• Tidak ada hasil yang ditemukan

Gambar 2.4.2 Ceramic Capacitor

2.4.3 Nilai Kapasitor

Untuk mencari nilai dari kapasitor biasanya dilakukan dengan melihat angka atau kode yang tertera pada badan kapsitor tersebut. Untuk kapasitor jenis elektrolit memang mudah, karena nilai kapasitansinya telah tertera dengan jelas pada tubuhnya. Sedangkan untuk kapasitor keramik dan beberapa jenis yang lain nilainya dikodekan.

Biasanya kode tersebut terdiri dari 4 digit,dimana 3 digit pertama merupakan angka dan digit terakhir berupa huruf yang menyatakan toleransinya. Untuk 3 digit pertama angka yang terakhir berfungsi untuk menentukan 10 dan nilai selanjutnya , nilai selanjutnya dapat dilihat pada tabel dibawah :

Tabel 2.4 Nilai Kapasitor

Misalnya suatu kapasitor pada badannya tertulis kode 474J, berarti nilai kapasitansinya adalah 47 + 104 = 470.000 pF = 0,47µF sedangkan toleransinya yang harus diingat didalam mencari nilai kapasitor adalah satuannya dalam pF (Pico Farad).

2.5 Motor DC

Motor listrik merupakan perangkat elektromagnetis yang mengubah energi listrik menjadi energi mekanik. Energi mekanik ini digunakan untuk, misalnya memutar impeller pompa, fan atau blower, menggerakan kompresor, mengangkat bahan,dll. Motor listrik digunakan juga di rumah (mixer, bor listrik, fan angin) dan di industri. Motor listrik kadangkala disebut “kuda kerja” nya industri sebab

diperkirakan bahwa motor menggunakan sekitar 70% beban listrik total di industri.

Motor dc memerlukan suplai tegangan yang searah pada kumparan medan untuk diubah menjadi energi mekanik. Kumparan medan pada motor dc disebut stator (bagian yang tidak berputar) dan kumparan jangkar disebut rotor (bagian yang berputar). Jika terjadi putaran pada kumparan jangkar dalam pada medan magnet, maka akan timbul tegangan (GGL) yang berubah-ubah arah pada setiap setengah putaran, sehingga merupakan tegangan bolak-balik. Prinsip kerja dari arus searah adalah membalik phasa tegangan dari gelombang yang mempunyai nilai positif dengan menggunakan komutator, dengan demikian arus yang berbalik arah dengan kumparan jangkar yang berputar dalam medan magnet. Bentuk motor paling sederhana memiliki kumparan satu lilitan yang bisa berputar bebas di antara kutub-kutub magnet permanen.

Catu tegangan dc dari baterai menuju ke lilitan melalui sikat yang menyentuh komutator,dua segmen yang terhubung dengan dua ujung lilitan. Kumparan satu lilitan pada gambar di atas disebut angker dinamo. Angker dinamo adalah sebutan untuk komponen yang berputar di antara medan magnet.

Penghantar yang mengalirkan arus ditempatkan tegak lurus pada medan magnet, cenderung bergerak tegak lurus terhadap medan. Besarnya gaya yang didesakkan untuk menggerakkan berubah sebanding dengan kekuatan medan magnet, besarnya arus yang mengalir pada penghantar, dan panjang penghantar. Untuk menentukan arah gerakan penghantar yang mengalirkan arus pada medan magnet, digunakan hukum tangan kanan motor. Ibu jari dan dua jari yang pertama dari tangan kanan disusun sehingga saling tegak lurus satu sama lain dengan menunjukkan arah garis gaya magnet dari medan, dan jari tengah menunjukkan arah arus yang mengalir (min ke plus) pada penghantar. Ibu jari akan menunjukkan arah gerakan penghantar, seperti diperlihatkan pada gambar 2.5.1. Gambar tersebut menggambarkan bagaimana torsi motor dihasilkan oleh kumparan yang membawa arus atau loop pada kawat yang ditempatkan pada medan magnet. Interaksi pada medan magnet menyebabkan pembengkokan garis gaya. Apabila garis cenderung lurus keluar, pembengkokan tersebut menyebabkan loop mengalami gerak putaran. Penghantar sebelah kiri ditekan ke bawah dan penghantar sebelah kanan ditekan keatas, menyebabkan putaran jangkar berlawanan dengan arah putaran jarum jam.

Gambar 2.5.1 Prinsip Motor dc

Motor dan generator arus searah dibuat dengan cara yang sama sehingga mesin dc dapat bekerja baik sebagai motor maupun sebagai generator. Motor dc magnet permanen adalah motor yang fluks magnet utamanya dihasilkan oleh magnet permanen. Elektromagnetik digunakan untuk medan sekunder atau fluks jangkar.Gambar 2.5.2 menggambarkan operasi motor magnet permanen. Arus mengalir melalui kumparan jangkar dari sumber tegangan dc, menyebabkan jangkar beraksi sebagai magnet. Kutub jangkar ditarik kutub medan dari polaritas yang berbeda, menyebabkan jangkar berputar. Apabila kutub jangkar segaris dengan kutub medan, sikat-sikat ada pada celah di komutator dan tidak ada arus mengalir pada jangkar. Jadi gaya tarik atau gaya tolak magnet berhenti. Kemudian kelembaman membawa jangkar melewati titik netral. Komutator membalik arus jangkar ketika kutub yang tidak sama dari jangkar dan medan berhadapan satu sama lain, sehingga membalik polaritas medan jangkar. Kutub-kutub yang sama

dari jangkar dan medan kemudian saling menolak menyebabkan jangkar berputar terus-menerus.

Gambar 2.5.2 Operasi Motor dc Magnet Permanen

Arah putaran motor dc magnet permanen ditentukan oleh arah arus yang mengalir pada jangkar. Pembalikan ujung-ujung jangkar tidak membalik arahputaran. Salah satu keistimewaan motor dc ini adalah kecepatannya dapat dikontrol dengan mudah. Kecepatan motor magnet permanen berbanding langsung dengan harga tegangan yang diberikan pada jangkar. Semakin besar tegangan jangkar, semakin tinggi kecepatan motor.

Motor dc umum yang menggunakan sikat (brush), yang menggunakan lilitan pada rotor dan menggunkan magnet tetap pada sisi stator, pada dasarnya

dapat dianggap sebagai suatu beban yang dapat dihubungkan langsung ke rangkaian switching arus DC. Oleh karena itu, pemilihan yang tepat cukup diperoleh dengan memperhatikan besar kebutuhan arus untuk memutar motor DC secara nominal. Lilitan pada motor DC dapat diidentikkan dengan lilitan pada kumparan relay sehingga rangkaian drivernya relative sama. Tujuan motor DC adalah untuk menghasilkan gaya yang menggerakkan (torsi). pada beberapa kasus sering diperlukan arah putaran motor DC yang berubah-ubah. Prinsip dasar untuk mengubah arah perputarannya adalah dengan membalik polaritas pada catudaya tegangannya.

2.6 Transistor

Transistor adalah komponen elektronika yang mempunyai tiga buah terminal terminal itu disebut emitor, basis, dan kolektor. Transistor seakan akan dibentuk dari penggabungan dua buah dioda. Dioda satu dengan yang lain saling digabungkan dengan cara menyambungkan salah satu sisi dioda yang senama. Dengan cara penggabungan seperti dapat diperoleh dua buah dioda sehingga menghasilkan transistor NPN. Bahan mentah yang digunakan untuk menghasilkan bahan N dan Bahan P adalah silicon dan germanium. Oleh karena itu, dikatakan :

1. Transistor Germanium PNP 2. Transistor Silikon NPN 3. Transistor Silikon PNP

4. Transistor Germanium NPN

Semua komponen didalam rangkaian transistor dengan simbol. Anak panah yang terdapat didalam simbol menunjukkan arah yang melalui transistor.

Gambar 2.6 Simbol Tipe Transistor

Keterangan :

C = Kolektor E = Emitor B = Basis

Didalam pemakaiannya, transistor dipakai sebagai komponen saklar (switching) dengan memanfaatkan daerah penjenuhan (saturasi) dan daerah penyumbatan (cut off) yang ada pada karakteristik transistor.

Pada daerah penjenuhan nilai resistansi persambungan kolektor emitor secara ideal sama dengan nol atau kolektor dan emitor terhubung langsung (short). Keadaan ini menyebabkan tegangan kolektor emitor (VCE) = 0 volt pada keadaan ideal, tetapi pada kenyataannya VCE bernilai 0 sampai 0,3 volt. Dengan menganalogikan transistor sebagai saklar, transistor tersebut dalam keadaaan on

Gambar 2.6.1 Transistor Sebagai Saklar ON

Pada daerah penyumbatan, nilai resistansi persambungan kolektor emitor secara ideal sama dengan tak terhitung atau terminal kolektor dan emitor terbuka (open). Keadaan ini menyebabkan tegangan (Vcb) sama dengan tegangan sumber (Vcc). Tetapi pada kenyataannya Vcc pada saat ini kurang dari Vcc karena terdapat arus bocor dari kolektor ke emitor. Dengan menganalogikan transistor

sebagai saklar, transistor tersebut dalam keadaan off seperti pada gambar dibawah ini :

Gambar 2.6.2 Transistor Sebagai Saklar OFF

2.7 IC Jembatan H l293D

L293D adalah sebuah Integrated Circuit (IC) merupakan IC yang Berdasarkan jembatan- H. L293D terdiri dari 4 channel (kanal) yang dirancang untuk menerima DTL (Diode Transistor Logic) standar atau tingkat logika TTL (Transistor Transistor Logic) dan pengendali beban induktif pada solenoides, relai, motor DC, motor stepper dan lain-lain.

Gambar 2.7 Konfigurasi Pin L293D

L293D mampu melayani 4 buah beban dengan arus nominal 600 mA hingga maksimum 1,2 A. Vs pada pin 8 merupakan masukan sumber tegangan untuk beban, sedangkan Vss pada pin 16 merupakan sumber masukan tegangan untuk L293D. L293D terdiri dari dua pasang jembatan-H yang masing - masing dikendalikan oleh pin enable 1 dan enable 2. Pin enable berfungsi untuk mengontrol keluaran.

2.8 Resistor

Resistor komponen pasif elektronika yang berfungsi untuk membatasi arus listrik yang mengalir. Berdasarkan kelasnya resitor dibagi menjadi 2 yaitu : Fixed Resistor dan Variable Resistor pada umumnya terbuat dari carbon

film atau metal film tetapi tidak menutup kemungkinan untuk dibuat dari material yang lain.

Pada dasarnya semua bahan memliki sifat resistif namun beberapa bahan tembaga perak dan emas dan bahan metal umumnya memiliki resistansi yang sangat kecil. Bahan bahan tersebut menghantar arus listrik dengan baik, sehingga dinamakan konduktor. Kebalikan dari bahan yang konduktif, bahan bahan material seperti karet ,gelas, karbon memilki resistansi yang lebih besar menahan aliran elektron dan disebut sebagai isolator.

Dokumen terkait