• Tidak ada hasil yang ditemukan

B. Penyelesaian Model Capacitated Vehicle Routing Problem (CVRP) Menggunakan Algoritma Sweep

7. Pembentukan Populasi Baru

Setelah langkah-langkah di atas dilakukan, maka dibentuk populasi selanjutnya di generasi kedua. Individu terbaik dengan nilai fitness tertinggi pada populasi awal dibawa ke populasi selanjutnya, proses ini dinamakan sebagai elitism. Proses elitism bertujuan untuk menjaga agar individu bernilai fitness tertinggi tersebut tidak hilang selama proses evolusi. Prosedur pembentukan populasi selanjutnya terdapat dalam lampiran 6 dan hasil pembentukkan populasi baru bisa dilihat pada lampiran 11 dengan bantuan software Matlab. Berikut merupakan hasil populasi baru di generasi selanjutnya.

Individu 1 = 17 20 10 8 13 22 21 3 25 16 24 5 2 23 15 6 9 4 18 12 7 11 19 1 14

Setelah didapatkan generasi baru maka proses selanjutnya adalah mencari nilai fitness generasi baru dengan bantuan software Matlab (hasil perhitungan pada lampiran 12. Iterasi dilakukan hingga mendapatkan nilai fitness yang optimum dan konvergen digenerasi tertentu. Algoritma genetika bersifat random generator, sehingga setiap melakukan proses seleksi maka akan selalu menghasilkan solusi yang berbeda. Dalam hal ini diperlukan beberapa kali percobaan dalam mengaplikasikan algoritma genetika dengan software Matlab agar didapatkan solusi yang optimum, yaitu dengan mencoba beberapa nilai ukuran populasi dan jumlah generasi. Berikut tabel percobaan dengan menggunakan beberapa nilai ukuran populasi dan jumlah generasi yang berbeda.

Tabel 3.9 Hasil Uji coba Menggunakan Software Matlab Percobaan Ke- Ukuran Populasi Jumlah Generasi Nilai Fitness Total Jarak 1 15 100 0,0061 166,100 2 150 0,0057 176,400 3 200 0,0056 179,500 4 500 0,0061 165,000 5 1000 0,0068 146,550

6 20 100 0,0063 159,400 7 150 0,0062 162,300 8 200 0,0061 165,100 9 500 0,0068 146,900 10 1000 0,0080 123,650 11 25 100 0,0059 168,200 12 150 0,0060 167,700 13 200 0,0061 163,100 14 500 0,0063 159,850 15 1000 0,0071 141,000

Berdasarkan Tabel 3. dilakukan uji coba dengan beberapa ukuran populasi random yaitu 15, 20 dan 25. Jumlah iterasi yang digunakan adalah 100, 150, 200, 500, 1000 dan parameter yang digunakan dibuat sama yaitu dengan crossover rate 0,8 dan mutation rate 0,05. Berdasarkan tabel ukuran populasi percobaan dengan 15 populasi menghasilkan nilai fitness terbaik yaitu sebesar 0,0068 pada iterasi ke-1000, dengan ukuran 20 populasi nilai fitness yang dihasilkan sebesar 0,0080 pada iterasi ke 1000, sedangkan dengan ukuran 25 populasi nilai fitness terbaik sebesar 0,0071 juga pada iterasi ke-1000. Dapat terlihat dari setiap percobaan semakin bertambah ukuran populasi dan jumlah generasinya maka nilai fitness yang dihasilkan juga akan semakin baik. Ukuran populasi dan jumlah generasi mempengaruhi kinerja dan

menyediakan cukup materi untuk mencakup ruang permasalahan, sehingga pada umumnya kinerja algoritma genetika menjadi buruk. Penggunaan populasi yang lebih besar dapat membuat kinerja algoritma genetika semakin baik dan dapat mencegah terjadinya konvergensi pada wilayah lokal. Begitu juga dengan jumlah generasi, jumlah generasi yang besar dapat mengarahkan ke arah solusi yang lebih optimal, namun akan membutuhkan waktu running yang lama. Sedangkan jika jumlah generasinya terlalu sedikit maka solusi yang dihasilkan akan terjebak dalam lokal optimal.

Dapat disimpulkan bahwa yang menyebabkan hasil solusi optimal setiap iterasi berubah karena dalam algoritma genetika, solusi optimal dapat dihasilkan disetiap generasi yang dibentuk dari generasi sebelumnya sangat dipengaruhi oleh populasi awal, seleksi, pindah silang dan mutasi. Maka disetiap proses generasi akan selalu dihasilkan individu baru atau representasi solusi optimal dari permasalahan yang dihadapi. Proses tersebut akan selalu berulang-ulang hingga didapatkan solusi yang mendekati optimal. Solusi dikatakan mendekati optimal jika dalam proses generasi didapatkan individu-individu yang memiliki nilai fitness terbaik.

Berdasarkan Tabel 3.9 pada percobaan ke-10 dengan ukuran populasi 20 dan jumlah iterasi ke-1000 didapatkan nilai fitness sebesar 0,0080 yang artinya nilai fitness yang didapatkan belum mencapai nilai fitness maksimum. Nilai fitness terbaik hanya mencapai 0,0080. dengan total jarak tempuh 123,650 km. Berikut grafik percobaan ke-10 seperti Gambar 3.9.

Gambar 3.9 Grafik Generasi Ke-1000

Kurva yang berada diatas merupakan nilai fitness pada generasi ke-1000. Dan kurva yang berada dibawah merupakan nilai fitness rata-rata dari 1000 generasi. Pergerakan nilai fitness akan semakin baik dan konstan dari generasi ke generasi dan mencapai konvergen di generasi ke-850, untuk generasi setelah 850 sampai generasi ke-1000 tetap didapatkan nilai fitness terbaik sebesar 0,0080, sehingga didapatkan solusi optimal rute terpendek. Berikut rute yang dihasilkan pada percobaan ke-10 seperti pada Tabel 3.10.

Tabel 3.10 Pembagian rute pada percobaan ke-10

Keterangan :

1) Rute kendaraan 1 (Total kapasitas 5750 kg dan Total Jarak Tempuh 52,95 km) Depot - Jalan Raya Wates No.256 - Jl. Madukismo Ngupasan - Jl. Sultan Agung No.10 Wirogunan Mergangsan - Jl. Mayor Suryotomo No.29 Ngupasan - Jl. HOS Cokroaminoto No.176 Tegalrejo – Jl Raya Seturan Kav.IV Depok Sports Centre – Jl Ringroad Utara Maguwoharjo – Jl Raya Solo Km 8 No.234 Maguwoharjo – Depot.

Kendaraan Rute Permintaan Jarak Tempuh

1 0 11 13 18 17 6 24 9 16 0 5750 52,95 2 0 25 5 3 22 21 23 4 20 7 10 0 5425 56,40 3 0 15 2 8 19 1 12 14 0 5700 38,6

Gambar 3.10 Graf Pendistribusian Rute I

Selanjutnya dari rute yang telah diperoleh, dihitung catatan waktu yang dihabiskan selama pendistribusian pada rute 1 dan setiap agen dilayani selama 15 menit.

Tabel 3.11 Lama waktu pendistribusian pada rute 1

Agen Waktu Kedatangan Waktu Keberangkatan

0 08.00 11 08.07 08.22 13 08.29 08.44 18 08.45 09.00 17 09.01 09.16 6 09.22 09.37

2) Rute kendaraan 2 (Total kapasitas 5425 kg dan Total Jarak Tempuh 56,40 km) Depot– Jl Yogya Solo KM 7 Babarsari – Jl Kebon Agung No 88 Tlogodadi – Jl Magelang Km 15,5 Kemloko – Triharjo Sleman – Jalan Palagan Tentara pelajar No 31 – Jl Kaliurang Km 6,2 No 51 – Jl Colombo No.26 – Jl C. Simanjutak No.70 Terban – Jl Urip Sumoharjo No.38A Klitren - Jl Urip Sumoharjo Klitren – Depot.

Gambar 3.11 Graf Pendistribusian Rute II

24 09.47 10.02

9 10.09 10.24

16 10.30 10.45

Selanjutnya dari rute yang telah diperoleh, dihitung catatan waktu yang dihabiskan selama pendistribusian pada rute 2 dan setiap agen dilayani selama 15 menit.

Tabel 3.12 Lama waktu pendistribusian pada rute 2 Agen Waktu Kedatangan Waktu Keberangkatan

0 08.00 25 08.18 08.33 5 08.50 09.15 3 09.24 09.39 22 09.43 09.58 21 10.08 10.23 23 10.28 10.43 4 10.47 11.02 20 11.04 11.19 7 11.21 11.36 10 11.37 11.52 0 12.03

3) Rute kendaraan 3 (Total kapasitas 5700 kg dan Total Jarak Tempuh 38,06 km) Depot– Plaza Ambarukmo LG – Jl Pramuka No.84 Giwangan – Jl Ngeksigondo No.7 Prenggan – Jl Panjaitan No.54 Suryodiningratan – Pacar Sewon Trimulyo – Jl Parangtritis Km 11 Sabdodadi – Jl Bantul Pendowoharjo – Depot.

Gambar 3.12 Graf Pendistribusian Rute III

Selanjutnya dari rute yang telah diperoleh, dihitung catatan waktu yang dihabiskan selama pendistribusian pada rute 2 dan setiap agen dilayani selama 15 menit.

Tabel 3.13 Lama waktu pendistribusian pada rute 3

D. Perbandingan Rute yang diperoleh menggunakan Algoritma Sweep dengan Algoritma Genetika

Perbandingan rute yang diperoleh dengan menggunakan Algoritma Sweep dan Algoritma Genetika ditunjukkan pada Tabel 3.14.

Agen Waktu Kedatangan Waktu Keberangkatan

0 08.00 15 08.19 08.34 2 08.41 08.56 8 08.58 09.13 19 09.20 09.35 1 09.45 10.00 12 10.06 10.21 14 10.28 10.43 0 10.47

Tabel 3.14 Perbandingan Rute yang diperoleh dengan Menggunakan Algoritma Sweep dan Algoritma Genetika

Rute dengan Menggnakan Algoritma Sweep

Rute 1 Rute 2 Rute 3 Total

0 – 19 – 2 – 8 – 25 – 15 – 24 – 16 – 9 – 0 0 – 18 – 17 - 13 – 7 – 10 – 20 – 4 – 23 - 0 0 – 14 – 12 – 1 – 11 – 6 – 21 – 5 – 22 – 3 - 0 Jarak Tempuh 46,6 km 34,9 km 74,9 km 156,4 km Waktu Tempuh

61 menit 45 menit 96 menit 202 menit

Rute dengan Menggnakan Algoritma Genetika

Rute 1 Rute 2 Rute 3 Total

0 – 11 – 13 – 18 -17 – 6 – 24 – 9 – 16 - 0 0 – 25 – 5 – 3 – 22 – 21 – 23 – 4 – 20 – 7 – 10 - 0 0 – 15 – 2 – 8 – 19 – 1 – 12 – 14 - 0 Jarak Tempuh 52,95 km 56,40 km 38,6 km 147,95 km Waktu Tempuh

45 menit 72 km 58 menit 175 menit

Pada Tabel 3.14 secara keseluruhan, algoritma genetika menghasilkan total jarak tempuh dan total waktu tempuh yang lebih baik dibandingkan dengan

Algoritma Sweep. Algoritma genetika menghasilkan total jarak tempuh 147,95 km dan waktu tempuh 175 menit. Algoritma sweep menghasilkan total jarak tempuh 156,4 km dan waktu tempuh 202 menit. Dengan demikian dapat dikatakan bahwa solusi yang dihasilkan algoritma genetika lebih baik dalam segi jarak maupun waktu jika dibandingkan algoritma dalam menyelesaikan Capacitated Vehicle Routing Problem (CVRP).

BAB IV PENUTUP

A. Kesimpulan

Berdasarkan pembahasan mengenai penerapan algoritma sweep dan algoritma genetika pada penyelesaian capacitated vehicle routing problem (CVRP) untuk distribusi gula di Yogyakarta, diperoleh hasil sebagai berikut :

1. Model matematika capacitated vehicle routing problem (CVRP) dalam bentuk fungsi tujuan dan kendala-kendala adalah sebagi berikut :

Fungsi Tujuan :

Meminimumkan Z = ===

Dengan kendala

a) Untuk setiap agen hanya akan dikunjungi tepat satu kali oleh 1 kendaraan, pada permasalahan ini terdapat 3 unit kendaraan dengan jumlah titik sebanyak 25 yang harus dikunjungi

i. Untuk j = {1, 2, …, 26}

∑= ∑ = � =

:

ii. Untuk i = {0,1,…,25}

∑= ∑ = � =

:

∑= ∑ = � =

b) Total permintaan dari semua agen yang berjumlah 25 dalam satu rute tidak melebihi kapasitas setiap kendaraan yaitu 6000 kg :

=

=

≤ 6.

,

� = { , , }

c) Setiap rute berawal dari depot yaitu titik 0 ke agen yang berjumlah 25 dan dimulai dari titik 1 dan setiap titik hanya dikunjungi tepat satu kali :

=

= ,

=

= ,

� = { , , }

d) Setiap kendaran yang mengunjungi suatu titik pasti akan meninggalkan titik tersebut, artinya kendaraan hanya mengunjungi tepat satu kali :

=

− ∑

=

= ,

� = { , , }

e) Setiap rute dimulai dari depot 0 dan akan berakhir di depot 26 yang juga merupakan depot asal :

f) Variabel

merupakan variabel biner :

� ∈ { , },

i = {0,1,2,…,25}, j = {1,2,…,26}

,

� = { , , }

2. Penerapan Algoritma Genetika pada Penyelesaian Capacitated Vehicle Routing

Problem (CVRP) untuk Pendistribusian Gula di Yogyakarta diperoleh dengan langkah-langkah sebagai berikut :

a. Mendefinisikan individu dengan permutation encoding. b. Membentuk populasi awal secara acak.

c. Membangkitkan matriks permintaan berdasarkan populasi.

d. Membagi tiap individu menjadi 3 rute dengan syarat jumlah permintaan gula tiap rute tidak melebihi kapasitas kendaraan.

e. Menghitung nilai fitness dari masing-masing individu yaitu dengan cara menginvers jumlah semua jarak tempuh kendaraan yang melakukan pendistribusian.

f. Memilih individu terbaik yaitu individu dengan nilai fitness tertinggi. g. Melakukan seleksi dengan metode Roulette Wheel Selection.

h. Menghasilkan keturunan baru dengan operator pindah silang order crossover. i. Melakukan operator mutasi dengan swapping mutation.

j. Membentuk populasi baru di generasi selanjutnya dengan membawa individu terbaik yang dipertahankan dari populasi (elitism).

3. Penerapan Algoritma Sweep pada Penyelesaian Capacitated Vehicle Routing Problem (CVRP) untuk Pendistribusian Gula di Yogyakarta diperoleh dengan langkah-langkah sebagai berikut :

a. Tahap pengelompokkan (clustering)

i. Menggambar masing-masing agen (yang selanjutnya disebut sebagai titik) dalam koordinat kartesius dan menetapkan titik depot sebagai pusat koordinat ii. Menentukan semua koordinat polar dari masing-masing titik yang berhubungan

dengan depot.

iii. Melakukan pengelompokan (clustering) dimulai dari titik yang memiliki sudut polar terkecil dan seterusnya berurutan sampai titik yang memiliki sudut polar terbesar dengan memperhatikan kapasitas kendaraan

iv. Memastikan semua titik tersapu dalam cluster saat ini

v. Pengelompoakan dihentikan ketika dalam satu cluster akan melebihi kapasitas maksimal kendaraan

vi. Membuat cluster baru dengan langkah yang sama seperti langkah c dimulai dari titik yang memiliki sudut polar terkecil yang belum termasuk dalam cluster sebelumnya (titik yang terakhir ditinggalkan)

vii.Mengulangi langkah c-f, sampai semua titik telah dimasukkan dalam sebuah cluster

b. Tahap Pembentukan Rute

Membentuk rute-rute berdasarkan cluster yang telah diperoleh pada tahapan clustering. Pembentukan rute dilakukan menggunakan metode Nearest Neighbour. Langkah-langkah metode Nearest Neighbour sebagai berikut:

i. Langkah 0 : Inisialisasi

a) menentukan satu titik yang akan menjadi titik awal (depot) perjalanan b) menentukan C={1,2,3,4,...,n} sebagai himpunan titik yang akan dikunjungi c) menentukan urutan rute perjalanan saat ini(sementara)(R)

ii. Langkah 1 : memilih titik yang selanjutnya akan dikunjungi

Jika n1 adalah titik yang berada di urutan terakhir dari rute R maka akan ditemukan titik berikutnya n2 yang memiliki jarak paling minimum dengan n1 , dimana n2 merupakan anggota dari C. Apabila terdapat banyak pilihan optimal artinya terdapat lebih dari satu titik yang memiliki jarak yang sama dari titik terakhir dalam rute R dan jarak tersebut merupakan jarak yang paling minimum maka pilih secara acak.

iii. Langkah 2 : menambah titik yang terpilih pada langkah 1 pada urutan rute berikutnya. Menambahkan titik n2 di urutan terakhir dari rute sementara dan mengeluarkan yang terpilih tersebut dari daftar titik yang belum dikunjungi. iv. Langkah 3 : jika semua titik yang harus dikunjungi telah dimasukkan dalam

rute atau C=∅, maka tidak ada lagi titik yang ada di C. Selanjutnya, menutup rute dengan menambahkan titik inisialisasi atau titik awal perjalanan diakhir

rute. Dengan kata lain, rute ditutup dengan kembali lagi ke titik asal. Jika sebaliknya, kembali melakukan langkah 1.

4. Rute yang terbentuk berdasarkan hasil Algoritma Genetika adalah sebagai berikut: 1) Rute kendaraan 1 (Total kapasitas 5750 dan Total Jarak Tempuh 52,95)

Depot - Jalan Raya Wates No.256 - Jl. Madukismo Ngupasan - Jl. Sultan Agung No.10 Wirogunan Mergangsan - Jl. Mayor Suryotomo No.29 Ngupasan - Jl. HOS Cokroaminoto No.176 Tegalrejo – Jl Raya Seturan Kav.IV Depok Sports Centre – Jl Ringroad Utara Maguwoharjo – Jl Raya Solo Km 8 No.234 Maguwoharjo – Depot.

2) Rute kendaraan 2 (Total kapasitas 5425 dan Total Jarak Tempuh 56,40) Depot– Jl Yogya Solo KM 7 Babarsari – Jl Kebon Agung No 88 Tlogodadi – Jl Magelang Km 15,5 Kemloko – Triharjo Sleman – Jalan Palagan Tentara pelajar No 31 – Jl Kaliurang Km 6,2 No 51 – Jl Colombo No.26 – Jl C. Simanjutak No.70 Terban – Jl Urip Sumoharjo No.38A Klitren - Jl Urip Sumoharjo Klitren – Depot.

3) Rute kendaraan 3 (Total kapasitas 5700 kg dan Total Jarak Tempuh 38,06) Depot– Plaza Ambarukmo LG – Jl Pramuka No.84 Giwangan – Jl Ngeksigondo No.7 Prenggan – Jl Panjaitan No.54 Suryodiningratan – Pacar Sewon Trimulyo

5. Rute yang terbentuk berdasarkan hasil Algoritma Sweep adalah sebagai berikut: 1) Rute kendaraan 1 (Total kapasitas 5625 kg dan Total Jarak Tempuh 46,6 km)

Depot → Jalan DI Panjaitan No. 54, Suryodiningratan → Jalan Pramuka No. 84 Giwangan → Jalan Ngeksigondo No. 7, Prenggan → Jalan Yogya-Solo KM 7, Babarsari → Plaza Ambarukmo, Jalan Laksda Adisucipto → Jalan Raya Seturan, Depok Sports Centre → Jalan Raya Solo KM 8, Maguwoharjo → Jalan Ringroad Utara, Maguwoharjo, Depok → Depot.

2) Rute kendaraan 2 (Total kapasitas 5475 kg dan Total Jarak Tempuh 34,9 km) Depot → Jalan Sultan Agung No. 10, wirogunan → Jalan Mayor Sutomo No. 29, Ngupasan → Jalan Madukismo, Ngupasan → Jalan Urip Sumoharjo No. 38A, Klitren, Gondokusuman → Jalan Urip Sumoharjo, Klitren, Gondokusuman → Jalan C. Simanjutak No.70, Terban, Gondokusuman → Jalan Colombo No.26, Caturtunggal, Depok → Jalan Kaliurang KM 6,2 No.51 → Depot.

3) Rute kendaraan 3(Total kapasitas 5775 kg dan Total Jarak Tempuh 74,9 km) Depot → Jalan Bantul, Pendowoharjo, Sewon → Jalan Parangtritis Km 11, Sabdodadi → Pacar, Sewon, Trimulyo → Jalan Raya Wates N0.256 Ambarketawang → Jalan HOS Cokroaminoto No.176 Tegalrejo → Jalan Palagan Tentara Pelajar No.31, Ngaglik → Jalan Kebon Agung No.88, Tlogoadi, Mlati → Triharjo, Sleman → Jalan Magelang Km 15,5, Kemloko, Caturharjo → Depot.

Berdasarkan perhitungan, algoritma genetika menghasilkan total jarak tempuh dan total waktu tempuh yang lebih baik dibandingkan dengan Algoritma Sweep. Algoritma genetika menghasilkan total jarak tempuh 147,95 km dan waktu tempuh 175 menit. Algoritma sweep menghasilkan total jarak tempuh 156,4 km dan waktu tempuh 202 menit. Dengan demikian dapat dikatakan bahwa solusi yang dihasilkan algoritma genetika lebih baik jika dibandingkan algoritma sweep dalam menyelesaikan Capacitated Vehicle Routing Problem (CVRP).

B. Saran

Pada penelitian skripsi ini, baru dilakukan pembahasan mengenai algoritma genetika dan algoritma Sweep sebagai metode penyelesaian Capacitated Vehicle Routing Problem (CVRP), maka perlu dilakukan penyelesaian dengan algoritma lainnya seperti algoritma semut, tabu search, stochastic local search, algoritma djikstra, simulated annealing, dan lain-lain. Dengan demikian akan terlihat performance algoritma mana yang paling mendekati optimal untuk Capacitated Vehicle Routing Problem (CVRP). Disarankan kepada peneliti selanjutnya agar melakukan pengembangan algoritma genetika dan algoritma Sweep, seperti algoritma genetika ganda dan algoritma sweep dengan clustering menggunakan fuzzy.

Dalam penelitian selanjutnya juga diharapkan penulis memperhatikan analisis biaya yang dikeluarkan dalam proses distribusi. Sehingga solusi yang

dihasilkan dapat membantu perusahaan dalam mengurangi biaya distribusi yang harus dikeluarkan.

Dokumen terkait