• Tidak ada hasil yang ditemukan

BAB II TINJAUAN PUSTAKA

2.8 Metalurgi Serbuk

Metalurgi serbuk adalah metode yang terus dikembangkan dari proses manufaktur yang dapat mencapai bentuk komponen akhir dengan mencampurkan serbuk secara bersamaan dan dikompaksi dalam cetakan, dan selanjutnya disinter di dalam furnace (tungku pemanas).

Langkah-langkah yang harus dilalui dalam metalurgi serbuk, antara lain: 1. Pencampuran (mixing)

2. Penekanan (kompaksi) 3. Pemanasan (sintering)

2.8.1 Pencampuran (mixing)

Blending dan mixing merupakan istilah yang biasa digunakan dalam pembuatan material dengan menggunakan metode serbuk namun kedua metode tersebut berbeda menurut standar ISO. Blending didefinisikan sebagai proses penggilingan suatu material tertentu hingga menjadi serbuk yang merata pada beberapa komposisi nominal. Proses blending dilakukan untuk menghasilkan serbuk yang sesuai dengan komposisi dan ukuran yang diinginkan. Mixing didefinisikan sebagai pencampuran dua atau lebih serbuk yang berbeda (Afza, 2011).

Ada 2 macam pencampuran, yaitu: 1. Pencampuran basah (wet mixing)

Proses pencampuran dimana serbuk matrik dan filler dicampur terlebih dahulu dengan pelarut polar. Metode ini dipakai apabila material (matrik dan filler) yang digunakan mudah mengalami oksidasi. Tujuan pemberian pelarut polar adalah untuk mempermudah proses pencampuran material yang digunakan dan untuk melapisi permukaan material supaya tidak berhubungan dengan udara luar sehingga mencegah terjadinya oksidasi pada material yang digunakan.

2. Pencampuran kering (dry mixing)

Proses pencampuran yang dilakukan tanpa menggunakan pelarut untuk membantu melarutkan dan dilakukan di udara luar. Metode ini dipakai apabila material yang digunakan tidak mudah mengalami oksidasi (Nayiroh,2013).

Mechanical alloying adalah sebuah teknik pencampuran berupa metode reaksi padatan (solid state reaction) dari beberapa logam (alloy) dengan memanfaatkan proses deformasi untuk membentuk suatu paduan. Proses mechanical alloying ini sangat berbeda dengan teknik konvensional, misalkan proses pemanasan (heat treatment) baik sintering maupun peleburan (melting) dan reaksi kimia. Derajat deformasi yang dicapai pada teknik konvensional ini jauh lebih rendah dibandingkan dengan teknik mechanical alloying.

Ada empat tahapan dalam mechanical alloying menurut teorema Benyamin dan Volin (Harris, J.R, 2002):

1. Tahap petama adalah proses perataan serbuk dari bentuk bulat menjadi bentuk pipih (plat like) dan kemudian mengalami penyatuan (welding prodominance). Serbuk yang sudah diratakan (bentuk pipih) disatukan membentuk sebuah lembaran (lamellar).

2. Tahap kedua adalah pembentukan serbuk pada arah yang sama (equiaxed), yaitu menyerupai lembaran berbentuk lebih pipih dan bulat. Perubahan bentuk ini disebabkan oleh pengerasan (hardening) dari serbuk.

3. Tahap ketiga adalah orientasi penyatuan acak (welding orientation) yaitu fragmen-fragmen membentuk partikel-partikel equaxed kemudian disatukan dalam arah yang berbeda dan struktur lembaran mulai terdegredasi.

4. Tahap keempat mechanical alloying ini adalah proses steady state (steady state processing), struktur bahan perlahan-lahan menghalus menjadi fragmen-fragmen, kemudian fragmen-fragmen tersebut disatukan dengan fragmen-fragmen yang lain dalam arah berlawanan.

2.8.2 Penekanan (kompaksi)

Kompaksi merupakan proses pemadatan serbuk menjadi sampel dengan bentuk tertentu sesuai dengan cetakannya.

Ada 2 macam metode kompaksi, yaitu:

1. Cold compressing, yaitu penekanan dengan temperatur kamar. Metode ini dipakai apabila bahan yang digunakan mudah teroksidasi, seperti Al. 2. Hot compressing, yaitu penekanan dengan temperatur di atas temperatur

kamar.

Penekanan (pressing) adalah kompaksi yang secara simultan dengan pencetakan dari bubuk atau granular dalam cetakan die atau mold (Nayiroh,2013).

2.8.3 Pemanasan (sintering)

Pemanasan pada temperatur di bawah titik leleh material komposit disebut dengan sintering. Diantara langkah-langkah untuk meningkatkan ikatan antar partikel setelah kompaksi adalah dengan disintering.

Parameter sintering: 1. Temperatur (T) 2. Waktu 3. Kecepatan pendinginan 4. Kecepatan pemanasan 5. Atmosfer sintering 6. Jenis material

Berdasarkan pola ikatan yang terjadi pada proses kompaksi, ada 2 fenomena yang mungkin terjadi pada saat sintering, yaitu:

1. Penyusutan (shrinkage)

Apabila pada saat kompaksi terbentuk pola ikatan bola-bidang maka pada proses sintering akan terbentuk shrinkage, yang terjadi karena saat proses sintering berlangsung gas (lubricant) yang berada pada porositas mengalami degassing (peristiwa keluarnya gas pada saat sintering). Dan apabila temperatur sinter terus dinaikkan akan terjadi difusi permukaan antar partikel matrik dan filler yang akhirnya akan terbentuk liquid bridge/necking (mempunyai fasa campuran antara matrik dan filler). Liquid bridge ini akan menutupi porositas sehingga terjadi eleminasi porositas/berkurangnya jumlah dan ukuran porositas. Penyusutan dominan bila pemadatan belum mencapai kejenuhan (Nayiroh,2013).

2. Retak (cracking)

Apabila pada kompaksi terbentuk pola ikatan antar partikel berupa bidang, sehingga menyebabkan adanya trapping gas (gas/lubricant terjebak di dalam material), maka pada saat sintering gas yang terjebak belum sempat keluar tapi liquid bridge telah terjadi, sehingga jalur porositasnya telah tertutup rapat. Gas yang terjebak ini akan mendesak ke segala arah sehingga terjadi bloating (mengembang), sehingga tekanan di porositas lebih tinggi dibanding tekanan di luar. Bila kualitas ikatan permukaan partikel pada bahan komposit tersebut rendah, maka tidak akan mampu menahan tekanan yang lebih besar sehingga menyebabkan retakan (cracking). Keretakan juga dapat diakibatkan dari proses pemadatan yang kurang sempurna, adanya shock termal pada saat pemanasan karena pemuaian dari matrik dan filleryang berbeda (Nayiroh,2013).

Proses sintering meliputi 3 tahap mekanisme pemanasan:

1. Presintering

1. Presintering merupakan proses pemanasan yang bertujuan untuk: Mengurangi residual stress akibat proses kompaksi (green density)

2. Pengeluaran gas dari atmosfer atau pelumas padat yang terjebak dalam porositas bahan komposit (degassing)

3. Menghindari perubahan temperatur yang terlalu cepat pada saat proses sintering (shock thermal)

2. Difusi permukaan

Pada proses pemanasan untuk terjadinya transportasi massa pada permukaan antar partikel serbuk yang saling berinteraksi, dilakukan pada temperatur sintering (2/3 Tm). Atom-atom pada permukan partikel serbuk saling berdifusi antar permukaan sehingga meningkatkan gaya kohesifitas antar partikel.

3. Eliminasi porositas

Tujuan akhir dari proses sintering pada bahan komposit berbasis metalurgi serbuk adalah bahan yang mempunyai kompaktibilitas tinggi. Hal tersebut terjadi akibat adanya difusi antar permukaan partikel serbuk, sehingga menyebabkan terjadinya leher (liquid bridge) antar partikel dan proses akhir dari pemanasan sintering menyebabkan eliminasi porositas (terbentuknya sinter density) (Nayiroh,2013).

Sintering dapat diklasifikasikan dalam dua bagian besar yaitu sintering dalam keadaan padat (solid state sintering) dan sintering fasa cair (liquid phase sintering). Sintering dalam keadaan padat dalam pembuatan material yang diberi tekanan diasumsikan sebagai fase tunggal oleh karena tingkat pengotornya rendah, sedangkan sintering pada fase cair adalah sintering untuk serbuk yang disertai terbentuknya fase liquid selama proses sintering berlangsung. Proses sintering padat dapat dilihat pada Gambar 2.11 (Afza, 2011).

Gambar 2.17 menunjukkan bahwa proses sintering dalam keadaan padat, selama sintering terjadi penyusutan serbuk, kekuatan dari material akan bertambah, pori-pori dan ukuran butir berubah. Perubahan ini diakibatkan oleh sifat dasar dari serbuk itu sendiri, kondisi tekanan, aditif, waktu sintering, dan suhu. Proses sintering memerlukan waktu dan suhu pemanasan yang cukup agar partikel halus dapat menjadi padat. Sinter tanpa cairan memerlukan difusi dalam bahan padat itu sendiri, sehingga diperlukan suhu tinggi dalam proses sintering (Afza, 2011).

Dokumen terkait