkan pola kesetimbangan fasa dalam menentukan konsentrasi dan formula sistem surfaktan/air/minyak, yang diidentifikasi

menggunakan ternary diagram. Kemungkinan yang dapat terjadi adalah

terbentuk fasa atas, fasa tengah dan fasa bawah. Menurut Purnomo dan Makmur (2009), sebelum dilakukan peningkatan perolehan minyak (EOR) secara metode injeksi, sangat penting terlebih dahulu dilakukan uji kelakuan fasa dari campuran minyak-surfaktan-cosurfaktan-air. Faktor-faktor yang mempengaruhi perubahan fasa dari fasa bawah ke fasa tengah dan kemudian ke fasa atas dalam sistem minyak/surfaktan/co-surfaktan/air injeksi adalah sebagai berikut : meningkatnya salinitas, berkurangnya panjang rantai hidrokarbon (minyak), meningkatnya konsentrasi alkohol (C4, C5, C6), turunnya suhu, bertambahnya konsentrasi

surfaktan, meningkatnya perbandingan brine/minyak, dan meningkatnya

perbandingan larutan surfaktan/minyak. Surfaktan yang diinginkan untuk injeksi adalah memiliki fasa bawah atau fasa tengah.

Menurut Healy dan Reed (1974), konsentrasi NaCl sangat berpengaruh terhadap tegangan antarmuka, sebagai berikut : (a) pada konsentrasi NaCl yang rendah akan membentuk fasa bawah dimana mikroemulsi cenderung berbaur dengan air formasi. Surfaktan/brine/oil membentuk dua fasa, dengan kelarutan air

formasi dan minyak adalah Vw/Vs > Vo/Vs, dan disebut type II-, (b) Fasa tengah merupakan fasa yang ideal dimana dalam fasa ini akan memberikan nilai tegangan antarmuka yang paling rendah, dengan surfaktan/brine/oil membentuk tiga fasa yaitu mikroemulsi, air formasi dan minyak. Pada kondisi ini kelarutan air formasi dan minyak adalah Vw/Vs = Vo/Vs, dan disebut type III, dan (c) pada konsentrasi NaCl yang tinggi membentuk fasa atas dimana mikroemulsi cenderung berbaur dengan minyak. Surfaktan/brine/oil membentuk dua fasa dengan kelarutan air formasi dan minyak adalah Vw/Vs < Vo/Vs, dan disebut type II+. Peningkatan konsentrasi NaCl dapat menurunkan tegangan antarmuka mikroemulsi-minyak, sementara tegangan antarmuka mikroemulsi-air akan naik. Pada kondisi salinitas optimum akan diperoleh nilai tegangan antarmuka yang paling rendah. Perubahan kelakuan fasa dengan terjadinya perubahan salinitas disajikan pada Gambar 7.

Gambar 7. Perubahan kelakuan fasa akibat perubahan salinitas (Sheng, 2011)

Uji ketahanan panas dilakukan untuk mengetahui pengaruh panas (suhu reservoir) terhadap kinerja surfaktan. Pengujian ketahanan panas simultan dengan uji tegangan antarmuka, dimana diharapkan hingga pemanasan selama periode waktu tertentu nilai IFT larutan surfaktan tetap stabil atau menurun dan tidak mengalami peningkatan. Uji filtrasi bertujuan untuk menentukan kemungkinan presipitasi oleh larutan surfaktan yang dikhawatirkan dapat

29

menyumbat pori-pori reservoir. Uji adsorpsi dilakukan untuk menentukan jumlah surfaktan yang hilang selama larutan surfaktan dialirkan ke batuan core. Surfaktan yang umum dipakai dalam proses EOR adalah sodium sulfonat yang ionik bermuatan negatif.

Larutan surfaktan yang biasa digunakan di lapangan untuk pendesakan minyak sisa hasil pendorongan air, terdiri dari komponen surfaktan, air, minyak dan alkohol sebagai co-surfaktan. Perawatan sumur dengan surfaktan biasanya kombinasi dari surfaktan anionik dan nonionik. Surfaktan anionik dan kationik seharusnya tidak digunakan bersama sebab kombinasi keduanya dapat menghasilkan endapan. Surfaktan dapat terserap oleh padatan untuk menggantikan surfaktan yang terserap sebelumnya, dan memberikan padatan sifat kebasahan. Surfaktan nonionik lebih serba guna dari semua surfaktan yang digunakan pada stimulasi sumur sebab molekulnya yang tidak terionisasi atau tidak terurai. Umumnya surfaktan nonionik adalah ethylene oxide atau campuran propylene oxide. Karena larut dalam air, nonionik berhubungan dengan ikatan hidrogen atau air pengikat oksigen. Pengikat ini menurunkan temperatur dan konsentrasi garam. Molekul surfaktan amfoter mengandung asam dan basa. Dalam pH asam, bagian molekul basa terionisasi dan memberikan aktivitas permukaan untuk molekul. Pada pH basa, bagian molekul asam dinetralkan dan biasanya kurang mempunyai aktivitas permukaan daripada pH basa. Surfaktan amfoter memiliki kegunaan yang terbatas tetapi dapat digunakan sebagai corrosion inhibitor (Lake, 1989).

Beberapa faktor yang mempengaruhi efektifitas surfaktan adalah sebagai berikut (Lake, 1989) :

1. Adsorpsi

Adsorpsi surfaktan pada batuan reservoir merupakan parameter yang harus dipertimbangkan dalam injeksi surfaktan. Hal ini merupakan masalah yang serius yang akan mengakibatkan berkurangnya slug surfaktan pada saat injeksi surfaktan berlangsung. Penyerapan surfaktan pada batuan reservoir sangat tinggi bila berat ekivalen surfaktan tinggi. Sebaliknya, bila berat ekivalen surfaktan rendah, penyerapan surfaktan pada batuan reservoir akan rendah juga. Hal ini yang menyebabkan terjadinya pemisahan surfaktan

karena semakin jauh dari titik injeksi maka berat ekivalen surfaktan akan semakin kecil dan fungsi zat aktif permukaan akan semakin berkurang. Berat ekivalen surfaktan yang tinggi sangat mempengaruhi penurunan dari tegangan antarmuka sehingga penurunan berat ekivalen surfaktan secara bertahap akan

menurunkan kemampuan slug surfaktan untuk mendorong minyak yang

tersisa di batuan reservoir.

2. Konsentrasi Slug Surfaktan

Konsentrasi slug surfaktan mempunyai pengaruh besar terhadap terjadinya adsorpsi oleh batuan reservoir pada operasi pendesakan surfaktan. Agar batuan reservoir tidak dapat lagi mengadsorpsi surfaktan maka adsorpsi surfaktan harus diperbesar dengan cara meningkatkan konsentrasi surfaktan. Semakin tinggi konsentrasi surfaktan, adsorpsi yang terjadi akan semakin besar dan penurunan tegangan antarmuka minyak-air terus berlangsung sampai batuan reservoir mencapai titik jenuh. Surfaktan dengan konsentrasi tinggi dapat lebih cepat meningkatkan perolehan minyak dibandingkan dengan surfaktan dengan konsentrasi rendah.

3. Kandungan Lempung

Mineral lempung adalah mineral yang sangat suka dengan air (hidrofilik), namun mineral ini tidak mempunyai kemampuan untuk mengalirkan air yang diserapnya, atau dapat dikatakan bahwa mineral lempung mempunyai permeabilitas yang sangat kecil. Pada injeksi surfaktan, kandungan mineral lempung dalam reservoir harus diperhatikan. Karena sifatnya yang suka dengan air maka mineral lempung dapat menyerap atau mengadsorpsi surfaktan besar sekali, sehingga dapat menyebabkan penurunan perolehan minyak. Untuk reservoir yang mempunyai salinitas rendah, maka pengaruh lempung ini sangat dominan.

4. Salinitas Air Formasi

Salinitas air formasi juga berpengaruh terhadap penurunan tegangan antarmuka minyak-air oleh surfaktan. Untuk konsentrasi garam tertentu,

31

seperti NaCl akan menyebabkan penurunan tegangan antarmuka minyak-air sehingga tidak efektif lagi. Hal ini disebabkan oleh ikatan kimia yang membentuk NaCl adalah ikatan ion yang mudah terurai menjadi ion Na+ dan Cl- begitu juga dengan molekul-molekul surfaktan di dalam air akan mudah terurai menjadi ion RSO3- dan H+. Alkali merupakan salah satu chemical penting dalam proses EOR, khususnya untuk aplikasi alkaline flooding, yang ditambahkan ke air pada proses water flooding untuk memisahkan minyak dari pori-pori batuan reservoir dan memobilisasi globula yang terperangkap dalam pori-pori. Jenis dan konsentrasi yang digunakan bermacam-macam, seperti KOH, NaOH 0 - 1,6 % (w/w) (Nedjhioui et al., 2005), dan Na2CO3 0 - 0,6 % (Carrero et al., 2006).

Kandungan minyak awal merupakan indikator kuantitas yang baik dari reservoir untuk menentukan kandungan sisa minyak. Untuk implementasi di lapangan, kandungan minyak awal tidak boleh kurang dari 20% PV sampai 30% PV. Adapun kondisi yang kurang baik untuk dilakukannya injeksi surfaktan yaitu pada kondisi reservoir yang sangat heterogen, reservoir yang berlapis-lapis, adanya mineral lempung montmorillonite, terdapat patahan atau rekahan, permeabilitas dan porositas yang kecil, adanya ion bervalensi dua dengan konsentrasi yang tinggi dan reservoir yang terlalu dalam. Bansal dan Shah (1978) telah meneliti pengaruh pemanfaatan surfaktan ethoxylated sulfonate sebagai co-surfaktan dan alkohol sebagai pelarut terhadap toleransi garam dan salinitas optimal dari formulasi surfaktan petroleum sulfonat untuk EOR. Pada salinitas optimal dengan penambahan NaCl sebesar 32%, formulasi surfaktan yang dihasilkan memberikan kisaran nilai IFT sangat rendah (ultra-low interfacial tension) berkisar 10-2 - 10-3 dyne/cm.

Untuk stimulasi sumur minyak bumi telah dimanfaatkan surfaktan fosfat ester dengan nomor US Patent 4541483. Fosfat ester atau Alkyland aralkyl polyoxyalkylene phosphate dapat diinjeksikan ke sumur minyak bumi baik sebagai pelarut yang bersifat dapat larut pada air (water soluble) maupun minyak (oil soluble), dan dikenal sebagai surfaktan untuk aplikasi water-flood secondary recovery processes. Meskipun hingga saat ini surfaktan MES yang ada peruntukannya masih terbatas pada formulasi produk deterjen dan bahan

pembersih, namun peluang untuk memanfaatkan surfaktan MES pada aplikasi EOR cukup besar melihat dari hasil penelitian Hambali et al. (2008) dan Hambali et al. (2009). Hambali et al. (2008) telah mengembangkan formula oil well stimulation agent dengan menggunakan surfaktan MES yang terbuat dari metil ester C12 dari PKO dengan menggunakan reaktan NaHSO3. Formula tersebut terdiri atas 70% MES (bahan dasar minyak sawit), 20% pelarut, 7% surfaktan nonionik dan 3% co-solvent. Hasil pengujian pada konsentrasi stimulation agent 0,5% dan 1% dengan tingkat salinitas 10.000, 20.000 dan 30.000 ppm, menunjukkan bahwa IFT minyak-air mencapai 10-3dyne/cm. Total recovery minyak bumi menggunakan core standar (core sintetik) pada skala laboratorium memperlihatkan bahwa pada konsentrasi stimulation agent 0,5% berkisar 88 - 94%. Hambali et al. (2009) memanfaatkan surfaktan MES untuk aplikasi huff and puff pada batuan pasir skala laboratorium, dimana diperoleh formula dengan tegangan antarmuka berkisar 10-2 - 10-3 dyne/cm pada salinitas optimal 10.000 ppm.