5.1 Kesimpulan
Telah dilakukan penelitian variasi rasio metil ester risinoleat sebagai template dengan TEOS sebagai sumber silika dalam sintesis material mesopori silika.
Template yang digunakan adalah metil ester risinoleat yang diperoleh dari transesterifikasi minyak jarak (Ricinus communis L.) sebesar 81,6%, maka dapat disimpulkan sebagai berikut:
1. Variasi rasio mol metil ester risinoleat sebagai template dengan TEOS sebagai sumber silika mempengaruhi produk material mesopori silika yang terbentuk.
Semakin banyak template (metil ester risinoleat) yang ditambahkan, tekstur material mesopori silika yang dihasilkan semakin kasar dan semakin berwarna merah bata setelah dikalsinasi.
2. Karakterisasi yang dilakukan untuk membuktikan bahwa material silika yang terbentuk merupakan mesopori adalah sebagai berikut :
a). Spektrum FT-IR menunjukkan bahwa semua material silika yang terbentuk memiliki gugus silanol (Si-OH) dan gugus siloksan (Si-O-Si) yang merupakan karakteristik dari material silika.
b). Difraktogram XRD menunjukkan adanya puncak difraksi yang melebar pada sudut 2 antara 20–40º yang mengidentifikasikan bahwa material mesopori silika yang terbentuk bersifat amorf.
c). Foto SEM menunjukkan adanya pengaruh penambahan konsentrasi metil ester risinoleat (template) dalam sintesis material mesopori silika.
d). Grafik adsorpsi-desorpsi nitrogen isotherm dengan metode BET menunjukkan kurva isotherm Tipe IV memiliki hysteresis loop Tipe H3 (untuk Run-1, Run-2 dan Run-3) dan Tipe H1 (untuk Run-4 dan Run-5).
Dengan ukuran diameter pori material silika yang dihasilkan untuk Run-1
sebesar 5,79 nm, Run-2 sebesar 8,06 nm, Run-3 sebesar 7,99 nm, Run-4 sebsar 3,14 nm dan Run-5 sebesar 2,72 nm.
5.2 Saran
Saran untuk peneliti selanjutnya, agar mencoba untuk meningkatkan suhu dan waktu yang dibutuhkan selama proses kalsinasi material mesopori silika.
Albuquerque MCG, Jiménez-Urbistondo I, Santamaría-González J, Mérida-Robles JM, Moreno-Tost R, Rodríguez-Castellón E, Jiménez-López A, Azevedo DCS, Cavalcante CL, Maireles-Torres P, 2008. CaO Supported on Mesoporous Silicas as Basic Catalysts for Transesterification Reactions.
Applied Catalysis A: General. 334: 35-43.
Alfaruqi MH, 2008. Pengaruh Konsentrasi Hidrogen Klorida (HCl) dan Temperatur Perlakuan Hidrotermal Terhadap Kristalinitas Material Mesopori Silika SBA-15. [Skripsi]. Depok: Universitas Indonesia, Program Sarjana.
Andriayani, Sembiring SB, Aksara N, Sofyan N, 2013. Synthesis of Mesoporous Silica from Tetraethylorthosilicate by Using Sodium Ricinoleic as a Template and 3-Aminopropyltrimethoxysilane as Co-Structure Directing Agent with Volume Variation of Hydrochloric Acid 0.1M. Advanced Materials Research. 789: 124-131.
Bangun J, 2017. Pemurnian Metil Ester Risinoleat dari Campuran Ester Minyak Jarak menggunakan Adsorben Mesopori CaSiO3. [Skripsi]. Medan:
Universitas Sumatera Utara, Program Sarjana.
Bassam NE, 2010. Handbook of Bioenergy Crops. Taylor & Francis. USA.
Beganskienė A, Sirutkaitis V, Kurtinaitienė M, Juškėnas R, Kareiva A, 2004. FTIR, TEM and NMR Iinvestigations of Stöber Silica Nanoparticles. Material Science (Medžiagotyra). 10: 287-290.
Björk EM, 2013. Mesoporous Building Blocks- Synthesis and Characterization of Mesoporous Silica Particles and Films. [Dissertation]. Sweden: Linköping University, Program Doktoral.
Brohede U, 2007. Drug Diffusion and Nano Excipient Formation Studied by Electrodynamic Methods. [Dissertation]. Sweden: Uppsala University, Program Doktoral.
Brown JB, Green ND, 1940. Studies on The Chemistry of The Fatty Acids. V. The Preparation of Methyl Ricinoleate and Ricinoleic Acid by Fractional Crystallization Procedures. JACS. 62: 738-740.
Cheng CF, Luan ZH, Klinowski J, 1995. The Role of Surfactant Micelles in The Synthesis of The Mesoporous Molecular Sieve MCM-41. Langmuir. 11:
2815-2819.
[Depkes RI] Departemen Kesehatan RI, Direktorat Jenderal Pengawasan Obat dan Makanan, 2000. Katalog Parameter Standar Umum Ekstrak Tumbuhan Obat.
Cetakan Pertama. Jakarta.
Dipowardani BT, Sriatun, Taslimah, 2008. Sintesis Silika Kristalin Menggunakan Surfaktan Cetiltrimetilamonium Bromida (CTAB) dan Trimetilamonium Klorida (TMACl) sebagai Pencetak Pori. Jurnal Kimia Sains dan Aplikasi 11: 20-28.
Fessenden RJ, Fessenden JS, 2006. Kimia Organik. Jilid 1 dan 2. Terjemahan A.H.
Pudjaatmaka. Erlangga. Jakarta.
Gao C, Qiu H, Zeng W, Sakamoto Y, Terasaki O, Sakamoto K, Chen Q, Che S, 2006. Formation Mechanism of Anionic Surfactant-Templated Mesoporous Silica. Chem. Mater. 18: 3904-3914.
Garcia-Bennett AE, Kupferschmidt N, Sakamoto Y, Che S, Terasaki O, 2005.
Synthesis of Mesocage Structures by Kinetic Control of Self-Assembly in Anionic Surfactants. Angewandte Chemie. 44: 5317-5322.
Gregg SJ, Sing KSW, 1982. Adsorpsi, Surface Area and Porosity. Second Edition.
Academic Press. London.
Hikmah MN, Zuliyana, 2010. Pembuatan Metil Ester (Biodiesel) dari Minyak Dedak dan Metanol dengan Proses Esterifikasi dan Transesterifikasi. [Skripsi].
Semarang: UNDIP, Program Sarjana.
Holister P, Vas CR, Harper T, 2003. Nanoporous Materials. Cientifica. Peru.
Huo Q, Margolese DI, Ciesla U, Feng P, Gier TE, Sieger P, Leon R, Petroff PM, Schuth F, Stucky GD, Schüth F, 1994. Generalized Syntheses of Periodic Surfactant/Inorganic Composite Materials. Nature. 368: 317-321.
Huo Q, Margolese DI, Stucky GD, 1996. Surfactant Control of Phases in The Synthesis of Mesoporous Silica-Based Materials. Chem. Mater. 8: 1147-1160.
Kang T, Park Y, Choi K, Lee JS, Yi J, 2004. Ordered Mesoporous Silica (SBA-15) Derivatized with Imidazole-Containing Functionalities as a Selective
Adsorbent of Precious Metal Ions. J. Mater. Chem. 14: 1043-1049.
Ketaren S, 1986. Pengantar Teknologi Minyak dan Lemak Pangan. Cetakan pertama. Universitas Indonesia Press. Jakarta.
Khalil KMS, 2007. Cerium Modified MCM-41 Nanocomposite Materials Via a Nonhydrothermal Direct Method at Room Temperature. J. of Colloid and Interface Science. 315: 562-568.
Khopkar SM, 2008. Konsep Dasar Kimia Analitik. UI Press. Jakarta.
Kleitz F, Liu D, Anilkumar GM, Park IS, Solovyov LA, Shmakov AN, Ryoo R, 2003. Large Cage Face-Centered-Cubic Fm3m Mesoporous Silica : Synthesis and Structure. J. Phys. Chem. B. 107: 14296-14300.
Knothe G, Dunn RO, Bagby MO, 2002. Biodiesel: The Use of Vegetable Oils and Their Derivatives as Alternative Diesel Fuels. Oil Chemical Research, National Center for Agricultural Research Service, U.S. Department of Agriculture, Peoria.
Konwar LJ, Das R, Thakur AJ, Salminen E, Mäki-Arvela P, Kumar N, Mikkola JP, Deka D, 2014. Biodiesel Production from Acid Oils Using Sulfonated Carbon Catalyst Derived from Oil-Cake Waste. Journal of Molecular Catalysis A:
Cemical. 388-389: 167-176.
Kusumaningsih T, Pranoto, Saryoso R, 2006. Pembuatan Bahan Bakar Biodiesel dari Minyak Jarak; Pengaruh Suhu dan Konsentrasi KOH pada Reaksi Transesterifikasi Berbasis Katalis Basa. Jurnal Bioteknologi. 3: 20-26.
Laksono T, 2013. Pengaruh Jenis Katalis NaOH dan KOH serta Rasio Lemak dengan Metanol Terhadap Kualitas Biodiesel Berbahan Baku Lemak Sapi. [Skripsi].
Makassar: Universitas Hasanuddin, Program Sarjana.
Larsen G, Lotero E, Marquez M, 2000. Amine Dendrimers as Templates for Amorphous Silicas. J. Phys. Chem. B. 104: 4840-4843.
Li E, Rudolph V, 2008. Transesterification of Vegetable Oil to Biodiesel Over MgO-Functionalized Mesoporous Catalysts. Energy & Fuels. 22: 145-149.
Meher LC, Sagar DV, Naik SN, 2004. Technical Aspects of Biodiesel Production by Transesterification. Renewable and Sustainable Energy Rev. 1-21.
Munoz B, Rámila A, Pérez-Pariente J, Díaz I, Vallet-Regi M, 2003. MCM-41 Organic Modification as Drug Delivery Rate Regulator. Chem. Mater. 15:
500-503.
Mutlu H, Meier MAR, 2010. Castor Oil as Renewable Resource for The Chemical Industry. European J. Lipid Sci. Technol. 112: 10-30.
Myers D, 2006. Surfactant Science and Technology. Third Edition. John Wiley &
Sons. US of America.
Neelam G, Singh, 2015. A Review on Ricinus communis Linn. International Ayurvedic Medical Journal. 3: 491-495.
Obiero C, Birech R, Maling’a J, Ngetich K, Freyer B, 2014. Performance of Maize and Beans Under Castor-based Intercropping System.American Journal of Experimental Agriculture. 4: 101-113.
Patel VR, Dumancas GG, Viswanath LCK, Maples RD, Subong BJJ, 2016. Castor Oil: Properties, Uses, and Optimization of Processing Parameters in Commercial Production. Lipid Insights. 9: 1-12.
Pattiasina PM, 2014. Sintesis Silika Mesopori dengan Gelatin Tulang Sapi sebagai Cetakan Menggunakan Metode Hidrotermal dan Sonokimia serta Uji Kapasitas Adsorpsinya Terhadap Metilen Biru. [Tesis]. Yogyakarta:
Universitas Gadjah Mada, Program Magister.
Prasetyoko D, Hamid A, Fansuri H, Hartanto D, 2010. Sintesis ZSM-5 Mesopori dengan Metode Pemeraman dan Kristalisasi: Pengaruh Waktu Kristalisasi. Di dalam: Seminar Rekayasa Kimia dan Proses; ITS. 1-6.
Pretsch E, Bühlmann P, Affolter C, 2000. Structure Determination of Organic Compounds: Tables of Spectral Data. Springer-Verlag Berlin Heidelberg.
New York.
Puspito MM, Rahman SAN, 2013. Prarancangan Pabrik Etil Silikat-40 dari Etanol dan Silikon Tetraklorida dengan Kapasitas 50.000 Ton/Tahun. [Skripsi].
Yogyakarta: Universitas Gajah Mada, Program Sarjana.
Rahmat N, Abdullah AZ, Mohamed AR, 2010. A Review : Mesoporous Santa Barbara Amorphous-15, Types, Synthesis and Its Applications Towards Biorefinery Production. American Journal of Applied Sciences. 7: 1579-1586.
Rebbin V, Muth O, Fröba M, 2002. Periodic Mesoporous Organosilicas PMOs with Different Organic Bridging Groups: Synthesis and Characterization. Mat.
Res. Soc. Sym. Proc. 726: 1-6.
Roque-Malherbe RMA, 2007. Adsorption and Difussion in Nanoporous Materials.
CRC Press Taylor & Francis Group. US.
Salimon J, Salih N, Yousif E, 2012. Synthesis and Characterization of Esters Derived from Ricinoleic Acid and Evaluation of their Low Temperature Property.
Sains Malaysiana. 41: 1239-1244.
Schubert U, Husing N, 2012. Synthesis of Inorganic Materials. Third Edition.
Wiley-VCH.
Semwal S, Arora AK, Badoni RP, Tuli DK, 2011. Biodiesel Production Using Heterogeneous Catalysts. Bioresource Technology. 102: 2151-2161.
Setiadji S, Tanyela N, Sudiarti T, Prabowo E, Wahid B, 2017. Alternatif Pembuatan Biodiesel Melalui Transesterifikasi Minyak Castor (Ricinus communis) Menggunakan Katalis Campuran Cangkang Telur Ayam dan Kaolin. Jurnal Kimia Valensi: Jurnal Penelitian dan Pengembangan Ilmu Kimia. 3: 1-10.
Sharma KK, Asefa T, 2007. Efficient Bifunctional Nanocatalysts by Simple Postgrafting of Spatially Isolated Catalytic Groups on Mesoporous Materials.
Angewandte Chem. 46: 2879-2882.
Shen S, Garcia-Bennett AE, Liu Z, Lu Q, Shi Y, Yan Y, Yu C, Liu W, Cai Y, Terasaki O, Zhao D, 2005. Three-Dimensional Low Symmetry Mesoporous Silica Structures Templated from Tetra-Headgroup Rigid Bolaform Quaternary Ammonium Surfactant. J. Am. Chem. Soc. 127: 6780-6787.
Shylesh S, Singh AP, 2006. Heterogenized Vanadyl Cations Over Modified Silica Surface: A Comprehensive Understanding Toward The Structural Property and Catalytic Activity Difference Over Mesoporous and Amorphous Silica Supports. Journal of Catalysis. 244: 52-64.
Silverstein RM, Webster FX, Kiemle DJ, 2005. Spectometric Identification of Organic Coumpounds. Seventh Edition. John Wiley & Son. New York.
Sinaga E, 2014. Ricinus communis linn. [serial online].
http://openstorage,gunadarma.ac.id/RicinusCommunisLinn/Jarak.pdf.[310820 15]
Slowing II, Trewyn BG, Lin VSY, 2007. Mesoporous Silica Nanoparticle for Intracelluler Delivery of Membrane-Impermeable Proteins. JACS. 129: 8845-8849.
Smallman RE, Bishop RJ, 1999. Metalurgi Fisik Modern dan Rekayasa Material.
Edisi Keenam. Erlangga. Jakarta.
Soler-Illia GJ de AA, Sanchez C, Lebeau B, Patarin J, 2002. Chemical Strategies to Design Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Striuctures. Chemical Reviews. 102: 4093-4138.
Taguchi A, Schüth F, 2004. Ordered Mesoporous Materials in Catalysis.
Microporous and Mesoporous Materials. 77: 1–45.
Tan B, Dozier A, Lehmler HJ, Knutson BL, Rankin SE, 2004. Elogated Silica Nanoparticle with a Mesh Phase Mesopore Structure by Fluorosurfactant Templating. Langmuir. 20: 6981-6984.
Telaumbanua CI, 2018. Pengaruh Perbandingan Asam Oleat sebagai Template dengan Tetraetilortosilikat (TEOS) sebagai Sumber SIlika Terhadap Porositas Material Mesopori Silika. [Skripsi]. Medan: Universitas Sumatera Utara, Program Sarjana.
Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW, 2015. Physisorption of Gases, with Special Reference to The
Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report), Pure Appl. Chem. 87: 1051-1069.
Ulagappan N, CNR Rao, 1996. Evidence for Supramolecular Organization of Alkane and Surfactant Molecules in The Process of Forming Mesoporous Silica. Chem. Commun. 2759 – 2760.
Vanaja M, Jyothi M, Ratnakumar P, Vagheera P, Reddy PR, Lakshmi NJ, YadavSK, Maheshwari M, Vankateswarlu B, 2008. Growth and Yield Responses of Castor Bean (Ricinus communis L.) to Two Enhanced CO2 Levels. Plant Soil Environment. 54: 38-46.
Vinu A, Mori T, Ariga K, 2006. New Families of Mesoporous Materials. Science and Technology of Advanced Materials. Vol 7: 753-771.
Voight R, 1994. Buku Pelajaran Teknologi Farmasi. Edisi V. Gadjah Mada University Press. Yogyakarta.
Wan Y, Zhao D, 2007. On The Controllable Soft-Templating Approach to Mesoporous Silicates. Chemical Rev. 107: 2821-2860.
Wang JG, Xiao Q, Zhou HJ, Sun PC, Ding DT, Chen TH, 2008. Anionic Surfactant-Templated Mesoporous Silica (AMS) Nano-Spheres with Radially Oriented Mesopores. Journal of Colloid and Interface Science. 323: 332-337.
Wang X, Miao XR, Li ZM, Deng WL, 2011. Fabrication of Microporous Hollow Silica Spheres Templated by NP-10 Micelles without Calcinations. Applied Surface Science. 257: 2481-2488.
Wencel D, Dolan C, Barczak M, Keyes TE, McDonagh C, 2013. Synthesis, Tailoring and Characterization of Silica Nanoparticle Containing a Highly Stable Rethenium Complex. IOP Publishing Nanotechnology. 24: 1-8.
Yan Z, Li G, Mu L, Tao S, 2006. Pyridine-Functionalized Mesoporous Silica as an Efficient Adsorbent for The Removal of Acid Dyestuffs. J. Mater. Chem. 16:
1717-1725.
Yang X, Liao S, Zeng J, Liang Z, 2011. A Mesoporous Hollow Silica Sphere (MHSS): Synthesis Through a Facile Emulsion Approach and Application of Support for High Performance Pd/MHSS Catalyst for Phenol Hydrogenation.
Applied Surface Science. 257: 4472-4477.
Yao J, Lei J, Sun P, Zhang L, Xu N, 2010. Low Boiling Point Organic Amine-Catalyzed Transesterification of Cottonseed Oil to Biodiesel with Trace Amount of KOH as Co-Catalyst.Fuel. 89: 3871-3875.
Yazid E, 2005. Kimia Fisika untuk Paramedis. Penerbit Andi. Yogyakarta.
Yokoi T, Yoshitake H, Tatsumi T, 2003. Synthesis of Anionic-Surfactant-Templated Mesoporous Silica Using Organoalkoxysilane-Containing Amino Groups.
Chem. Mater. 15: 4536-4538.
Zhao D, Huo Q, Feng J, Kim J, Han Y, Stucky GD, 1999. Novel Mesoporous Silicates with Two-Dimensional Mesostructure Direction Using Rigid Bolaform Surfactants. Chem. Mater. 11: 2668-2672.
Lampiran 1. Analisa GC-MS Metil Ester Risinoleat
Lampiran 2. Data Difraksi Sinar-X (XRD) Measurement Conditions:
Dataset Name Run-1 (2,9 : 0,55)
Measurement Date / Time 12/4/2018 3:32:00 PM Start Position [°2Th.] 5.0084
End Position [°2Th.] 94.9894 Step Size [°2Th.] 0.0170 Scan Step Time [s] 10.1500 Measurement Temperature [°C] -273.15 Main Graphics, Analyze View:
Measurement Conditions:
Dataset Name Run-2 (2,9 : 1,1) Measurement Date / Time 12/4/2018 3:13:00 PM Start Position [°2Th.] 5.0084
End Position [°2Th.] 94.9894 Step Size [°2Th.] 0.0170 Scan Step Time [s] 10.1500 Measurement Temperature [°C] -273.15
Position [°2Theta] (Copper (Cu))
10 20 30 40 50 60 70 80 90
Counts
0 100 200
MS (MT1)
Main Graphics, Analyze View:
Measurement Conditions:
Dataset Name Run-3 (2,9 : 2,2)
Measurement Date / Time 12/4/2018 2:49:00 PM Start Position [°2Th.] 5.0084
End Position [°2Th.] 94.9894 Step Size [°2Th.] 0.0170 Scan Step Time [s] 10.1500 Measurement Temperature [°C] -273.15 Main Graphics, Analyze View:
Position [°2Theta] (Copper (Cu))
10 20 30 40 50 60 70 80 90
Counts
0 100 200
MS (MT2)
Position [°2Theta] (Copper (Cu))
10 20 30 40 50 60 70 80 90
Counts
0 100 200
MS (MT3)
Measurement Conditions:
Dataset Name Run-4 (2,9 : 4,4)
Measurement Date / Time 12/4/2018 3:00:00 PM Start Position [°2Th.] 5.0084
End Position [°2Th.] 94.9894 Step Size [°2Th.] 0.0170 Scan Step Time [s] 10.1500 Measurement Temperature [°C] -273.15 Main Graphics, Analyze View:
Measurement Conditions:
Dataset Name Run-5 (2,9 : 8,8)
Measurement Date / Time 12/4/2018 3:47:00 PM Start Position [°2Th.] 5.0084
End Position [°2Th.] 94.9894 Step Size [°2Th.] 0.0170 Scan Step Time [s] 10.1500 Measurement Temperature [°C] -273.15
Position [°2Theta] (Copper (Cu))
10 20 30 40 50 60 70 80 90
Counts
0 100 200
MS (MT4)
Main Graphics, Analyze View:
Position [°2Theta] (Copper (Cu))
10 20 30 40 50 60 70 80 90
Counts
0 100 200
MS (MT5)
Lampiran 3. Analisa BET Material Mesopori Silika Run-1 (2,9 : 0,55)
0.0233576 41.4099 0.9471150 594.2060
0.0762137 50.1959 0.8964730 339.4840
0.1237030 54.7551 0.8457260 158.1180
0.1753360 58.3506 0.7954970 119.8430
0.2254850 61.1161 0.7443310 100.9140
0.2764280 63.7439 0.6912260 89.4826
0.3283410 66.6170 0.6367440 82.0650
0.3788060 68.9486 0.5862280 77.1282
0.4290810 72.0143 0.5398840 73.4198
0.4835700 75.1260 0.4885420 69.9110
0.5371440 78.7150 0.4375400 67.0026
0.5819690 82.2574 0.3870500 64.7831
0.6391680 87.9146 0.3314550 62.5897
0.6897950 93.9288 0.2847550 60.8658
0.7394510 102.5340 0.2333410 59.0767
0.7867850 114.5750 0.1789460 56.9563
0.8395270 136.4710 0.1319680 54.8543
0.8880790 182.8610 0.0761457 51.0040
0.9391520 390.1920 0.0265767 44.4353
0.9906320 680.0530
Hasil Perhitungan Distribusi Ukuran Pori Material Mesopori Silika Run-1(2,9 : 0,55)
D (Å) dD V (cc/g) dV dV/dD D (nm) 63.4204 11.6976 1.01E-02 9.19E-03 7.86E-04 6.34204 75.1180 15.7310 1.93E-02 1.60E-02 1.02E-03 7.51180 90.8490 25.0704 3.53E-02 3.39E-02 1.35E-03 9.08490 115.9194 43.4250 6.93E-02 8.33E-02 1.92E-03 11.59194 159.3444 101.5176 1.53E-01 3.91E-01 3.85E-03 15.93444 260.8620 942.1400 5.43E-01 4.73E-01 5.02E-04 26.08620 1203.0020 -1203.0020 1.02E+00 -1.02E+00 8.48E-04 120.30020
Lampiran 4. Analisa BET Material Mesopori Silika Run-2 (2,9 : 1,1)
0.0213722 38.4888 0.9483330 686.5920
0.0764660 47.8111 0.8970350 274.7790
0.1254260 52.3511 0.8441830 143.7060
0.1738700 55.8357 0.7933270 111.1860
0.2251710 58.8846 0.7428330 95.3881
0.2789000 61.6116 0.6896870 85.0384
0.3273700 64.3540 0.6382900 78.4530
0.3801910 66.7474 0.5875030 73.4308
0.4313720 69.8792 0.5404900 69.8009
0.4804800 72.7148 0.4840400 65.9775
0.5325450 76.0699 0.4380780 63.6308
0.5817470 79.8310 0.3808330 61.1251
0.6383020 85.4076 0.3357590 59.5560
0.6878020 90.7873 0.2842210 57.7710
0.7378640 98.8916 0.2327550 56.1116
0.7868170 110.5250 0.1827540 54.3184
0.8394480 129.2860 0.1311760 52.1074
0.8904990 170.6720 0.0761639 48.4895
0.9401150 341.9270 0.0257266 41.7991
0.9902850 834.6420
Hasil Perhitungan Distribusi Ukuran Pori Material Mesopori Silika Run-2 (2,9 : 1,1)
D (Å) dD V (cc/g) dV dV/dD D (nm) 63.1196 11.5224 1.09E-02 8.45E-03 7.34E-04 6.31196 74.6420 15.9646 1.93E-02 1.52E-02 9.49E-04 7.46420 90.6066 25.2884 3.45E-02 2.72E-02 1.08E-03 9.06066 115.8950 45.3982 6.17E-02 7.15E-02 1.57E-03 11.58950 161.2932 104.1328 1.33E-01 3.18E-01 3.06E-03 16.12932 265.4260 903.5500 4.51E-01 8.05E-01 8.91E-04 26.54260 1168.9760 -1168.9760 1.26E+00 -1.26E+00 1.07E-03 116.89760
Lampiran 5. Analisa BET Material Mesopori Silika Run-3 (2,9 : 2,2)
0.0228177 32.8168 0.9485610 596.2530
0.0764819 40.5641 0.8977310 217.9580
0.1257870 44.5529 0.8449890 124.8540
0.1758980 47.5738 0.7924500 99.3022
0.2265080 50.1871 0.7422620 85.0982
0.2769600 52.3303 0.6886920 75.0803
0.3289660 54.6403 0.6387380 68.4946
0.3814680 57.0185 0.5877250 62.9075
0.4299430 59.6053 0.5349190 58.6784
0.4828270 61.9770 0.4883810 55.0411
0.5326740 65.1782 0.4373970 52.4512
0.5835320 68.7298 0.3869010 50.3785
0.6377190 73.5658 0.3304820 48.5172
0.6883790 78.9684 0.2847940 47.1264
0.7396160 86.9068 0.2328980 45.5980
0.7893480 98.6108 0.1828490 43.9793
0.8386030 114.6380 0.1307450 42.0446
0.8890970 148.2890 0.0764979 38.9136
0.9394910 301.3310 0.0262837 33.0431
0.9904920 755.7780
Hasil Perhitungan Distribusi Ukuran Pori Material Mesopori Silika Run-3 (2,9 : 2,2)
D (Å) dD V (cc/g) dV dV/dD D (nm) 63.1346 11.8486 1.12E-02 9.00E-03 7.60E-04 6.31346 74.9832 16.4922 2.02E-02 1.65E-02 1.00E-03 7.49832 91.4754 24.6774 3.67E-02 2.36E-02 9.57E-04 9.14754 116.1528 43.6470 6.04E-02 5.71E-02 1.31E-03 11.61528 159.7998 102.7842 1.17E-01 2.85E-01 2.77E-03 15.97998 262.5840 926.2520 4.02E-01 7.42E-01 8.01E-04 26.25840 1188.8360 -1188.8360 1.14E+00 -1.14E+00 9.62E-04 118.88360
Lampiran 6. Analisa BET Material Mesopori Silika Run-4 (2,9 : 4,4)
0.0240391 24.0072 0.9445810 82.8291
0.0767097 29.5585 0.8928240 83.1836
0.1254800 32.8230 0.8421490 83.6449
0.1753380 35.3399 0.7898010 84.2736
0.2263210 37.7417 0.7381600 84.9243
0.2766560 39.9603 0.6883430 85.3681
0.3279760 42.0775 0.6420120 82.9501
0.3783480 44.4124 0.5877120 72.5115
0.4311370 46.8242 0.5398510 69.0946
0.4815630 49.1190 0.4854780 62.2168
0.5327260 51.8676 0.4345180 45.6104
0.5835580 54.7194 0.3865760 41.6737
0.6330800 58.1463 0.3350990 39.5457
0.6883670 63.4388 0.2841430 37.5304
0.7373160 73.6215 0.2333490 35.6814
0.7909750 82.2966 0.1828660 33.7357
0.8400640 83.4206 0.1303560 31.6585
0.8901870 83.3079 0.0764825 28.7867
0.9432940 82.8480 0.0260593 24.0760
0.9937590 83.1195
Hasil Perhitungan Distribusi Ukuran Pori Material Mesopori Silika Run-4 (2,9 : 4,4)
D (Å) dD V (cc/g) dV dV/dD D (nm) 62.7404 11.8798 4.07E-02 2.54E-02 2.14E-03 6.27404 74.6202 16.8818 6.61E-02 2.09E-02 1.24E-03 7.46202 91.5020 25.6208 8.70E-02 2.55E-03 9.95E-05 9.15020 117.1228 44.1566 8.95E-02 0.00E+00 0.00E+00 11.71228 161.2794 113.0306 8.95E-02 0.00E+00 0.00E+00 16.12794 274.3100 1452.3160 8.95E-02 4.36E-04 3.01E-07 27.43100 1726.6260 -1726.6260 9.00E-02 -9.00E-02 5.21E-05 172.66260
Lampiran 7. Analisa BET Material Mesopori Silika Run-5 (2,9 : 8,8)
0.0224055 30.0226 0.9467980 232.8790
0.0783009 38.1298 0.8924760 231.9210
0.1241040 42.0820 0.8431210 231.2020
0.1752980 45.5167 0.7927250 230.2010
0.2259270 48.6537 0.7433520 227.3810
0.2786960 51.7745 0.6925090 179.7300
0.3288620 54.8220 0.6422770 124.7840
0.3786730 58.0195 0.5880630 87.3649
0.4295920 61.6416 0.5374360 69.5809
0.4816120 65.6309 0.4822880 61.8451
0.5353130 70.7907 0.4382890 58.0269
0.5888480 79.4361 0.3807920 53.9694
0.6367830 93.5709 0.3355000 51.1649
0.6878830 118.3290 0.2792080 47.9127
0.7376310 148.1770 0.2280250 45.1141
0.7898120 180.2770 0.1828200 42.6016
0.8414840 203.2950 0.1316210 39.5727
0.8917680 217.0570 0.0761187 35.2497
0.9444620 225.8700 0.0255634 28.4915
0.9946010 235.3530
Hasil Perhitungan Distribusi Ukuran Pori Material Mesopori Silika Run-5 (2,9 : 8,8)
D (Å) dD V (cc/g) dV dV/dD D (nm) 62.9986 11.6160 1.07E-01 7.12E-02 6.13E-03 6.29986 74.6146 16.6586 1.79E-01 7.46E-02 4.48E-03 7.46146 91.2732 26.1464 2.53E-01 5.06E-02 1.94E-03 9.12732 117.4196 45.7678 3.04E-01 2.83E-02 6.17E-04 11.74196 163.1874 116.0726 3.32E-01 1.65E-02 1.42E-04 16.31874 279.2600 1689.9760 3.49E-01 1.52E-02 8.98E-06 27.92600 1969.2360 -1969.2360 3.64E-01 -3.64E-01 1.85E-04 196.92360