• Tidak ada hasil yang ditemukan

Merupakan penutup yang berisikan tentang kesimpulan yang telah diperoleh dari pembahasan pada bab sebelumnya, dan saran mengenai hasil penelitian yang dapat dijadikan masukan.

BAB 2

TINJAUAN PUSTAKA

2.1 Umum

Tanah di alam terdiri dari campuran butiran-butiran mineral dengan atau tanpa kandungan bahan organik. Butiran-butiran tersebut dapat dengan mudah dipisahkan satu sama lain dengan kocokan air. Material ini berasal dari pelapukan batuan, baik secara fisik maupun kimia. Sifat-sifat teknis tanah, kecuali oleh sifat batuan induk yang merupakan material asal, juga dipengaruhi oleh unsur-unsur luar yang menjadi penyebab terjadinya pelapukan batuan tersebut.

Istilah-istilah seperti kerikil, pasir, lanau, dan lempung digunakan dalam Teknik Sipil untuk membedakan jenis-jenis tanah. Pada kondisi alam, tanah dapat terdiri dari dua atau lebih campuran jenis-jenis tanah dan kadang-kadang terdapat pula kandungan bahan organik. Material campurannya kemudian dipakai sebagai nama tambahan di belakang material unsur utamanya. Sebagai contoh, lempung berlanau adalah tanah lempung yang mengandung lanau dengan material utamanya adalah lempung dan sebagainya.

Tanah terdiri dari 3 komponen, yaitu udara, air, dan bahan padat. Udara dianggap tidak mempunyai pengaruh teknis, sedangkan air sangat mempengaruhi sifat-sifat teknis tanah. Ruang di antara butiran-butiran, sebagian atau seluruhnya dapat terisi oleh air atau udara. Bila rongga tersebut terisi air seluruhnya, tanah dikatakan dalam kondisi jenuh. Bila rongga terisi udara dan air, tanah pada kondisi jenuh sebagian (partially saturated). Tanah kering adalah tanah yang tidak

Definisi tanah secara mendasar dikelompokkan dalam tiga definisi, yaitu: 1. Berdasarkan pandangan ahli geologi

2. Berdasarkan pandangan ahli ilmu alam murni 3. Berdasarkan pandangan ilmu pertanian.

Menurut ahli geologi (berdasarkan pendekatan Geologis)

Tanah didefiniskan sebagai lapisan permukaan bumi yang berasal dari bebatuan yang telah mengalami serangkaian pelapukan oleh gaya-gaya alam,

sehingga membentuk regolit (lapisan partikel halus).

2.2 Penyelidikan Tanah

Penyelidikan Tanah Salah satu tahapan paling awal yang perlu dilakukan dalam perencanaan pondasi adalah penyelidikan tanah. Uji penyelidikan tanah diperlukan untuk mengetahui daya dukung dan karateristik tanah serta kondisi geologi, seperti mengetahui susunan lapisan tanah/sifat tanah, mengetahui kekuatan lapisan tanah dalam rangka penyelidikan tanah dasar untuk keperluan pondasi bangunan, jalan, jembatan dan lain-lain, kepadatan dan daya dukung tanah serta mengetahui sifat korosivitas tanah. Penyelidikan tanah adalah salah satu dalam bidang geoteknik yang dilakukan untuk memperoleh sifat dan karakteristik tanah dalam kepentingan rekayasa (engineering). Ada dua jenis penyelidikan tanah yang biasa dilakukan, yakni :

1. penyelidikan lapangan (in situ test) Penyelidikan lapangan pada umumnya terdiri dari boring seperti hand boring atau machine boring

• CPT (Cone Penetration Test),

• DCP (Dynamic Cone Penetration)

• PMT (Pressumeter Test)

• DMT (Dilatometer Test)

Sand Cone Test, dll.

2. Sedangkan penyelidikan yang dilakukan di laboratorium (laboratory test). terdiri dari uji index properties tanah seperti :

water content

spesific gravity

atterberg limit

sieve analysis

unit weight

engineering properties tanah (seperti direct shear test, consolidation test,

triaxial test, permeability test, compaction test, CBR test, dll).

Pemilihan jenis pengujian yang dilakukan sangat tergantung kepada jenis konstruksi yang akan dikerjakan pada lokasi. Penyelidikan tanah dilakukan untuk mengetahui jenis pondasi yang akan digunakan untuk konstruksi bangunan, selain itu dari hasil penyelidikan tanah dapat ditentukan perlakuan terhadap tanah agar daya dukung dapat mendukung konstruksi yang akan dibangun. Dari hasil penyelidikan tanah ini akan dipilih alternatif atau jenis pondasi, kedalaman serta dimensi pondasi yang paling ekonomis tetapi masih aman.

Jadi penyelidikan tanah sangat penting dan mutlak dilakukan sebelum struktur itu mulai dikerjakan. Dengan mengetahui kondisi daya dukung tanah kita bisa merencanakan suatu struktur yang kokoh dan tahan gempa, yang pada akhirnya akan memberi rasa kenyamanan dan keamanan bila berada di dalam gedung.

2.2.1 Standard Penetration Test (SPT)

Standard Penetration Test (SPT) sering digunakan untuk mendapatkan daya dukung tanah secara langsung di lokasi. Metode Standard Penetration Test

merupakan percobaan dinamis yang dilakukan dalam suatu lubang bor dengan memasukkan tabung sampel yang berdiameter dalam 35 mm sedalam 305 mm dengan menggunakan massa pendorong (palu) seberat 63, 5 kg yang jatuh bebas dari ketinggian 760 mm. Banyaknya pukulan palu tersebut untuk memasukkan tabung sampel sedalam 305 mm dinyatakan sebagai nilai N.

Tujuan dari percobaan Standard Penetration test (SPT) ini adalah untuk menentukan kepadatan relatif lapisan tanah dari pengambilan contoh tanah dengan tabung sehingga diketahui jenis tanah dan ketebalan tiap-tiap lapisan kedalaman tanah dan untuk memperoleh data yang kualitatif pada perlawanan penetrasi tanah serta menetapkan kepadatan dari tanah yang tidak berkohesi yang biasa sulit diambil sampelnya. Percobaan Standard Penetration test (SPT) ini dilakukan dengan cara sebagai berikut :

1. Siapkan peralatan SPT yang dipergunakan seperti : mesin bor, batang bor, split spoon sampler, hammer, dan lain – lain.

2. Lakukan pengeboran sampai kedalaman testing, lubang dibersihkan dari kotoran hasil pengeboran dari tabung, segera dipasangkan pada bagian dasar lubang bor.

3. Berikan tanda pada batang setiap 15 cm dengan total 45 cm.

4. Dengan pertolongan mesin bor, tumbuklah batang bor ini dengan pukulan palu seberat 63,5 kg dan ketinggian jatuh 76 cm hingga kedalaman tersebut, dicatat jumlah pukulan untuk memasukkan penetrasi setiap 15 cm (N value);

Contoh : N1 = 10 pukulan/15 cm N2 = 5 pukulan/15 cm N3 = 8 pukulan/15 cm

Maka total jumlah pukulan adalah jumlah N2 dengan N3 adalah 5 + 8 = 13 pukulan = nilai N. N1 tidak diperhitungkan karena dianggap 15 cm pukulan pertama merupakan sisa kotoran pengeboran yang tertinggal pada dasar lubang bor, sehingga perlu dibersihkan untuk memperkecil efisiensi gangguan;

5. Hasil pengambilan contoh tanah dari tabung tersebut dibawa ke permukaan dan dibuka. Gambarkan contoh jenis - jenis tanah yang meliputi komposisi, struktur, konsistensi, warna dan kemudian masukkan ke dalam botol tanpa dipadatkan atau kedalaman plastik, lalu ke core box;

6. Gambarkan grafik hasil percobaan SPT;

Catatan : Pengujian dihentikan bila nilai SPT ≥ 60 untuk 4x interval

Uji Standard Penetration Test ini dapat dilakukan untuk hampir semua jenis tanah. Berdasarkan pengalaman yang cukup lama, berbagai korelasi empiris dengan parameter tanah telah didapatkan. Harga N dari pasir yang diperoleh dari pengujian standard penetration test (SPT) dan hubungan antara kepadatan relatif dengan sudut geser dalam dapat dilihat pada Tabel di bawah ini :

Tabel 2.1. Hubungan D ,ϕ dan N dari pasir (Peck, Meyerhoff)

Nilai N

Kepadatan Relatif

�� = ���� − � ���� − ����

Sudut Geser Dalam Menurut Peck Menurut Meyerhof 0-4 Sangat Lepas 0,0-0,2 <28,5 <30 4-10 Lepas 0,2-0,4 28,5-30 30-35 10-30 Sedang 0,4-0,6 30-36 35-40 30-50 Padat 0,6-0,8 36-41 40-45 >50 Sangat Padat 0,8-1,0 >41 >45

(Suyono ,Mekanika Tanah & Teknik Pondasi,1983)

2.3 Penyelidikan Tiang 2.3.1 Pile Driving Analyzer

Pile Driving Analyzer adalah alat untuk mengukur kekuatan sebuah pondasi selama pemancangan, yang dikembangkan selama tahun 1960an dan diperkenalkan pada tahun 1972. Menurut Coduto dalam Foundation Design Principles and Practices, pengujian daya dukung pondasi tiang dengan menggunakan alat PDA ini metodologinya telah distandarisasi dan diuraikan dalam ASTM D4945. Peralatan ini memilikitiga komponen sebagai berikut:

1. Sepasang strain transducers yang diletakkan di dekat kepala tiang, 2. Sepasang accelerometers yang diletakkan di kepala tiang,

Monitor PDA memberikan keluaran yang berasal dari strain transducers dan

accelerometers pondasi tiang pancang, dan data tersebut dievaluasi sebagai berikut: 1. Data strain dikombinasi dengan modulus elastisitas dan luas penampang

tiang, memberikan tekanan vertikal pada tiang.

2. Data acceleration diintegrasikan dengan waktu hasil partikel percepatan perjalanan gelombang melalui tiang,

3. Data acceleration diintegrasikan dengan waktu hasil perpindahan pondasi selama pemukulan hammer.

Setiap impact atau tumbukan yang diberikan pada ujung atas tiang akan menghasilkan gelombang tegangan (stress wave) yang bergerak ke bawah sepanjang tiang dengan kecepatan suara di media materialnya, maka PDA dengan alat sensornya yang ditempatkan pada tiang bagian atas akan dapat menganalisa gelombang tersebut dan menghitung daya dukung tiang dengan metode Case.

Dalam analisa persamaan gelombang (wave equation) impact yang diberikan pada kepala tiang adalah simulasinya, maka dengan PDA ini impact tersebut adalah benar terjadi.

Suatu massa hammer ditumbukkan pada kepala tiang untuk menghasilkan gelombang tegangan keseluruh panjang tiang. Dengan menempatkan sepasang sensor yaitu transducer di bagian atas tiang pada sisi yang berlawanan untuk mencegah pengaruh lentur tiang, maka pengukuran kecepatan partikel (particle velocity) sebagai hasil integrasi terhadap besaran percepatan terukur dari accelerometer, serta pengukuran gaya (force) sebagai hasil perkalian besaran regangan terukur dari transduser regangan (strain transducer) dapat dilakukan. Dimana hasil pengukuran

inilah yang menjadi dasar dalam perhitungan daya dukung pondasi tiang dengan metode Case.

2.3.1.1 Case Method

Case method merupakan cara pengukuran dan interpretasi terhadap pengaruh tanah, tegangan pada tiang, kondisi integritas tiang dan kinerja hammer dengan menggunakan PDA.

Perhitungan daya dukung tiang Case method berdasarkan pada perambatan gelombang satu dimensi, dengan asumsi bahwa tiang seragam dan ideal plastis maka dapat diturunkan persamaan sebagai berikut:

F(turun) = zv (turun) Keterangan :

z =�� ��, ( impedansi atau faktor kekakuan dinamis )

Untuk tiang dengan impedansi Z pada saat tiang ditumbuk, gelombang tumbukan ( impact wave) menjalar ke bawah (downward wave), dimana akan terjadi juga gaya tekan (compression force) yang menyebabkan kecepatan kebawah (downward particle velocity).

Setelah waktu t = L/c, gelombang akan mencapai ujung tiang (pile tip), maka gelombang yang merupakan gelombang tekan (compression wave) dipantulkan keatas sebagai gelombang tarik (tension wave).

Berarti pada ujung tiang gelombang tekan dan tarik saling menghapuskan. Akan tetapi gelombang pantul yang merupakan gelombang tarik juga akan mendorong partikel pada ujung bawah tiang menjadi dua kali lipat. Untuk

gelombang tarik, arah kecepatan partikel dan penyebaran gelombang berlawanan, sedangkan pada gelombang tekan arah kecepatan dan penyebaran gelombang sama.

Bila ada tahanan tanah di sepanjang tiang sebesar R, akan diperoleh persamaan sebagai berikut:

��= (1+��1+2−��2)

2 ...(2.1) Keterangan :

Rt = tahanan tanah total

F1 = gaya pada waktu t1 (pukulan maksimum) F2 = gaya pada waktu t2

Prinsip inilah yang dilakukan oleh PDA, yaitu mengukur F1, F2, V1, V2, pengukuran dilakukan untuk setiap pukulan yang diberikan. Selain memberikan hasil perhitungan daya dukung tiang, PDA juga menghasilkan perhitungan dari transfer energi tumbukan yang terekam, menghitung gaya maksimum yaitu gaya tekan maupun gaya tarik dilokasi penempatan transducer, serta mengukur kondisi global integritas tiang.

2.3.1.2 CAPWAP

Case pile Wave Analysis Program (CAPWAP) adalah program aplikasi untuk menganalisa gelombang gaya (F) dan kecepatan (V) yang diukur oleh PDA. Program CAPWAP digunakan untuk memperkirakan distribusi dan besarnya gaya perlawanan tanah sepanjang tiang berdasarkan modelisasi yang dibuat dan memisahkannya menjadi bagian dinamis dan bagian statis.

(wave equation), namun hanya merupakan fungsi dari pergerakan tiang saja, sedang tanah sendiri adalah pasif. Sehingga parameter tanah yang perlu diketahui adalah tahanan batas (Ru), perpindahan elastis dari tahanan statis (quake), faktor redaman tanah (Jc).

Analisa CAPWAP dilakukan dengan mencocokkan kurva (F dan V) simulasi yang karakteristiknya diketahui, dengan kurva hasil redaman PDA secara iterasi (trial and error). Jika belum mendapatkan suatu kecocokan, dapat diiterasi lagi dengan mengubah parameter tanahnya. Jika sudah cocok, artinya model tanah yang dicari sudah selesai, maka perlawanan tanah (Ru) dapat dipisah menjadi bagian dinamis dan statis sehingga karakteristik bagian statisnya dapat didefenisikan.

Termasuk hasil dari CAPWAP adalah dengan model tanah sudah dapat disimulasikan untuk setiap elemen tiang yaitu fungsi kedalaman, maka dapat disimulasikan perilaku sistem tiang tanah di bawah pembebanan yaitu kurva hubungan beban dengan penurunan kepala tiang (load-settlement curve).

Kemudian dengan pengetahuan karakteristik hubungan beban dan penurunan dalam setiap elemen, maka daya dukung batas tiang dapat diketahui berdasarkan penurunan izin vertikal mencapai 2,5 mm/blows.

2.4 Pondasi

2.4.1 Perencanaan Pondasi Tiang

Pada perencanaan pondasi tiang pada umumnya diperkirakan pengaturan tiang – tiangnya terlebih dahulu seperti letak/susunan, diameter dan panjang tiang. Dalam pengaturan tiang – tiang tersebut perlu diperhatikan beberapa hal berikut :

1. Tiang yang berbeda kualitas bahannya atau tiang yang memiliki diameter berbeda tidak boleh dipakai untuk pondasi yang sama;

2. Tiang miring dipakai apabila besarnya gaya horizontal yang bekerja pada kelompok tiang terlalu besar untuk ditampung oleh tiang vertikal;

3. Jarak yang dianjurkan antara tiang dalam satu kelompok adalah antara 0, 60 sampai 2, 0 meter.

Pada umumnya gaya – gaya luar yang bekerja pada tiang yaitu pada kepala tiang yang meliputi berat sendiri bangunan di atasnya, beban hidup, tekanan tanah dan tekanan air. Sedangkan beban yang bekerja pada tubuh tiang yaitu meliputi berat sendiri tiang, gaya geser negatif pada selimut tiang dan gaya mendatar akibat getaran ketika tiang tersebut melentur.

Gambar 2.3. Beban yang Bekerja pada Tubuh Tiang

Perencanaan suatu pondasi tiang biasanya dilaksanakan sesuai dengan prosedur sebagai berikut :

1. Menentukan kriteria perencanaan, seperti beban – beban yang bekerja pada dasar tumpuan (poer), parameter tanah, situasi dan kondisi bangunan di sekitar lokasi, besar pergeseran yang diijinkan dan tegangan ijin dari bahan – bahan pondasi;

2. Memperkirakan diameter, jenis, panjang, jumlah dan susunan tiang; 3. Menghitung daya dukung vertikal tiang tunggal (single pile);

4. Menghitung faktor efisiensi dalam kelompok tiang dan daya dukung vertikal yang diijinkan untuk sebuah tiang dalam satu kelompok tiang;

5. Menghitung beban vertikal yang bekerja pada setiap tiang dalam kelompok tiang;

6. Memeriksa beban yang bekerja pada setiap tiang apakah masih dalam batasan daya dukung yang diijinkan. Apabila tidak sesuai, maka perkiraan diameter, jumlah atau susunan tiang pada prosedur yang kedua harus dihitung kembali kemudian dilanjutkan dengan prosedur berikutnya;

8. Menghitung beban horizontal yang bekerja pada setiap tiang dalam kelompok;

9. Menghitung penurunan; 10.Merencanakan struktur tiang.

2.5 Kapasitas Daya Dukung Tiang 2.5.1 Daya Dukung Aksial Tiang Tunggal

2.5.1.1 Berdasarkan Hasil Standard Penetration Test (SPT)

Standard Penetration Test (SPT) adalah sejenis percobaan dinamis dengan memasukkan suatu alat yang dinamakan split spoon ke dalam tanah. Dengan percobaan ini akan diperoleh kepadatan relatif (relative density), sudut geser tanah (φ) berdasarkan nilai jumlah pukulan (N). Hubungan kepadatan relatif, sudut geser tanah dan nilai N dari pasir dapat dilihat pada Tabel 2. 1.

SPT yang dilakukan pada tanah tidak kohesif tapi berbutir halus atau lanau, yang permeabilitasnya rendah, mempengaruhi perlawanan penetrasi yakni memberikan harga SPT yang lebih rendah dibandingkan dengan tanah yang permeabilitasnya tinggi untuk kepadatan yang sama. Hal ini mungkin terjadi bila jumlah tumbukan N > 15, maka sebagai koreksi Terzaghi dan Peck (1948) memberikan harga ekivalen N0 yang merupakan hasil jumlah tumbukan N yang telah dikoreksi akibat pengaruh permeabilitas yang dinyatakan dengan N0 = 15 + ½ (N – 15).

Harga N yang diperoleh dari SPT tersebut diperlukan untuk memperhitungkan daya dukung tanah. Daya dukung tanah tergantung pada kuat

Kuat geser tanah diuraikan oleh Coulomb yang dinyatakan dengan : τ = c + σ tan φ ...(2.2)

Dimana :

τ = Kekuatan geser tanah (kg/cm2) c = Kohesi tanah (kg/cm2)

σ = Tegangan normal yang terjadi pada tanah (kg/cm2)

φ = Sudut geser tanah (°)

Untuk mendapatkan harga sudut geser tanah dari tanah tidak kohesif (pasiran) biasanya dapat dipergunakan rumus Dunham (1962) sebagai berikut :

1. Tanah berpasir berbentuk bulat dengan gradasi seragam, atau butiran pasir bersegi-segi dengan gradasi tidak seragam, mempunyai sudut geser sebesar : � =√12�+ 15 ... (2.3)

� = √12�+ 50 ... (2.4)

2. Butiran pasir bersegi dengan gradasi seragam,maka sudut gesernya adalah :

� = 0,3�+ 27...(2.5)

Angka penetrasi sangat berguna sebagai pedoman dalam eksplorasi tanah dan untuk memperkirakan kondisi lapisan tanah. Hubungan antara angka penetrasi standard dengan sudut geser tanah dan kepadatan relatif untuk tanah berpasir, secara perkiraan dapat dilihat pada Tabel 2. 2 berikut .

Tabel 2.2. Hubungan antara Angka Penetrasi Standard dengan Sudut Geser Dalam dan Kepadatan Relatif pada Tanah Pasir

Angka penetrasi standard, N

Kepadatan relatif Dr (%)

Sudut geser dalam φ

(o)

0-5 0-5 26-30

5-10 5-30 28-35

10-30 30-60 35-42

30-50 60-65 38-46

Hubungan antara harga N dengan berat isi yang sebenarnya hampir tidak mempunyai arti karena hanya mempunyai partikel kasar (Tabel 2. 3). Harga berat isi yang dimaksud sangat tergantung pada kadar air.

Tabel 2.3. Hubungan antara N dengan Berat Isi Tanah Tanah tidak Kohesif Harga N < 10 10-30 30-50 >50 Berat isi γ kN/m3 12-16 14-18 16-20 18-23 Tanah kohesif Harga N < 4 4-15 16-25 >25 Berat isi γ kN/m3 16-18 16-18 16-18 >20 (Suyono , “Mekanika Tanah & Teknik Pondasi”, 1983)

Pada tanah tidak kohesif daya dukung sebanding dengan berat isi tanah, hal ini berarti bahwa tinggi muka air tanah banyak mempengaruhi daya dukung pasir. Tanah dibawah muka air mempunyai berat isi efektif yang kira – kira setengah berat isi tanah di atas muka air.

Tanah dapat dikatakan mempunyai daya dukung yang baik, dapat dinilai dari ketentuan berikut ini :

1. Lapisan kohesif mempunyai nilai SPT, N > 35

2. Lapisan kohesif mempunyai harga kuat tekan (qu) 3 - 4 kg/cm2 atau harga SPT, N > 15

Hasil percobaan pada SPT ini hanya merupakan perkiraan kasar, jadi bukan merupakan nilai yang teliti. Dalam pelaksanaan umumnya hasil sondir lebih dapat dipercaya dari pada percobaan SPT. Perlu menjadi catatan bagi kita bahwa jumlah pukulan untuk 15 cm pertama yang dinilai N1 tidak dihitung karena permukaan

1. Daya dukung pondasi tiang pada tanah non kohesif

= 40 ×� − ���×

× < 400.� − ���.� ... (2.6) Dimana :

Lb = Panjang lapisan tanah (m) D = Diameter tiang (m)

Ap = Luas penampang tiang (m²). Jika N = 60 maka dipakai,

�� = 40 �60 �

�� < 400.60.�� �60 = (1+2)

2 ... (2.7) Dimana :

N60 = rata-rata nilai N-SPT di dekat ujung tiang (sekitar 10D di atas dan 4D dibawah ujung tiang)

N1 = harga rata-rata dari dasar ke 10D ke atas N2 = harga rata-rata dari dasar ke 4D ke bawah 2. Tahanan geser selimut tiang pada tanah non kohesif

= 2 ×� − ���×�×�� ... (2.8) Dimana :

Li = Panjang lapisan tanah (m) P = Keliling Tiang (m)

3 Daya dukung pondasi tiang pada tanah kohesif

�� = 9 �� �� ... (2.9) Dimana :

cu = Kohesi undrained (kN/m2)

= � − ���×2

3× 10 ... (2.10) 4 Tahanan geser selimut tiang pada tanah kohesif

�� =��� ��� ... (2.11) Dimana :

α = Koefisien adhesi antara tanah dan tiang cu = Kohesi undrained (kN/m2)

p = Keliling tiang (m)

Li = Panjang lapisan tanah (m)

2.5.1.2 Berdasarkan Hasil Loading Test

Daya dukung tiang bor berdasarkan uji pembebanan (loading test) dapat dilakukan setelah selesai pengecoran, yang bertujuan untuk mengetahui hubungan antara beban dengan penurunan pondasi akibat pembebanan. Besar daya dukung tiang berdasarkan hasil uji pembebanan dapat diketahui langsung pada saat pengujian beban, untuk kondisi tiang bor mengalami keruntuhan.

Loading test biasa disebut juga dengan uji pembebanan statik. Cara yang paling dapat diandalkan untuk menguji daya dukung pondasi tiang adalah dengan uji pembebanan statik.

Tujuan dilakukan percobaan pembebanan vertical (compressive Loading test) terhadap pondasi tiang adalah sebagai berikut:

- Untuk mengetahui hubungan antara beban dan penurunan pondasi akibat beban rencana.

- Untuk menguji bawah pondasi tiang yang dilaksanakan mampu mendukung beban rencana dan membuktikan bahwa dalam pelaksanaan tidak terjadi kegagalan.

- Untuk menentukan daya dukung ultimate nyata (real ultimate bearing capacity) sebagai control dari hasil perhitungan berdasarkan formula statis maupun dinamis.

- Untuk mengetahui kemampuan elastisitas dari tanah, mutu beton dan mutu besi beton. (Wesley, L.D., 1997)

Uji pembebanan biasanya perlu dilakukan untuk kondisi-kondisi seperti berikut ini:

a. Perhitungan analitis tidak memungkinkan untuk dilakukan karena keterbatasan informasi mengenai detail dan geometri struktur.

b. Kinerja struktur yang sudah menurun karena adanya penurunan kualitas bahan, akibat serangan zat kimia, ataupun karena adanya kerusakan flsik yang dialami bagian-bagian struktur, akibat kebakaran, gempa, pembebanan yang berlebihan dan lain-lain.

c. Tingkat keamanan struktur yang rendah akibat jeleknya kualitas pelaksanaan ataupun akibat adanya kesalahan pada perencanaan yang sebelumnya tidak terdeteksi.

d. Struktur direncanakan dengan metode-metode yang non-stardard, sehingga menimbulkan kekhawatiran mengenai tingkat keamanan struktur tersebut. e. Perubahan fungsi struktur, sehingga menimbulkan pembebanan tambahan yang

f. Diperlukannya pembuktian mengenai kinerja suatu struktur yang baru saja dicor.

Interprestasi dari hasil benda uji pembebanan statik merupakan bagian yang cukup penting untuk mengetahui respon tiang pada selimut dan ujungnya serta besarnya daya dukung ultimitnya. Berbagai metode interprestasi perlu mendapat perhatian dalam hal nilai daya dukung ultimit yang diperoleh karena setiap metode dapat memberikan hasil yang berbeda. (American Society Testing and Materials, 2010)

Yang terpenting adalah agar dari hasil nilai uji pembebanan statik, seorang praktisi dalam rekayasa pondasi dapat menentukan mekanisme yang terjadi, misalnya dengan melihat kurva beban – penurunan, besarnya deformasi plastis tiang, kemungkinan terjadinya kegagalan bahan tiang, dan sebagainya.

Pengujian hingga 150% dari beban kerja sering dilakukan pada tahap verifikasi daya dukung, tetapi untuk alasan lain misalnya untuk keperluan optimasi dan untuk control beban ultimit pada gempa kuat, seringkali diperlukan pengujian sebesar 250% hingga 300% dari beban kerja.

Pengujian beban statik melibatkan pemberian beban statik dan pengukuranpergerakan tiang. Beban–beban umumnya diberikan secara bertahap dan penurunan tiang diamati. Umumnya definisi keruntuhan yang diterima dan dicatat untuk interprestasi lebih lanjut adalah bila di bawah suatu beban yang konstan, tiang terus-menerus mengalami penurunan. Pada umumnya beban runtuh tidak dicapai pada saat pengujian. (American Society Testing and Materials, 2010)

sebelum tiang dapat diuji. Hal ini pentinguntuk memungkinkan tanah yang telah terganggu kembali keadaan semula, dan tekanan air pori

Pembebanan dapat dilakukan dengan cara menggunakan system kentledge, yaitu dengan menumpuk blok-blok beton (Gambar 2.1) atau material lain sesuai yang dibutuhkan.

Gambar 2.4. Uji Pembebanan dengan Sistem Kentledge

Cara lainnya dengan menggunakan reaction pile (Anchor System) yaitu menggunakan tiang bor lain yang akan berfungsi sebagai tiang tarik (Gambar 2.2). Pemberian beban pada kepala tiang dilakukan dengan dongkrak hidrolik. Pelaksanaan sistem pembebanan di atas memerlukan waktu yang lama dan tempat yang luas serta biaya besar. Selama pembebanan semua kegiatan di sekitar area

Dokumen terkait