TINJAUAN PUSTAKA
2.1. Motor Induksi
Motor listrik adalah mesin yang mengubah energi listrik menjadi energi mekanis. Arus listrik dalam medan magnet akan memberikan gaya, jika kawat yang
membawa arus dibengkokan menjadi sebuah lingkaran/loop, maka kedua sisi loop yaitu pada sudut kanan medan magnet akan mendapatkan gaya pada arah yang berlawanan. Pasangan gaya menghasilkan tenaga putar/torque untuk memutar kumparan.
Motor induksi termasuk bagian dari motor listrik arus bolak-balik (AC). Motor induksi banyak digunakan sebagai motor penggerak mekanik pada peralatan rumah tangga, perusahaan, maupun industri. Motor induksi satu fasa khususnya digunakan sebagai penggerak peralatan mekanik yang berkuran kecil tetapi membutuhkan starting torque yang besar tetapi mempunyai daya keluaran yang rendah.
Pada dasarnya, prinsip kerja motor induksi 1-fasa sama dengan motor induksi 2-fasa yang tidak simetris karena pada kumparan statornya dibuat dua kumparan (yaitu kumparan bantu dan kumparan utama) yang mempunyai perbedaan secara listrik dimana antara masing-masing kumparannya tidak mempunyai nilai impedansi yang sama dan umumnya motor bekerja dengan satu kumparan stator (kumparan utama). Khusus untuk motor kapasitor-start kapasitor-run, maka motor ini dapat dikatakan bekerja seperti halnya motor induksi 2-fasa yang simetris karena motor ini bekerja dengan kedua kumparannya (kumparan bantu dan kumparan utama) mulai dari start sampai saat running (jalan).
Motor induksi 1-fasa yang bekerja dengan satu kumparan stator pada saat running (jalan) dapat dikatakan bekerja bukan berdasarkan medan putar, tetapi bekerja berdasarkan gabungan medan maju dan medan mundur. Bila salah satu
medan tersebut dibuat lebih besar maka rotornya akan berputar mengikuti perputaran medan ini. Bentuk gambaran proses terjadinya medan maju dan medan mundur ini dapat dijelaskan dengan menggunakan teori perputaran medan ganda
2.2. Mixer
Mixer didesain untuk mempermudah pekerjaan rumah tangga terutama untuk mencampur bahan adonan kue, roti, dan sebagainya. Design mixer terbilang modern, memiliki beberapa komponen yang terangkai didalamnya untuk mendukung kinerja optimal dari sebuah mixer, ditunjukan pada Gambar 2.1. berikut:
Gambar 2.1. Mixer.
Seperti yang ditunjukan Gambar 2.1. Mixer adalah salah satu jenis peralatan rumah tangga modern yang digunakan untuk meringankan beban pekerjaan rumah tangga. Mixer berfungsi sebagai pengaduk atau pencampur/mixing bahan makanan untuk membuat adonan roti, kue, atau semacamnya. Mixer hanya digunakan sebagai peralatan rumah tangga tetapi tidak tertutup kemungkinan penggunaan mixer
pada skala besar sebagai industri rumah tangga dapat menghasilkan arus harmonisa yang dapat menyebabkan gangguan gelombang arus dan tegangan sehingga pada akhirnya akan kembali kebagian lain sistem tenaga listrik.
Prinsip kerja mixer ialah mengubah energi listrik menjadi energi mekanis dengan cara mengalirkan arus listrik menuju switch saklar pemilih kecepatan kemudian dialirkan kembali menuju motor penggerak.
Motor penggerak yang terdapat pada mixer termasuk dalam motor induksi rotor lilit/wound rotor induction motor.
2.2.1. Diagram mixer
Gambar 2.2. Single-Line diagram mixer.
Seperti yang diperlihatkan Gambar 2.2. Rangkaian kelistrikan salah satu merk mixer. Sumber listrik yang diperlukan untuk menjalankan rangkaian mixer ialah direntang tegangan antara 220 V sampai dengan 230 V pada frekuensi kerja 50 – 60 Hz. Sementara daya listrik yang akan diserap sebesar 170 Watt, rangkaiannya
dilengkapi dengan kapasitor dan resistor yang dipasang paralel berfungsi sebagai peredam frekuensi interferensi yang ditimbukan oleh motor mixer saat berputar. Pengaturan kecepatan mixer dilakukan dengan memindahkan posisi saklar pemilih kecepatan (SW) antara posisi 0 sampai posisi 3 yang berhubungan dengan dengan belitan pengatur kecepatan dan belitan bantu motor L1, L2, L3 yang terhubung seri menuju sikat kemudian masuk ke belitan rotor (LR).
2.3. Harmonisa
Harmonisa adalah gangguan yang terjadi dalam sitem distribusi tenaga listrik yang disebabkan adanya distorsi gelombang arus dan tegangan. Distorsi gelombang arus dan tegangan ini disebabkan adanya pembentukan gelombang-gelombang dengan frekuensi kelipatan bulat dari frekuensi fundamentalnya [9]. Terdistorsinya gelombang arus atau tegangan akibat adanya gelombang sinus kelipatan integer dari gelombang fundamental dan gelombang tersebut ditambahkan sehingga berakibat pada terdistorsinya bentuk gelombang fundamental menjadi tidak sinusoidal murni, seperti yang diperlihatkan Gambar 2.3.
Bila kedua gelombang tersebut dijumlahkan, maka bentuk gelombang yang dihasilkan adalah seperti Gambar 2.4., bentuk distorsi gelombang akan lebih kompleks lagi bila semua gelombang harmonik yang terjadi dijumlahkan dengan gelombang frekuensi dasar. Besar amplitude harmonik biasanya hanya beberapa persen dari amplitude gelombang dasar.
Gambar 2.4. Bentuk gelombang tegangan yang terdistorsi harmonik [6].
2.3.1. Perhitungan harmonisa
Harmonisa diproduksi oleh beberapa beban non linier atau alat yang mengakibatkan arus non sinusoidal. Untuk menentukan besar Total Harmonic Distortion (THD) dari perumusan analisa deret fourier untuk tegangan dan arus dalam fungsi waktu yaitu [10].
………..………..….(2.1)
Tegangan dan arus RMS dari gelombang sinusoidal yaitu nilai puncak gelombang dibagi dan secara deret fourier untuk tegangan dan arus yaitu [14].
………..……….(2.3)
……….…..……….(2.4)
Pada umumnya untuk mengukur besar harmonisa yang disebut dengan Total Harmonic Distortion (THD). Untuk THD tegangan dan arus didefenisikan sebagai nilai RMS harmonisa urutan diatas frekuensi fundamental dibagi dengan nilai RMS pada frekuensi fundamentalnya, dan tegangan dc nya diabaikan. Besar Total Harmonic Distortion (THD) untuk tegangan dan arus yaitu:
……..………… (2.5)
……..…………... (2.6)
Hubungan persamaan THD dengan arus RMS dari Persamaan (2.6) yaitu:
…..…………..…. (2.7)
Selanjutnya dari Persamaan (2.7) yaitu:
Sehingga arus RMS terhadap THDI yaitu:
……….……… (2.8)
Individual Harmonic Distortion (IHD) adalah perbandingan nilai RMS pada orde harmonisa terdistorsi terhadap nilai RMS pada frekuensi fundamental yaitu:
... …(2.9)
... ….(2.10)
Dimana:
Vh = Tegangan harmonisa pada orde terdistorsi Ih = Arus harmonisa pada orde terdistorsi
Hubungan Persamaan IHD dengan arus RMS dari Persamaan (2.10) yaitu:
... ….(2.11)
... ….(2.12)
Selanjutnya dari Persamaan (2.11) yaitu:
... ….(2.13)
... ….(2.14)
Sehingga arus RMS terhadap IHDi yaitu:
2.3.2. Pengaruh dari harmonisa
Pada keadaan normal, arus beban setiap fasa dari beban linier yang seimbang pada frekuensi dasarnya akan saling menghapuskan sehingga arus netralnya menjadi nol. Sebaliknya beban non linier satu fasa akan menimbulkan harmonisa kelipatan tiga ganjil yang disebut triplen harmonisa (harmonisa ke 3, ke 9, ke 15 dan seterusnya) yang sering disebut zero sequence harmonisa.
Harmonisa ini dapat menghasilkan arus netral yang lebih tinggi dari arus fasa karena saling menjumlah di tiap fasanya. Harmonisa pertama urutan polaritasnya adalah positif, harmonisa kedua urutan polaritasnya adalah negatif dan harmonisa ketiga urutan polaritasnya adalah nol, harmonisa keempat adalah positif (berulang, berurutan dan demikian seterusnya).
Akibat yang ditimbulkan oleh arus urutan nol dari komponen harmonisa antara lain tingginya arus netral pada sistem tiga fasa empat kawat (sisi sekunder transformator) karena arus urutan nol (zero sequence) kawat netral 3 kali arus urutan nol masing-masing fasa [15].
2.3.3. Mengurangi pengaruh harmonisa
Filter harmonisa harus dilakukan untuk mengurangi dampak yang ditimbulkan terhadap sistem dan peralatan listrik. Banyak sekali cara yang digunakan untuk memperbaiki sistem khususnya meredam harmonisa yang sudah dikembangkan saat ini. Secara garis besar ada beberapa cara untuk meredam harmonisa yang di timbulkan oleh beban non linier yaitu diantaranya [12]:
a. Penggunaan filter pasif pada tempat yang tepat, terutama pada daerah yang dekat dengan sumber pembangkit harmonisa sehingga arus harmonisa terjerat di sumber dan mengurangi peyebaran arusnya. b. Penggunaan filter aktif.
c. Kombinasi filter aktif dan pasif.
d. Konverter dengan AC- reactor, dan lain-lain.
Sistem diatas mampu bertindak sebagai peredam harmonisa, dan juga dapat memperbaiki faktor daya yang rendah pada sistem. Jika perbaikan faktor daya langsung dipasang kapasitor terhadap sistem yang mengandung harmonisa, maka akan menyebabkan amplitudo pada harmonisa tertentu akan membesar, proses ini diakibatkan terjadinya resonansi antara kapasitor yang dipasang dengan reaktansi induktif sistem.