• Tidak ada hasil yang ditemukan

BAB V. KESIMPULAN DAN SARAN

A. Kesimpulan

Berdasarkan hasil pembahasan di atas dapat diambil kesimpulan sebagai berikut :

1. Ni/Al-hidrotalsit dapat diaplikasikan sebagai katalis dalam reaksi isomerisasi eugenol menggunakan pemanasan gelombang mikro.

2. Kenaikan daya gelombang mikro meningkatkan pembentukkan trans-isoeugenol tetapi tidak pada pembentukkan cis-trans-isoeugenol.

3. Kenaikan waktu reaksi isomerisasi meningkatkan pembentukkan trans-isoeugenol tetapi tidak pada pembentukkan cis-trans-isoeugenol.

B. Saran

Berdasarkan penelitian yang telah dilakukan penulis memberikan saran, perlu dilakukan penelitian lanjutan tentang pemurnian isoeugenol hasil reaksi isomerisasi eugenol dengan katalis Ni/Al-hidrotalsit menggunakan pemanasan gelombang mikro.

DAFTAR PUSTAKA

Ahn, 2006, Hydrotalcite, Departement of Chemical Engineering, Inha University, (http://www.cheric.org/ippage/p/pdata/2006/11/file/p200611/801.pdf), diakses 24 Agustus 2009.

Aini, N., B. Purwono, dan I. Tahir, 2007, Analisis Hubungan Struktur-Aktivitas Antioksidan dari Isoeugenol, Eugenol, Vanilin, dan Turunannya, Indo. J. Chem., Vol. 7 (1), hlm. 61-66.

Arrhenius, G.O. , 2003, “Crystal & Life”, Helv Chim Acta, Vol. 86, p. 1569-1584. Baby,C., 1997, “Isomerization of Safrole and Eugenol”, Syn. Comm, Vol. 27 (24),

p. 4335-4340.

Bish, D., and Brindley, 1977, “Joint Committee on Powder Difraction Standar (JCPDS)”, Am. Mineral, Vol. 62, No.15-0087, p. 458.

Bonvin, N., 2007, Material Safety Data Sheet NT 0039, (http:// www.pdsa.ch.pdf), diakses tanggal 26 Oktober 2009.

Braterman, P. S., Z. Ping Xu, and F. Yarberry, 2004, Layered Double Hydroxides (LDHs), Texas, U.S.A. : Marcel Dekker, Inc.

Chemat-Djenni, Z., B. Hamada, and F. Chemat, 2007, “Atmospheric Pressure Microwave Assisted Heterogeneous Catalytic Reactions”, Molecules, Vol.12, p. 1399-1409.

Egloff, G., G.Hulla, and Komasewsky VI, 1942, Isomerization of Pure Hydrocarbons, New York : Reinhold.

Fessenden, R.J. and , J.S. Fessenden., 1986, Organic Chemistry, Third Edition, California : Wadsworth Inc, Alih Bahasa: Kimia Organik, A.H. Pudjaatmaka, Jakarta : Erlangga, hlm. 67-69.

Givaudan, L., 1977, Process for The Preparation of Isoeugenol, Patent Specification 1 489 451, London : The Patent Office.

He, Jing, Ming Wei, Bo Li, Yu Kang, David G. Evan, and Xue Daun, 2005, “Preparation of Layered Double Hydrixides”. Struct Bond, (Online), Vol. 119, p. 89-119.

Hidayat, T.,dan Edy Mulyono, 2006, “Konversi Eugenol dari Minyak daun Cengkeh menjadi Isoeugenol dengan Pemanasan Gelombang Mikro”, Dalam Budi Arifin, Tuti Wukirsari, Steven Gunawan, dan Wulan Tri Wahyuni (Eds), Prosiding Seminar Nasional Himpunan Kimia Indonesia

(hlm 312-322), Bogor: Departemen Kimia FMIPA Institut Pertanian Bogor.

Huheey, J.E.,1978, Inorganic Chemistry : principle of Structure and Reactivity, Second Edition ,New York : Harper & R Publishing Inc.

Indesso, 2006, Eugenol and Isoeugenol Specification, Jakarta : Indesso Aroma. Juaristi, E., 1991, Introduction to Stereochemistry and Conformation Analysis,

New York : Wiley-Interscience, page 115-116.

Kadarohman, A., 1994, Mempelajari Mekanisme dan Kontrol Reaksi Isomerisasi Eugenol Menjadi Isoeugenol, Tesis, Program Pascasarjana UGM, Yogyakarta

Kadarohman, A. dan M. Muchalal, 2003, Kinetika Reaksi Isomerisasi Eugenol, (http://edupreneur.upi.edu/media.php?module=abs&ki_id=68), diakses 19 Januari 2010.

Kishore, D., and S. Kannan, 2002, “Isomerization of Eugenol and Safrol Over Mg-Al Hydrotalcite, A Solid Base Catalist”, Green Chem., Vol. 4, p. 607-610.

Kishore, D., and S. Kannan, 2004. “Double Bond Migration of Eugenol to Isoeugenol Over as-Synthesized Hydrotalcites and Their Modification Form”. Appl. Catal. A-gen, Vol. 270, p. 227-235.

Kloprongge, J.T., L. Hickey, and R.L. Frost, 2004, “The Effects of Synthesis PH and Hydrothermal Treatment on The Formation of Zink Aluminium Hydrotalcites, J. Solid State Chem, 177, 4047

Kloprongge, J.T., J. Kristof, and R.L. Frost, 2001, “Thermogravimetric Analysis-mass spectrometry (TGA-MS) of Hydrotalcite Containing CO3 2-, NO3 -, Cl -, SO4 2-, or ClO4 –“, Dalam E. Dominguez, G. Mas and F. Cravero (Eds), A Clay Odyssey, Proceedings of The 12th International Clay Conference, Argentina : Bahai-Blanca.

Lakraimi, M., A. Legrouri, A. Barroung, A. De Roy, and J.P. Besse, 2000, “Preparation of A New Stable Hybrid Material by Chloride-2,4-dichlorophenoxyacetate Ion Exchange into The Zinc-aluminium-chloride Layered Double Hydroxyde”, J. Mater. Chem, 10, p. 1007-1011.

Lee, J.D., 1991, Concise Inorganic Chemistry, 4 th Edition, London : Chapman and Hall.

Lidström P., J. Tierney, B. Wathey, and J. Westman, 2001, “Microwave Assisted Organic Synthesis-a Review”, Tetrahedron, Vol. 57, p. 9225-9232. March, J., 1968, Advanced Organic Chemistry : Reaction, Mechanism, and

Structure, Tokyo : McGrow-Hill Kogakusha, Ltd, p. 94-97.

Miyata, S.,1983, “Anion-Exchange Properties of Hydrotalcite Compounds”. Clay Clay Miner, vol. 31, No. 4, p. 305-311.

Newman, S.P. and W. Jones, 1998, “Synthesis, Characterization and Aplication of Layered Double Hydroxides Containing Organic Guests”, New J. Chem, p. 105-115.

Orthman, J., Zhu, H. Y. And Lu, G. Q., 2000, Use of Anion Clay Hydrotalcite to Remove Coloured Organics from Aqueous Solutions, Brisbane : University of Quennsland

Perreux, L., and A. Loupy, 2001, “A tentative Rationalization of Microwave Effects in Organic Synthesis According to The Reaction medium, and mechanistic Considerations”, Tentrahedron, Vol. 57, p. 9199-9223. Physical & Theoretical Chemistry Lab., 2007, Safety Data for Isoeugenol,

(http://msds.chem.ox.ac.uk/IS/isoeugenol.html), diakses 12 November 2009.

Ramtohul, Y. K., 2003, “Microwave in Organic Chemistry”, (Online), http://stoltz.caltech.edu/itmtg/2003/yeeman_lit/6_11_03.pdf, diakses tanggal 6 September 2008.

Rajamathi, M., G. Thomas and P.V. Kamathi, 2001, “The Many Ways of Making Anionic Clays”, Chem Sci, Vol. 113, No. 5 & 6, p. 671-680.

Sastrohamidjojo, H, 2004, Kimia Minyak Atsiri. Yogyakarta : Gajah Mada University Press.

Sastrohamidjojo, H, 2005, Kromatografi. Edisi Kedua, Cetakan Ketiga. Yogyakarta : Liberty.

Sciencelab.com, Inc., Material Safety Data Sheet Eugenol, 2008, (http://www.sciencelab.com/xMSDS/Eugenol/9924007.pdf), diakses tanggal 2 Agustus 2009.

Sharma SK, Srivastava V.K., Jasra R.V., 2006, “Selective Double Bond Isomerization of Allyl Phenyl Ethers Catalyzed by Ruthenium Metal Complexes”, J.Mol. Catal .A-Chem. Vol. 245, p. 200-209.

Silverstein R.M., 1981, Spectrometric Identification of Organic Compound, Fourth Edition, California : Hohn Wiley & Sons Inc., Alih bahasa : Penyelidikan Spektroskopi Senyawa Organik, A.J. Hartomo dan A.V. Purba, Edisi IV, Jakarta : Erlangga, hlm. 95-105; 181-212.

Skoog, D.A. , F.J. Holler and T.A. Nieman, 1985, Principle of Instrumental Analysis, 5 th Edition, New York : Sounders Collage Publishing.

Soesanto, H, 2006, Pembuatan Isoeugenol dari Eugenol Menggunakan Pemanasan Gelombang Mikro, Bogor : Fakultas Teknologi Pertanian , Institut Pertanian Bogor. Skripsi tidak dipublikasikan.

Solomon, T.W.G., 1988, Organic Chemistry, Fourth Edition, New York : John Wiley & Sons, p.150-151.

Stuerga, D., 2006, Microwave–Material Interactions and Dielectric Properties, Key Ingredients for Mastery of Chemical Microwave Processes, Dalam A. Loupy (Ed), Microwaves in Organic Synthesis, Second edition, Weinheim : WILEY-VCH Verlag GmbH & Co. KgaA.

Sudjadi, 1985, Penentuan Struktur Senyawa Organik, Jakarta : Ghalia Indonesia. Tan, K. H., 1982, Principles of Soil Chemistry, New York : Marchel Decker Inc.,

Alih Bahasa: Dasar-dasar Kimia Tanah, D.H. Goenadi. 1991, Yogyakarta: Universitas Gadjah Mada,

Taylor, M., and B.S. Atri, 2005, Developments in Microwave Chemistry, India : Evalueserve. P. 5-11.

Thach, L.N. and C.R. Strauss, 2000, “Isomerization of Some Allylbenzenes in A Microwave Batch Reactor”, J. Chem., Vol. 38, No. 1, p. 76-79.

Titulaer, M.K., J.B.H. Jansen, and J.W. Geus, 1994, “The Quantity of Reduced Nickel in Synthetic Takovite : Effect of Prepartion Condition and Calcination Temperature”, Clay Clay Miner., Vol. 42, No. 3, p. 249-258. West, A. R., 1992, Solid State Chemistry and Its Applications, New York : John

Willey and Sons

Willard, Merritt, Dean, and Settle, 1988, Instrumental Method of Analysis, 7th Edition, California : Wadsworth Pub. Co.

Windholhz, 1976, The Merck Index, ninth edition, USA : Merck & Co.Inc, Ranway, N.J., 511, 678.

Wright, J, 2002, Removal of Organic Colours From Row Water Using Hydrotalcite, Brisbane : University of Queensland.

Xie, X., An, X., Wang, X., and Wang, Z., 2003, “Preparation, Characterization ang Application of ZnAlLa-Hydrotalcite-Like Compounds”, J. Nat. Gas. Chem, Vol.12, No. 4, 259-263

Yang, Zhiqiang, Kwang-Min Choi, Nanzhe Jiang, and Sang-Eon Park, 2007, “Microwave Synthesis of Hydrotalcite by Urea Hydrolysis”, Bull. Korean Chem. Soc, Vol. 28, No. 11, p. 2029-2033.

LAMPIRAN 1. Desain Penelitian

Sintesis Katalis Ni/Al-Hidrotalsit

Karakterisai Katalis ( XRD)

Aplikasi Katalis dalam Reaksi Isomerisasi Eugenol

Variasi Daya (300, 400, 500 watt)

Variasi Waktu Kontak ( 30, 40, 50, 60 menit)

Penentuan Daya Optimum Penentuan Waktu Kontak

Optimum

Analisa GC Senyawa Reaktan

LAMPIRAN 2. Skema Pembuatan Katalis Ni/Al-hidrotalsit

200 mmol NiCl2.6H2O 50 mmol AlCl3.6H2O

400 mL Na2CO3

400 mmol 200 mL akuades

diaduk dengan magnet stirer

Dilarutkan

tetes per tetes dengan kecepatan 5 mL/menit Dijaga pH 10 NaOH 1 M Suspensi Larutan T 60-63 °C , 1 jam didiamkan diaduk dengan magnet stirer T 60-63 °C , 18 jam Endapan terpisah disaring Endapan akuades

Sampai bebas ion Cl

-Endapan bebas ion Cl- Tidak terbentuk AgCl AgNO3 1 M

dioven pada T 80 oC ,16 jam

Endapan kering

dikalsinasi pada T 263 °C,1 jam

Katalis Ni/Al-hidrotalsit dihaluskan

LAMPIRAN 3. Perhitungan Pembuatan Larutan

1. NiCl2.6H2O 200 mmol:

Mr NiCl2.6H2O = 58,710 + (2 X 35,453) + (6 X 18,015) = 237,706 g/mol Massa NiCl2.6H2O = mol NiCl2.6H2O X Mr NiCl2.6H2O

= 0,2 mol X 237,706 g/mol = 47,541 g

2. AlCl3.6H2O 50 mmol :

Mr AlCl3.6H2O = 26,982 + (3 X 35,453) + (6 X 18,015) = 241,431 g/mol Massa AlCl3.6H2O = mol AlCl3.6H2O X Mr AlCl3.6H2O

= 0,05 mol X 241,431 g/mol = 12,072 g 3. Na2CO3 400 mmol : Mr Na2CO3 = (2 X 22,990) + 12,011 + (3 X 15,999) = 105,988 g/mol Massa Na2CO3 = mol Na2CO3 + Mr Na2CO3 = 0,4 mol X 105,988 g/mol = 42,395 g 4. NaOH 1 M sebanyak 400 mL : Mr NaOH = 22,990 + 15,999 + 1,008 = 39,997 Massa NaOH = V NaOH X M NaOH X Mr NaOH

= 0,4 L X 1 mol/L X 39,997 g/mol = 15,999 g

5. AgNO3 0,1 M :

Mr AgNO3 = 107,870 + 14,007 + (3 X 15,999) = 169,874 g/mol Massa AgNO3 = V AgNO3 X M AgNO3 X Mr AgNO3

= 0,01 L X 0,1 mol/L X 169,874 g/mol = 0,170 g

LAMPIRAN 4. Data X-Ray Diffraction (XRD) Ni/Al-hidrotalsit Hasil Sintesis

Peak Search Report (17 Peaks, Max P/N = 7.3) [Ni-Al Hidrotalsite-sebelum.raw] Ni-Al Hidrotalsite

PEAK: 47-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%, BG=3/1.0, Peak-Top=Summit

2-Theta d(Å) BG Height I% Area I% FWHM 4,989 17,6986 68 8 2,6 16 0,1 0,1 10,011 8,8281 75 107 34,3 1980 9,8 0,296 11,48 7,7017 140 312 100 20128 100 1,097 15,012 5,8967 29 6 1,9 12 0,1 0,1 19,96 4,4447 34 3 1 6 0 0,1 22,78 3,9005 101 111 35,6 5096 25,3 0,78 24,98 3,5617 38 5 1,6 10 0 0,1 29,98 2,9781 27 3 1 6 0 0,1 34,191 2,6203 42 101 32,4 2474 12,3 0,416 34,86 2,5716 115 84 26,9 4334 21,5 0,877 35,001 2,5615 127 63 20,2 3130 15,6 0,795 39,038 2,3054 84 29 9,3 1369 6,8 0,755 39,98 2,2532 91 3 1 6 0 0,1 44,98 2,0137 61 2 0,6 4 0 0,1 46,306 1,9591 68 19 6,1 612 3 0,515 50,009 1,8223 46 7 2,2 14 0,1 0,1 55 1,6682 26 7 2,2 14 0,1 0,1

LAMPIRAN 5. Data JCPDS Ni/Al-hidrotalsit (Takovite) PDF#15-0087: QM=Indexed(I); d=Debye-Scherrer(114.6mm); I=Film/Visual Takovite

Ni6 Al2 ( O H )16 ( C O3 , O H ) !4 H2 O Blue-green Radiation=CuKa Lambda=1.5418 Filter=

Calibration= 2T=11.727-149.602 I/Ic(RIR)= Ref: Bish, D., Brindley.

Am. Mineral., v62 p458 (1977)

Rhombohedral - Powder Diffraction, R-3m (166) Z=0.375 mp= CELL: 3.025 x 3.025 x 22.595 <90.0 x 90.0 x 120.0> P.S=hR7 (?)

Density(c)=2.790 Density(m)=2.700 Mwt=810.35 Vol=179.06 F(30)=11.2(0.064,42/1) Ref: Ibid.

Strong Lines: 7.54/X 2.55/8 3.77/7 2.27/7 1.92/6 1.51/5 1.48/5 1.40/3 1.26/3 1.71/3 NOTE: Specimen from Takovo, Serbia, Yugoslavia.

2-Theta d(Å) I(f) ( h k l) Theta 1/(2d) 2pi/d n^2 11.727 7.5400 100.0 ( 0 0 3) 5.864 0.0663 0.8333 23.579 3.7700 70.0 ( 0 0 6) 11.790 0.1326 1.6666 34.385 2.6060 5.0 ( 1 0 1) 17.192 0.1919 2.4110 35.121 2.5530 80.0 ( 0 1 2) 17.561 0.1958 2.4611 37.817 2.3770 15.0 ( 1 0 4) 18.908 0.2103 2.6433 39.709 2.2680 70.0 ( 0 1 5) 19.854 0.2205 2.7704 44.438 2.0370 10.0 ( 1 0 7) 22.219 0.2455 3.0845 47.279 1.9210 60.0 ( 0 1 8) 23.639 0.2603 3.2708 48.157 1.8880 1.0 ( 0 0 12) 24.078 0.2648 3.3280 53.512 1.7110 25.0 ( 1 0 10) 26.756 0.2922 3.6722 56.896 1.6170 20.0 ( 0 1 11) 28.448 0.3092 3.8857 61.209 1.5130 50.0 ( 1 1 0) 30.604 0.3305 4.1528 62.585 1.4830 50.0 ( 1 1 3) 31.292 0.3372 4.2368 64.276 1.4480 20.0 ( 1 0 13) 32.138 0.3453 4.3392 66.546 1.4040 30.0 ( 1 1 6) 33.273 0.3561 4.4752 68.196 1.3740 15.0 ( 0 1 14) 34.098 0.3639 4.5729 72.608 1.3010 25.0 ( 2 0 2) 36.304 0.3843 4.8295 73.460 1.2880 3.0 ( 1 1 9) 36.730 0.3882 4.8783 75.442 1.2590 30.0 ( 2 0 5) 37.721 0.3971 4.9906 76.588 1.2430 20.0 ( 1 0 16) 38.294 0.4023 5.0549 78.765 1.2140 5.0 ( 0 2 7) 39.383 0.4119 5.1756 80.676 1.1900 15.0 ( 2 0 8) 40.338 0.4202 5.2800 85.665 1.1330 5.0 ( 0 2 10) 42.833 0.4413 5.5456 88.387 1.1050 10.0 ( 2 0 11) 44.194 0.4525 5.6861 90.673 1.0830 2.0 ( 1 0 19) 45.336 0.4617 5.8016 92.763 1.0640 1.0 ( 1 1 15) 46.381 0.4699 5.9053 94.972 1.0450 5.0 ( 0 2 13) 47.486 0.4785 6.0126 98.472 1.0170 2.0 ( 2 0 14) 49.236 0.4916 6.1782 102.701 0.9863 10.0 ( 1 2 2) 51.350 0.5069 6.3705 105.685 0.9665 15.0 ( 1 2 5) 52.843 0.5173 6.5010 109.026 0.9460 2.0 ( 2 1 7) 54.513 0.5285 6.6418 111.208 0.9335 10.0 ( 1 2 8) 55.604 0.5356 6.7308 116.446 0.9061 5.0 ( 2 1 10) 58.223 0.5518 6.9343 119.610 0.8912 5.0 ( 1 2 11) 59.805 0.5610 7.0503 123.777 0.8733 3.0 ( 3 0 0) 61.889 0.5725 7.1948 125.356 0.8670 5.0 ( 3 0 3) 62.678 0.5767 7.2470 127.271 0.8597 3.0 ( 2 1 13) 63.635 0.5816 7.3086 129.801 0.8506 2.0 ( 3 0 6) 64.900 0.5878 7.3868 131.448 0.8450 1.0 ( 1 2 14) 65.724 0.5917 7.4357 138.247 0.8244 2.0 ( 3 0 9) 69.124 0.6065 7.6215 144.315 0.8092 2.0 ( 0 2 22) 72.158 0.6179 7.7647 149.602 0.7982 2.0 74.801 0.6264 7.8717

LAMPIRAN 6. Perbandingan Harga d Sample dengan Standar Ni/Al-HT Sample standar d(Å) Height d(Å) Height selisih d 17,6986 8 8,8281 107 7,7017 312 7,54 100 0,1617 5,8967 6 4,4447 3 3,9005 111 3,77 70 0,1305 3,5617 5 2,9781 3 2,6203 101 2,606 5 0,0143 2,5716 84 2,5615 63 2,553 80 0,0085 2,3054 29 2,377 15 -0,0716 2,2532 3 2,268 70 -0,0148 2,0137 2 2,037 10 -0,0233 1,9591 19 1,921 60 0,0381 1,8223 7 1,888 1 -0,0657 1,6682 7 1,711 25 -0,0428

LAMPIRAN 7. Perhitungan Persentase Kandungan Ni/Al-hidrotalsit (Takovite)

1. Kemurnian Ni/Al-hidrotalsit (takovite) dalam Sampel Kemurnian takovite = I takovite dalam sampel X 100 %

I total sampel = 654 X 100 % 870

LAMPIRAN 9. Data Hasil IR dari SDBS

Welcome to Spectral Database for Organic

Compounds, SDBS.

This is a free site organized by National Institute of Advanced Industrial Science and Technology (AIST), Japan.

SDBS

Information

SDBS No.: 91 Compound Name: eugenol Molecular Formula: C10H12O2 Molecular Weight: 164.2

CAS Registry No.:

97-53-0

LAMPIRAN 10. Kondisi Kromatografi Gas Hewlett Pacard 5890 Series II

Kromatografi gas yang digunakan adalah kromatografi gas Hewlett Pacard 5890 Series II, dengan kondisi analisa sebagai berikut :

Jenis Kolom : HP 5 Suhu Kolom

Suhu Awal : 120 °C Suhu Akhir : 280 °C Waktu Awal : 2 menit Kenaikan Suhu : 10°C / menit Jenis Detektor : FID

Suhu detektor : 300 °C Suhu Injektor : 280 °C Gas pembawa : Helium Total Flow : 80 Split (Kpa) : 60 Jumlah Injeksi : 0,06 μL

LAMPIRAN 13. Data Kromatografi Gas Hasil Reaksi pada Daya 500 watt, Waktu Reaksi 30 menit, dengan Katalis Ni/Al-hirotalsit

LAMPIRAN 14. Data Kromatografi Gas Hasil Reaksi pada Daya 500 watt, Waktu Reaksi 40 menit, dengan Katalis Ni/Al-hirotalsit

LAMPIRAN 15. Data Kromatografi Gas Hasil Reaksi pada Daya 500 watt, Waktu Reaksi 50 menit, dengan Katalis Ni/Al-hirotalsit

LAMPIRAN 16. Data Kromatografi Gas Hasil Reaksi pada Daya 500 watt, Waktu Reaksi 60 menit, dengan Katalis Ni/Al-hirotalsit

LAMPIRAN 17. Data Kromatografi Gas Hasil Reaksi pada Daya 400 watt, Waktu Reaksi 60 menit, dengan Katalis Ni/Al-hirotalsit

LAMPIRAN 18. Data Kromatografi Gas Hasil Reaksi pada Daya 300 watt, Waktu Reaksi 60 menit, dengan Katalis Ni/Al-hirotalsit

LAMPIRAN 19. Data Kromatografi Gas Hasil Reaksi pada Daya 500 watt, Waktu Reaksi 60 menit, Tanpa Katalis Ni/Al-hirotalsit

LAMPIRAN 20. Data Kromatografi Gas Hasil Reaksi pada Daya 400 watt, Waktu Reaksi 60 menit, dengan Katalis Ni/Al-hirotalsit, dengan Teknik Spiking

Dokumen terkait