• Tidak ada hasil yang ditemukan

( ) ( ) ( ) ( ) ( ) Dengan R, G, dan B masing-masing berupa besaran yang menyatakan nilai intensitas warna merah, hijau, dan biru.

D. PENELITIAN TERDAHULU

Teknik pengolahan citra telah banyak dipergunakan dalam bidang pertanian antara lain penentuan jenis cacat biji kopi, pemutuan edamame, pemeriksaan mutu karet RSS, pemutuan buah mangga, identifikasi tingkat ketuaan dan kematangan jeruk lemon dan manggis.

Sofi’i dkk (2005) melakukan penelitian dengan menggunakan teknik pengolahan citra untuk mengetahui cacat kulit biji kopi yang dilakukan dengan menggunakan bahasa pemograman Visual Basic 6.0. Masukan dari program

17 pengolahan citra adalah frame foto dari berbagai jenis cacat kopi dan kode-kode biner jenis cacat yang telah ditentukan terlebih dahulu. Keluaran program pengolahan citra adalah data-data numerik seperti luas, panjang, roundness,

compactness, indeks merah, indeks hijau, indeks biru, hue (corak), saturasi, dan

intensitas. Selanjutnya data keluaran tersebut digunakan sebagai data training untuk program training ANN (Artificial Neural Network). Dari penelitian telah dibangun 2 model ANN untuk pendugaan 26 jenis cacat biji kopi. Model pertama dengan 10 parameter penduga yaitu luas, panjang, roundness, compactness, indeks merah, indeks biru, hue (corak), saturasi, dan intensitas dengan akurasi rata-rata sebesar 72.6 persen dan model kedua dengan 5 parameter penduga yaitu luas, panjang, roundness, saturasi, dan intensitas dengan akurasi rata-rata sebesar 68.2 persen. Namun beberapa jenis cacat sulit dikenali karena tidak dapat dibedakan dengan nilai parameter penduga yaitu rata-rata nilai indeks merah, indeks hijau, indeks biru, hue, saturasi, dan intensitas yang serupa.

Penelitian dengan menggunakan teknik pengolahan citra juga dilakukan dalam pemutuan hasil pertanian. Soedibyo dkk (2006) melakukan penelitian dengan teknik pengolahan citra untuk menentukan mutu edamame. Pengolahan citra yang dilakukan dalam penelitian ini memiliki dua tahap yaitu tahap pertama yang bertujuan melakukan analisa citra untuk menentukan parameter mutu berupa panjang polong, area polong, perimeter, area cacat, indeks merah (R), dan indeks hijau (G). tahap yang kedua bertujuan melakukan analisa parameter mutu sekaligus menunjukkan kelas mutu dari sampel yang dianalisis. Proses perekaman citra dilakukan dengan menggunakan handycam yang dihubungkan dengan komputer. Program pengolahan citra yang digunakan dibuat dengan menggunakan bahasa pemrograman Borland Delphi7.

Ahmad dkk (2004) juga melakukan penelitian dengan teknik pengolahan citra untuk menentukan mutu mangga. Dalam penelitian ini, pengolahan citra dilakukan secara langsung setelah pengambilan citra dilakukan tanpa perlu menyimpannya terlebih dahulu (real-time). Pengambilan data dilakukan pada tiap contoh yang meliputi data area, intensitas warna yang ditandai dengan indeks

18 RGB, dan empat macam fitur tekstur (kontras, homogenitas, energi, dan entropi) untuk setiap tingkatan kelas mutu yang berbeda. Algoritma pengolahan citra meliputi pengambilan citra, penyimpanan citra, binerisasi berdasarkan nilai

threshold tertentu, labeling atau penandaan obyek, perhitungan area, penentuan

titik tengah obyek, perhitungan indeks RGB dan perhitungan fitur tekstur. Ahmad dkk (2006) juga melakukan penelitian dengan menggunakan teknik pengolahan citra dalam pemeriksaan mutu karet asapan. Dari penelitian yang sudah dilakukan dapat diambil kesimpulan yaitu karakteristik warna permukaan karet asapan atau

ribbed smoke sheet (RSS) yang dianalisis menggunakan pengolahan citra dapat

digunakan sebagai parameter mutu untuk keperluan sortasi dan pemutuan karet RSS berdasarkan warna. Indeks warna biru dari model RGB dapat digunakan untuk mengklasifikasikan mutu RSS dengan kesesuaian yang cukup tinggi.

Pengolahan citra dapat juga digunakan untuk mengidentifikasi tingkat ketuaan dan kematangan hasil pertanian. Damiri dkk (2004) melakukan penelitian dengan menggunakan teknik pengolahan citra untuk mengidentifikasi tingkat ketuaan dan kematangan jeruk lemon (Citrus medica). Pengolahan citra dilakukan dengan menggunakan bahasa pemograman Visual Basic 6.0. Pengukuran yang dilakukan dengan metode pengolahan citra adalah pengukuran area, roundness, pengukuran intensitas warna serta pengukuran fitur tekstur. Pengukuran area dan

roundness dilakukan dengan cara mengubah citra warna menjadi citra biner

dengan tujuan membedakan obyek dengan latar belakangnya. Citra kemudian dianalisis faktor bentuknya yang dinamakan roundness. Area obyek dihitung dengan cara menghitung jumlah piksel obyek yang berwarna putih. Intensitas warna yang diukur adalah merah, hijau, dan biru (RGB). Model warna yang digunakan adalah model warna RGB dan HSI. Fitur obyek yang dianalisis adalah energi, kontras, homogenitas, serta entropi.

Prianggono dkk (2005) juga melakukan penelitian dengan menyusun algoritma pengolahan citra untuk mendeteksi jeruk lemon (Citrus medica). Penelitian ini bertujuan untuk mempelajari, mengkaji, dan menganalisis karakteristik sinyal-sinyal warna dalam model warna RGB dan HSI dari citra

19 buah jeruk lemon 120 hari setelah bunga mekar dan latarnya sehingga didapatkan parameter warna yang dapat digunakan sebagai sarana untuk memisahkan antara buah jeruk lemon dan latarnya. Dari hasil pembacaan citra berwarna dengan program bahasa C, maka didapat informasi nilai RGB (merah, hijau, dan biru) pada tiap piksel citra tersebut. Nilai ini kemudian diolah untuk mendapatkan nilai indeks RGB dan model HSI yang selanjutnya digunakan untuk keperluan analisis. Dari hasil analisis pada tiap titik piksel obyek dan latar maka bisa didapat perkiraan nilai yang sesuai untuk digunakan sebagai sarana pemisah citra obyek dan latar belakang. Pemisahan dikatakan berhasil jika citra biner buah jeruk lemon hasil thresholding dengan algoritma yang dikembangkan telah terpisah dengan citra biner latarnya.

Penelitian dengan menggunakan teknik pengolahan citra juga dilakukan oleh Nurhasanah dkk (2005) untuk mengidentifikasi tingkat ketuaan dan kematangan manggis. Citra manggis dalam berbagai tingkat ketuaan atau kematangan diambil dengan menggunakan kamera. Pengolahan citra dilakukan secara real-time meliputi perhitungan luas, indeks RGB dan HSI serta empat komponen tekstur. Pengukuran intensitas warna diukur dengan menggunakan model warna RGB dan HSI. Nilai RGB dan HSI merupakan rata-rata dari semua nilai RGB dan HSI dari obyek. Pengukuran tekstur dilakukan dengan menggunakan empat feature yaitu energi, kontras, homogenitas, dan entropi.

Saefurrohman dkk (2004) melakukan penelitian dengan menggunakan image

processsing dan artificial neural network untuk menduga jenis cacat pada biji

kopi robusta (Coffea canephora) berdasarkan komposisi warna. Analisis warna pada penelitian tersebut menggunakan input parameter RGB. Data yang menjadi input parameter terdiri dari intensitas rata-rata R, rata-rata G, rata-rata B,

colourvalue, Indeks R, Indeks G, Indeks B, Hue (corak), Saturation (kejenuhan),

dan Intensity. Model artificial neural network dengan algoritma backpropagation yang dikembangkan memiliki sepuluh input layer, dua puluh hidden layer dan empat output layer. Sampel yang digunakan dalam proses training sebanyak 859 data dan 579 data sebagai data validasi. Hasil pendugaan pada proses training

20 diperoleh tingkat akurasi total sebanyak 91 persen, terdiri dari 95 persen biji normal, 100 persen biji hitam, 64 persen biji hitam sebagian dan 95 persen biji coklat. Sedangkan pada proses validasi menghasilkan akurasi sebesar 80 persen, terdiri dari 88 persen biji normal, 92 persen biji hitam, 43 persen biji hitam sebagian dan 63 persen biji coklat.

Rachmasari (2004) juga melakukan penelitian dengan menggunakan pengolahan citra dan artificial neural network untuk menduga jenis cacat biji kopi robusta (Coffea canephora) dengan parameter bentuk. Tujuan dari penelitian tersebut adalah untuk menduga jenis cacat biji kopi berupa biji pecah, biji berlubang, dan benda asing dan menyusun algoritma pengolahan citra untuk mendapatkan nilai-nilai parameter yang mencerminkan bentuk dan ukuran biji kopi yaitu panjang, keliling, roundness, lebar,lebar minimum, lebar maksimum, selisih lebar, luas, dan selisih luas. Parameter selisih luas merupakan parameter yang khas yang paling dapat membedakan antara biji utuh dan biji berlubang. Model artificial neural network dikembangkan dengan 38 input layer, 76 hidden layer, dan empat output layer. Tingkat akurasi pendugaan pada proses training mencapai 97.44 persen, dengan tingkat akurasi pada biji utuh mencapai 97.15 persen, biji pecah mencapai 94.38 persen, biji berlubang mencapai 100 persen, dan benda asing mencapai 98.45 persen. Sedangkan pada proses validasi, tingkat akurasi pendugaan mencapai 60.45 persen, dengan tingkat akurasi pada biji utuh mencapai 48.77 persen, biji pecah mencapai 51.43 persen, biji berlubang mencapai 77.71 persen, dan benda asing mencapai 83.78 persen.

Penelitian dengan menggunakan pengolahan citra untuk menduga biji kopi utuh, biji kopi pecah, biji kopi berlubang dan benda asing untuk evaluasi mutu kopi dilakukan oleh Sari (2004). Metode yang digunakan pada penelitian tersebut adalah metode fuzzy. Pada proses training, nilai akurasi keseluruhan yang dicapai adalah 55.67 persen. pada proses validasi, nilai akurasi keseluruhan yang dicapai adalah 56.19 persen. Nilai akurasi yang dicapai oleh biji utuh adalah 60.85 persen, biji pecah 53.08 persen, biji berlubang 48.59 persen dan benda asing 62.29 persen. Secara keseluruhan hasil yang didapat menunjukkan kinerja sistem yang kurang

21 baik. Karena dari semua parameter yang digunakan tidak menunjukkan suatu ciri khas pada masing-masing jenis biji sehingga suatu jenis biji dapat diduga sebagai jenis biji lainnya.

22 III. METODE PENELITIAN

Dokumen terkait