• Tidak ada hasil yang ditemukan

Produksi biochar menggunakan slow pyrolysis diakibatkan oleh terjadinya proses dekomposisi dan karbonisasi senyawa bioplimer dari biomassa, semakin tinggi suhu pirolisis maka produk biochar akan semakin sedikit. Hal tersebut terjadi karena pada suhu tinggi, senyawa biopolimer akan berubah menjadi gas dan menghasilkan biooil ketika adanya proses kondensasi

Kandungan pada pupuk biochar yang dipirolisis dengan suhu 4500C memiliki kandungan karbon yang tinggi 91,47%w dan rasio C/N yang cukup stabil yaitu 12,97 yang menandakan bahwa kekuatan biochar dalam menjaga kandungan mineral tanah dan mampu meningkatkan jumlah C organik tanah sebagai media penyerapan gas CO2 di udara. Selain itu, struktir fisik dari biochar yang porinya cendurung sarang akan membuat pertumbuhan mikroba pada tanah semakin meningkat sehingga produksi nutrisi tumbuhan pada tanah (Nitrat) akan melimpah dan membuat perumbuhan tanaman semakin baik.

Penggunaan pupuk komersial dapat menghasilkan emisi GRK yang berasal dari produksi pupuk itu sendiri. Hasil analisa LCA menggunakan OpenLCA menunjukkan bahwa dengan mengurangi jumlah penggunaan pupuk komersial dan menggantinya dengan pupuk biochar, pengurangan jumlah dampak yang diakibatkan emisi GRK dapat mencapai 2-20%.

5.2 Saran

Saran untuk penelitian kedepannya ialah melakukan penelitian secara langsung mengenai aplikasi biochar pada tanah dan menganalisa kandungan tanah serta peforma tanaman akibat pengaplikasian biochar sebagai pupuk.

69

DAFTAR PUSTAKA

Ameloot, N., De Neve, S., Jegajeevagan, K., Yildiz, G., Buchan, D., Funkuin, Y. N., Prins, W., Bouckaert, L., & Sleutel, S. (2013). Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil

Biology and Biochemistry, 57, 401–410.

https://doi.org/10.1016/j.soilbio.2012.10.025

Bridgwater, A. V. (2004). BIOMASS FAST PYROLYSIS. THERMAL SCIENCE, 8(2), 29.

Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Using poultry litter biochars as soil amendments. Soil Research, 46(5), 437. https://doi.org/10.1071/SR08036

Cole, C. V., Duxbury, J., Freney, J., Heinemeyer, O., Minami, K., Mosier, A., Paustian, K., Rosenberg, N., Sampson, N., Sauerbeck, D., & Zhao, Q. (1997). Global

estimates of potential mitigation of greenhouse gas emissions by agriculture. 8.

Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., & Likens, G. E. (2009). ECOLOGY: Controlling

Eutrophication: Nitrogen and Phosphorus. Science, 323(5917), 1014–1015. https://doi.org/10.1126/science.1167755

Erawati, E., Sediawan, W. B., & Mulyono, P. (2013). KARAKTERISTIK BIO-OIL HASIL PIROLISIS AMPAS TEBU. Jurnal Kimia Terapan Indonesia, 15(2), 47– 55. https://doi.org/10.14203/jkti.v15i2.113

Fernández, J. M., Nieto, M. A., López-de-Sá, E. G., Gascó, G., Méndez, A., & Plaza, C. (2014a). Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers. Science of The Total

70 Fernández, J. M., Nieto, M. A., López-de-Sá, E. G., Gascó, G., Méndez, A., & Plaza, C.

(2014b). Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers. Science of The Total

Environment, 482–483, 1–7. https://doi.org/10.1016/j.scitotenv.2014.02.103

Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., & Suh, S. (2009a). Recent developments in Life Cycle Assessment. Journal of Environmental Management, 91(1), 1–21. https://doi.org/10.1016/j.jenvman.2009.06.018

Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., & Suh, S. (2009b). Recent developments in Life Cycle Assessment. Journal of Environmental Management, 91(1), 1–21. https://doi.org/10.1016/j.jenvman.2009.06.018

Follett, R. F. (1993). Global Climate Change, U.S. Agriculture, and Carbon Dioxide.

Journal of Production Agriculture, 6(2), 181–190.

https://doi.org/10.2134/jpa1993.0181

Gaunt, J. L., & Lehmann, J. (2008). Energy Balance and Emissions Associated with Biochar Sequestration and Pyrolysis Bioenergy Production. Environmental

Science & Technology, 42(11), 4152–4158. https://doi.org/10.1021/es071361i

Glibert, P., Seitzinger, S., Heil, C., Burkholder, J., Parrow, M., Codispoti, L., & Kelly, V. (2005). The Role of Eutrophication in the Global Proliferation of Harmful Algal Blooms. Oceanography, 18(2), 198–209.

https://doi.org/10.5670/oceanog.2005.54

Hakim, H. M. A., Supartono, W., & Suryandono, A. (2014). LIFE CYCLE ASSESSMENT

PADA PEMBIBITAN KELAPA SAWIT UNTUK MENGHITUNG EMISI GAS

71 Hansen, S. (2007). Feasibility Study of Performing an Life Cycle Assessment on Crude

Palm Oil Production in Malaysia (9 pp). The International Journal of Life Cycle

Assessment, 12(1), 50–58. https://doi.org/10.1065/lca2005.08.226

Harimurti, D., Hariyadi, H., & Noor, E. (2019). Analisis sumber utama emisi gas rumah kaca pada perkebunan kelapa sawit dengan pendekatan life cycle assessment.

Jurnal Pengelolaan Lingkungan Berkelanjutan (Journal of Environmental

Sustainability Management), 318–330. https://doi.org/10.36813/jplb.3.2.318-330

Harsono, S. S., Grundman, P., Lau, L. H., Hansen, A., Salleh, M. A. M., Meyer-Aurich, A., Idris, A., & Ghazi, T. I. M. (2013). Energy balances, greenhouse gas emissions and economics of biochar production from palm oil empty fruit bunches. Resources, Conservation and Recycling, 77, 108–115.

https://doi.org/10.1016/j.resconrec.2013.04.005

Hasler, K., Bröring, S., Omta, S. W. F., & Olfs, H.-W. (2015). Life cycle assessment (LCA) of different fertilizer product types. European Journal of Agronomy, 69, 41–51. https://doi.org/10.1016/j.eja.2015.06.001

Kapanen, A., & Itävaara, M. (2001). Ecotoxicity Tests for Compost Applications.

Ecotoxicology and Environmental Safety, 49(1), 1–16.

https://doi.org/10.1006/eesa.2000.1927

Kimetu, J. M., & Lehmann, J. (2010). Stability and stabilisation of biochar and green manure in soil with different organic carbon contents. Soil Research, 48(7), 577. https://doi.org/10.1071/SR10036

Larasati, N., Chasanah, S., Machmudah, S., & Winardi, S. (2016). Studi Analisa Ekonomi Pabrik CPO (Crude Palm Oil) dan PKO (Palm Kernel Oil) Dari Buah Kelapa Sawit. Jurnal Teknik ITS, 5(2), F212–F215.

https://doi.org/10.12962/j23373539.v5i2.16851

Liang, B., Lehmann, J., Solomon, D., Sohi, S., Thies, J. E., Skjemstad, J. O., Luizão, F. J., Engelhard, M. H., Neves, E. G., & Wirick, S. (2008). Stability of

biomass-72 derived black carbon in soils. Geochimica et Cosmochimica Acta, 72(24), 6069– 6078. https://doi.org/10.1016/j.gca.2008.09.028

Mateus, R., Kantur, D., & Moy, D. L. M. (2017). Pemanfaatan Biochar Limbah

Pertanian sebagai Pembenah Tanah untuk Perbaikan Kualitas Tanah dan Hasil

Jagung di Lahan Kering. 10.

Mesa-Pérez, J. M., Rocha, J. D., Barbosa-Cortez, L. A., Penedo-Medina, M., Luengo, C. A., & Cascarosa, E. (2013). Fast oxidative pyrolysis of sugar cane straw in a fluidized bed reactor. Applied Thermal Engineering, 56(1–2), 167–175. https://doi.org/10.1016/j.applthermaleng.2013.03.017

Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A.-J., Quigg, A., Santschi, P. H., & Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17(5), 372– 386. https://doi.org/10.1007/s10646-008-0214-0

Ningrum, A. O. (2011). PROSES PEMBUATAN BIOOIL DARI LIMBAH KELAPA

SAWIT (TANDAN, CANGKANG, DAN SERAT) UNTUK BAHAN BAKAR

ALTERNATIF DENGAN METODE FAST PYROLYSIS. 79.

Nur’Aini, A., & Sularso, A. (n.d.). MAKALAH REAKTOR FIXED BED TEKNIK REAKSI

KIMIA. 14.

Nyakuma, B. B., Johari, A., Ahmad, A., & Abdullah, T. A. T. (2014). Comparative Analysis of the Calorific Fuel Properties of Empty Fruit Bunch Fiber and Briquette. Energy Procedia, 52, 466–473.

https://doi.org/10.1016/j.egypro.2014.07.099

Pehnelt, G., & Vietze, C. (2013). Recalculating GHG emissions saving of palm oil biodiesel. Environment, Development and Sustainability, 15(2), 429–479. https://doi.org/10.1007/s10668-012-9387-z

73 Petit, T., & Puskar, L. (2018). FTIR spectroscopy of nanodiamonds: Methods and

interpretation. Diamond and Related Materials, 89(December 2017), 52–66. https://doi.org/10.1016/j.diamond.2018.08.005

Prasetyo, A., Nafsiati, R., Kholifah, S. N., & Botianovi, A. (2013). ANALISIS PERMUKAAN ZEOLIT ALAM MALANG YANG MENGALAMI MODIFIKASI PORI DENGAN UJI SEM-EDS. SAINSTIS.

https://doi.org/10.18860/sains.v0i0.2306

Prayogo, C., & Lestari, N. D. (2012). KARAKTERISTIK DAN KUALITAS BIOCHAR

DARI PYROLYSIS BIOMASSA TANAMAN BIO-ENERGI WILLOW (SALIX SP).

12(2), 10.

Rase, H. F. (1990). Fixed-bed reactor design and diagnostics: Gas-phase reactions. Butterworths.

Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W.-P., Suh, S., Weidema, B. P., & Pennington, D. W. (2004). Life cycle

assessment. Environment International, 30(5), 701–720. https://doi.org/10.1016/j.envint.2003.11.005

Ronsse, F., van Hecke, S., Dickinson, D., & Prins, W. (2013). Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions. GCB Bioenergy, 5(2), 104–115.

https://doi.org/10.1111/gcbb.12018

Santi, L. P. (2012). PEMANFAATAN BIOCHAR ASAL CANGKANG KELAPA SAWIT

SEBAGAI BAHAN PEMBAWA MIKROBA PEMANTAP AGREGAT. 12(1), 8.

Santosa, E. E., Santosa, T. N. B., & Astuti, Y. T. M. (2016). KAJIAN CURAH HUJAN

DAN PEMUPUKAN TERHADAP PRODUKTIVITAS KELAPA SAWIT ( Elaeis

74 Sari, E. F., Zulfansyah, & Rimrawarman. (2011). Konsumsi Air Dan Potensi

Penghematan Pada Proses Produksi CPO PT. Perkebunan Nusantara V Pabrik

CPO Sei Galuh. https://doi.org/10.13140/RG.2.1.1870.2568

Schulz, H., & Glaser, B. (2012). Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. Journal of

Plant Nutrition and Soil Science, 175(3), 410–422.

https://doi.org/10.1002/jpln.201100143

Sharma, A., Pareek, V., & Zhang, D. (2015). Biomass pyrolysis—A review of modelling, process parameters and catalytic studies. Renewable and Sustainable Energy

Reviews, 50, 1081–1096. https://doi.org/10.1016/j.rser.2015.04.193

Sujatno, A., Salam, R., & Dimyati, A. (2015). STUDI SCANNING ELECTRON

MICROSCOPY (SEM) UNTUK KARAKTERISASI PROSES OXIDASI PADUAN

ZIRKONIUM. 9, 7.

Sukiran, M., Loh, S. K., & Abu Bakar, N. (2016). Production of Bio-oil from Fast Pyrolysis of Oil Palm Biomass using Fluidised Bed Reactor. Journal of Energy

Technologies and Policy, 6, 52–62.

Tabata, T. (2018). Environmental Impacts of Utilizing Woody Biomass for Energy: A Case Study in Japan. In Waste Biorefinery (pp. 751–778). Elsevier.

https://doi.org/10.1016/B978-0-444-63992-9.00026-4

van Breemen, N., Mulder, J., & Driscoll, C. T. (1983). Acidification and alkalinization of soils. Plant and Soil, 75(3), 283–308. https://doi.org/10.1007/BF02369968 Van Miegroet, H., & Cole, D. W. (1984). The Impact of Nitrification on Soil

Acidification and Cation Leaching in a Red Alder Ecosystem. Journal of

Environmental Quality, 13(4), 586–590.

https://doi.org/10.2134/jeq1984.00472425001300040015x

Vaskan, P., Pachón, E. R., & Gnansounou, E. (2017). Life Cycle Assessment of Sugar Crops and Starch-Based Integrated Biorefineries. In Life-Cycle Assessment of

75

Biorefineries (pp. 97–146). Elsevier.

https://doi.org/10.1016/B978-0-444-63585-3.00004-8

Wallace, A. (1994). Soil acidification from use of too much fertilizer. Communications in

Soil Science and Plant Analysis, 25(1–2), 87–92.

https://doi.org/10.1080/00103629409369010

Wicke, B., Dornburg, V., Junginger, M., & Faaij, A. (2008). Different palm oil

production systems for energy purposes and their greenhouse gas implications.

Biomass and Bioenergy, 32(12), 1322–1337.

https://doi.org/10.1016/j.biombioe.2008.04.001

Wood, S., & Cowie, A. (n.d.). A Review of Greenhouse Gas Emission Factors for

Fertiliser Production. 20.

Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications,

1(1), 56. https://doi.org/10.1038/ncomms1053

Yang, H., Yan, R., Chen, H., Lee, D. H., Liang, D. T., & Zheng, C. (2006). Mechanism of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Fuels, 20(3), 1321–1328. https://doi.org/10.1021/ef0600311

78

LAMPIRAN

79

80

81

Dokumen terkait