• Tidak ada hasil yang ditemukan

BAB V KESIMPULAN DAN PENUTUP

5.3. Penutup

Dalam penulisan Tugas Akhir dengan judul Perancangan Sistem Perpipaan Reaktor SAMOP dengan Bahan Stainless Steel 304 ini penulis mengucapkan terima kasih kepada semua pihak yang telah banyak membantu, sehingga dapat terselesaikan tugas ini. Semoga dengan terselesainya penyusunan tugas akhir ini dapat membantu dan bermanfaat bagi pembaca khususnya mahasiswa Teknik Mesin sebagai pengetahuan dalam teknologi perancangan khususnya pada perancangan sistem perpipaan reaktor.

Penulis menyadari dalam penyusunan tugas akhir ini masih jauh dari kesempurnaan, untuk itu penulis mengharapkan saran dan kritik dari pembaca, agar penyusunan tugas akhir ini dapat lebih sempurna.

Akhir kata penulis mengucapkan banyak terima kasih kapada Bapak Pembimbing dan Dosen-dosen Penguji Tugas Akhir ini, semoga penulis dapat lebih mendalami dan memahami tentang perancangan sistem perpipaan sehingga dapat berguna bagi penulis nantinya di dalam dunia kerja.

DAFTAR PUSTAKA

American Petroleum Institute, 1988, Calculating of Heater-Tube Thickness in Petroleum Refineries, API Recommended Practice 530 Third Edition.

American Society for Testing and Materials. 1999, G1 Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, ASTM Standards Vol.03.02, ASTM Society

American Society for Testing and Materials. 1999, B 117 Practice for Operating Salt Spray (Fog) Apparatus, ASTM Standards Vol.03.02, ASTM Society Bryson. James, 1999, Corrosion of Carbon Steels, ASM Handbook Vol.13, ASM

International

Kannappan. Sam, 1985, Introduction to Pipe Stress Analysis, Engineer Tennessee Valley Authority Knoxville, Tennessee

Lukiyanto. YB, Panduan Praktikum Prestasi Mesin, Universitas Sanata Dharma, Yogyakarta

Raswari, 1986, Teknologi dan Perencanaan Sistem Perpipaan, Universitas Indonesia, Jakarta

Setiyo Utomo. Rois, 2007, Laju Korosi Stainless Steel 304 Yang Telah

Mengalami Pengelasan Dalam Larutan H2SO4 pH 1, Universitas Sanata

Dharma, Yogyakarta

Setyahandana. Budi, Bahan Kuliah Bahan Teknik Manufaktur, Universitas Sanata Dharma, Yogyakarta

Setyahandana. Budi, Bahan Kuliah Bahan Ilmu Logam, Universitas Sanata Dharma, Yogyakarta

Shreir and Jarman, 2000, Corrosion Vol.1 Metal/Environment Reactions, Butterworth-Heinemann

Surdia. Tata, & Saito. Shinroku, 1984, Pengetahuan Bahan Teknik, Pradnya Paramita, Jakarta

Werenfridus Baur. Yuris, 2007, Laju Korosi Stainless Steel 304 Dalam Larutan H2SO4 pH 1, Universitas Sanata Dharma, Yogyakarta

http://academic.evergreen.edu/projects/biophysics/technotes/fabric/pipe.htm (Jumat, 24 Agustus 2007)

http://en.wikipedia.org/Corrosion.htm (Minggu, 28 Januari 2008) http://en.wikipedia.org/Stainless_steel.htm (Minggu, 28 Januari 2008) http://en.wikipedia.org/Uranium.htm (Minggu, 28 Januari 2008)

http://gadang-e-bookformaterialscience.blogspot.com/2005/25/infomengenal-singkat-apa-itu-stainless-steel.html (Sabtu, 26 Januari 2008)

http://gadang-e-bookformaterialscience.blogspot.com/2006/7/artikelmakalah-ilmiah-ku-korosi-material-baja-karbon-dan-stainless-steel.html (Sabtu, 26 Januari 2008)

http://gadang-e-bookformaterialscience.blogspot.com/2006/11/artikelperingkat-ketahanan-logamterhadap-korosi.html (Sabtu, 26 Januari 2008)

http://gadang-e-bookformaterialscience.blogspot.com/2007/4/infodaftar-pengujian-korosi-standar-astm-secara-umum.html (Sabtu, 26 Januari 2008)

http://gadang-e-bookformaterialscience.blogspot.com/2007/12/info-mengenal-singkat-apa-itu-stainless.html (Senin, 28 Januari 2008)

http://gadang-e-bookformaterialscience.blogspot.com/2007/15/sekilasapakah-makna-dari-korosi-secara-umum.html (Sabtu, 26 Januari 2008)

http://www.alloystainless.com/etc_swf.htm (Jumat, 24 Agustus 2007)

http://www.allstainlessltd.co.uk/info_sheet_304_2.html (Sabtu, 09 Februari, 2008) http://www.amipipe.com/pipe_dimensions_and_weights.php (Jumat, 24 Agustus

2007)

http://www.corrosion-doctors.org/Corrosion rate conversion.htm (Minggu, 10 Juni 2007)

http://www.corrosion-doctors.org/Stainless steel corrosion.htm (Minggu, 10 Juni 2007)

http://www.sandmeyer.com/Alloy 304 - Austenitic Stainless Steel Plate - Sandmeyer.htm (Kamis, 26 Juli 2007)

http://www.sandmeyer.com/Alloy 316-316L - Austenitic Stainless Steel Plate - Sandmeyer.htm (Kamis, 26 Juli 2007)

http://www.tasteel.com/is-crevicecorrosion.htm (Rabu, 13 Februari 2008) http://www.tasteel.com/is-galvaniccorrosion.htm (Rabu, 13 Februari 2008) http://www.tasteel.com/is-intergranularcorrosion.htm (Rabu, 13 Februari 2008) http://www.tasteel.com/is-korosistainless.htm (Rabu, 13 Februari 2008)

http://www.tasteel.com/is-pittingcorrosion.htm (Rabu, 13 Februari 2008) http://www.tasteel.com/is-stresscorrosion.htm (Rabu, 13 Februari 2008) http://www.tasteel.com/is-uniformcorrosion.htm (Rabu, 13 Februari 2008) http://www.uic.com.au/uran.htm (Senin, 29 Januari 2008)

LAMPIRAN 1

STAINLESS STEEL GRADES

200 Series – austenitic chromium-nickel-manganese alloys

o Type 201 – austenitic that is hardenable through cold working

o Type 202 – austenitic general purpose stainless steel

300 Series – austenitic chromium-nickel alloys

o Type 301 – highly ductile, for formed products. Also hardens rapidly during mechanical working. Good weldability. Better wear resistance and fatigue strength than 304.

o Type 302 – same corrosion resistance as 304, with slightly higher strength due to additional carbon.

o Type 303 – easier machining version of 304 via addition of sulfur and phosphorus. Also referred to as "A1" in accordance with ISO 3506.

o Type 304 – the most common grade; the classic 18/8 stainless steel. Also referred to as "A2" in accordance with ISO 3506.

o Type 304L – the 304 grade but specially modified for welding.

o Type 309 – better temperature resistance than 304

o Type 316 – the second most common grade (after 304); for food and surgical stainless steel uses; alloy addition of molybdenum prevents specific forms of corrosion. 316 steel is used in the manufacture and handling of food and pharmaceutical products where it is often required in order to minimize metallic contamination. It is also known as marine grade stainless steel due to its increased resistance to chloride corrosion compared to type 304. SS316 is often used for building nuclear reprocessing plants. Most watches that are made of stainless steel are made of Type 316L; Rolex is an exception in that they use Type 904L. Also referred to as "A4" in accordance with ISO 3506. 316Ti (which includes titanium for heat resistance) is used in flexible chimney liners, and is able to withstand temperatures up to 2000 degrees Fahrenheit, the hottest possible temperature of a chimney fire.

o Type 321 – similar to 304 but lower risk of weld decay due to addition of titanium. See also 347 with addition of niobium for desensitization during welding.

400 Series – ferritic and martensitic chromium alloys

o Type 405 – a ferritic especially made for welding applications

o Type 408 – heat-resistant; poor corrosion resistance; 11% chromium, 8% nickel.

o Type 409 – cheapest type; used for automobile exhausts; ferritic (iron/chromium only).

o Type 410 – martensitic (high-strength iron/chromium). Wear-resistant, but less corrosion-resistant.

o Type 416 – easy to machine due to additional sulfur

o Type 420 – Cutlery Grade martensitic; similar to the Brearley's original rustless steel. Excellent polishability.

o Type 430 – decorative, e.g., for automotive trim; ferritic. Good formability, but with reduced temperature and corrosion resistance.

o Type 440 – a higher grade of cutlery steel, with more carbon in it, which allows for much better edge retention when the steel is heat-treated properly. It can be hardened to around Rockwell 58 hardness, making it one of the hardest stainless steels. Due to its toughness and relatively low cost, most display-only and replica swords or knives are made of 440 stainless. Also known as razor blade steel. Available in four grades: 440A, 440B, 440C, and the uncommon 440F (free machinable). 440A, having the least amount of carbon in it, is the most stain-resistant; 440C, having the most, is the strongest and is usually considered a more desirable choice in knifemaking than 440A except for diving or other salt-water applications.

o Type 446 – For elevated temperature service

500 Series – heat-resisting chromium alloys

600 Series – martensitic precipitation hardening alloys (Sumber: en.wikipedia.org)

LAMPIRAN 2

Uji Korosi Stainless Steel 304 Dalam Larutan Asam (H2SO4)

Uji korosi untuk stainless steel 304 seperti yang telah dilakukan oleh saudara Yuris Werenfridus Baur dan Rois Setiyo Utomo, yaitu menguji laju korosi pada stainless steel 304 dalam larutan asam (H2SO4), dengan derajat keasaman (pH) 1, pada suhu 70oC selama 6 jam dan dilanjutkan pada suhu 29oC selama 18 jam secara periodik, dengan perlakuan tanpa pengelasan serta setelah mengalami pengelasan TIG, di Laboratorium Farmasi Universitas Sanata Dharma Yogyakarta.

Pengujian stainless steel 304 tanpa pengelasan dilakukan pada dua bahan yang sama ketebalannya yaitu 3 mm, tetapi berbeda beratnya. Berat benda uji 1 adalah 8,576 gram dan berat benda uji 2 adalah 14,543 gam. Dari hasil uji korosi tersebut, didapat hasil seperti pada tabel berikut:

Tabel data hasil uji korosi Stainless Steel 304 tanpa pengelasan dan dengan pengelasan TIG dalam larutan asam (H2SO4) dengan pH 1.

No. Minggu ke-

Berat spesimen (gram)

Tanpa Las Dengan Las TIG Benda I Benda II 1 I 8,576 14,543 36,235 2 II 8,576 14,543 36,231 3 III 8,576 14,543 36,229 4 IV 8,576 14,543 36,227 5 V 8,576 14,543 36,225 6 VI 8,576 14,543 36,224 7 VII 8,576 14,543 36,223 8 VIII 8,576 14,543 36,222 9 IX 8,576 14,543 36,222 10 X 8,576 14,543 36,222 11 XI 8,576 14,543 36,222 12 XII 8,576 14,543 36,222

Sumber: Werenfridus Baur. Yuris, Laju Korosi Stainless Steel 304 Dalam Larutan H2SO4

pH 1, 2007 dan

Setiyo Utomo. Rois, Laju Korosi Stainless Steel 304 Yang Telah Mengalami Pengelasan Dalam Larutan H2SO4 pH 1, 2007

Analisis Laju Korosi Stainless Steel 304 Dalam Larutan H2SO4

Perhitungan atau analisis laju korosi dapat dihitung dengan menggunakan rumus :

Laju korosi = ∆

dengan :

Δy = besarnya perubahan (m ,mm, kg, gram) T = Waktu (Jam, Bulan, Tahun)

1. Tanpa Pengelasan

Pada pengujian stainless steel 304 tanpa pengelasan, karena tidak terjadi perubahan berat dari kedua spesimen sampai dengan minggu ke-12 maka laju korosi yang terjadi adalah 0 (gram/hari).

Sumber: Werenfridus Baur. Yuris, Laju Korosi Stainless Steel 304 Dalam Larutan H2SO4 pH 1, 2007

Data yang diperoleh dari hasil penelitian ini menunjukkan bahwa berat spesimen sampai minggu ke-12 tidak mengalami perubahan berat dan otomatis dari segi ukuran juga tidak mengalami perubahan. Akan tetapi terjadi perubahan warna yang disebabkan karena kotoran yang menempel pada permukaan spesimen setelah bereaksi dengan larutan H2SO4.

2. Dengan Pengelasan

Data yang diperoleh dari hasil pengujian stainless steel 304 dengan pengelasan, menunjukkan bahwa berat spesimen sampai minggu ke-12 mengalami perubahan berat sehingga spesimen juga mengalami perubahan ukuran. Sehingga diperoleh laju korosi seperti pada tabel berikut.

No. Minggu ke- gram/jam gram/hari laju korosi 1 I 0,00004167 0,001 2 II 0,00002381 0,0005714 3 III 0,00001191 0,0002857 4 IV 0,00001191 0,0002857 5 V 0,00001191 0,0002857 6 VI 0,00000595 0,0001429 7 VII 0,00000595 0,0001429 8 VIII 0,00000595 0,0001429 9 IX 0 0 10 X 0 0 11 XI 0 0 12 XII 0 0

Sumber: Setiyo Utomo. Rois, Laju Korosi Stainless Steel 304 Yang Telah Mengalami Pengelasan Dalam Larutan H2SO4 pH 1, 2007

Su S umber: Setiyo Sumber: Setiy o Utomo. Rois Pengelas yo Utomo. Roi Pengela s, Laju Korosi san Dalam Lar

is, Laju Koros san Dalam La i Stainless Ste rutan H2SO4 p si Stainless Ste arutan H2SO4 el 304 Yang T pH 1, 2007 eel 304 Yang pH 1, 2007

Telah Mengalaami

LAMPIRAN 3

CORROSION RATE CONVERSION

The following charts provide a simple way to convert data between the most common corrosion units in usage, i.e. corrosion current (mA cm-2) , mass loss (g m-2 day-1) and penetration rates (mm y-1 or mpy) for all metals or for steel

mA cm-2 mm year-1 mpy g m-2 day-1 mA cm-2 1 3.28 M/nd 129 M/nd 8.95 M/n

mm year-1 0.306 nd/M 1 39.4 2.74 d

mpy 0.00777 nd/M 0.0254 1 0.0694 d

g m-2 day-1 0.112 n/M 0.365 /d 14.4 /d 1 where:

mpy = milli-inch per year

n = number of electrons freed by the corrosion reaction M = atomic mass

d = density

Note: you should read the Table from left to right, i.e.:

1 mA cm-2 = (3.28 M/nd) mm y-1 = (129 M/nd) mpy = (8.95 M/n) g m-2 day-1 For example, if the metal is steel or iron (Fe), n =2, M = 55.85 g and d = 7.88 g cm-3 and the Table of conversion becomes:

mA cm-2 mm year-1 mpy g m-2 day-1

mA cm-2 1 11.6 456 249

mm year-1 0.0863 1 39.4 21.6

mpy 0.00219 0.0254 1 0.547

g m-2 day-1 0.00401 0.0463 1.83 1

Note: you should read the Table from left to right, i.e.:

1 mA cm-2 = 11.6 mm y-1 = 456 mpy = 249 g m-2 day-1 (Sumber: www.corrosion-doctors.org)

LAMPIRAN 4

Daftar ASTM Pengujian Korosi Secara Umum

A 143 - Practice for Safeguarding Against Embrittlement of Hot-Dip Galvanized Structural Steel Products and Procedure for Detecting Embrittlement

A 262 - Practices for Detecting Susceptibility to lntergranular Attack in Austenitic Stainless Steels

A 380 - Practice for Cleaning, Descaling, and Passivation of Stainless Steel Parts, Equipment and Systems

A 763 - Practices for Detecting Susceptibility to Intergranular Attack in Ferritic Stainless Steels

***

B 76 - Test Method for Accelerated Life of Chromium and Nickel-Chromium-Iron Alloys for Electrical Heating

B 78 - Test Method for Accelerated Life of Iron-Chromium-Aluminum Alloys for Electrical Heating

B 117 - Practice for Operating Salt Spray (Fog) Apparatus

B 154 - Test Method for Mercurous Nitrate Test for Copper and Copper Alloys

B 368 - Method for Copper-Accelerated Acetic Acid-Salt Spray (Fog) Testing (Cass Test)

B 380 - Method of Corrosion Testing of Decorative Electrodeposited Coatings by the Corrodkote Procedure

B 457 - Test Method for Measurement of Impedance of Anodic Coatings on Aluminum

B 537 - Practice for Rating of Electroplated Panels Subjected to Atmospheric Exposure

B 545 - Specification for Electrodeposited Coatings of Tin

B 577 - Test Methods for Detection of Cuprous Oxide (Hydrogen Embrittlement Susceptibility) in Copper

B 605 - Specification for Electrodeposited Coatings of Tin-Nickel Alloy

B 627 - Test Method for Electrolytic Corrosion Testing (EC Test)

B 650 - Specification for Electrodeposited Engineering Chromium Coatings on Ferrous Substrates

B 651 - Method for Measurement of Corrosion Sites in Nickel Plus Chromium or Copper Plus Nickel Plus Chromium Electroplated Surfaces With the Double-Beam Interference Microscope

B 680 - Test Method for Seal Quality of Anodic Coatings on Aluminum by Acid Dissolution

B 689 - Specification for Electroplated Engineering Nickel Coatings

B 732 - Test Method for Evaluating the Corrosivity of Solder Fluxes for Copper Tubing Systems

B 733 - Specification for Autocatalytic Nickel-Phosphorus Coatings on Metals

B 734 - Specification for Electrodeposited Copper for Engineering Uses

B 735 - Test Method for Porosity in Gold Coatings on Metal Substrates by Nitric Acid Vapor

B 741 - Test Method for Porosity in Gold Coatings on Metal Substrates by Paper Electrography

B 765 - Guide for Selection of Porosity Tests for Electrodeposits and Related Metallic Coatings

B 809 - Test Method for Porosity in Metallic Coatings by Humid Sulfur Vapor "Flowers of Sulfur"

***

C 692 - Test Method for Evaluating the Influence of Thermal Insulations on the External Stress Corrosion Cracking Tendency of Austenitic Stainless Steel

C 739 - Specification for Cellulosic Fiber (Wood-Base) Loose-Fill Thermal Insulation

C 876 - Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete

***

D 130 - Test Method for Detection of Copper Corrosion From Petroleum Products by the Copper Strip Tarnish Test

D 610 - Test Method for Evaluating Degree 9f Rusting on Painted Steel Surfaces

D 665 - Test Method for Rust-Preventing Characteristics of inhibited Mineral Oil in the Presence of Water

D 849 - Test Method for Copper Strip Corrosion by Industrial Aromatic Hydrocarbons

D 876 - Test Methods for Nonrigid Vinyl Chloride Polymer Tubing Used for Electrical Insulation

D 930 - Test Method of Total Immersion Corrosion Test of Water-Soluble Aluminum Cleaners

D 1141 - Specification for Substitute Ocean Water

D 1193 - Specification for Reagent Water

D 1280 - Test Method of Total Immersion Corrosion Test for Soak Tank Metal Cleaners

D 1384 - Test Method for Corrosion Test for Engine Coolants in Glassware

D 1414 - Test Method for Rubber O-Rings

D 1611 - Test Method for Corrosion Produced by Leather in Contact with Metal

D 1654 - Test Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments

D 1734 - Test Method for Corrosion Preventive Properties of Lubricating Greases

D 1838 - Test Method for Copper Strip Corrosion by Liquefied Petroleum (LP) Gases

D 2059 - Test Method for Resistance of Zippers to Salt Spray (Fog)

D 2251 - Test Method for Metal Corrosion by Halogenated Organic Solvents and Their Admixtures

D 2570 - Test Method for Simulated Service Corrosion Testing of Engine Coolants

D 2649 - Test Method for Corrosion Characteristics of Solid Film Lubricants

D 2671 - Test Methods for Heat-Shrinkable Tubing for Electrical Use

D 2758 - Test Method for Engine Coolants by Engine Dynamometer

D 2803 - Guide for Testing Filiform Corrosion Resistance of Organic Coatings on Metal

D 2809 - Test Method for Cavitation Corrosion and Erosion-Corrosion Characteristics of Aluminum Pumps with Engine Coolants

D 2847 - Practice for Testing Engine Coolants in Car and Light Truck Service

D 2933 - Test Method for Corrosion Resistance of Coated Steel Specimens (Cyclic Method)

D 3263 - Test Methods for Corrosivity of Solvent Systems for Removing Water-Formed Deposits

D 3310 - Test Method for Determining Corrosivity of Adhesive Materials

D 3316 - Test Method for Stability of Perchloroethylene with Copper

D 3482 - Test Method for Determining Electrolytic Corrosion of Copper by Adhesives

D 3603 - Test Method for Rust-Preventing Characteristics of Steam Turbine Oil in the Presence of Water (Horizontal Disk Method)

D 4048 - Test Method for Detection of Copper Corrosion from Lubricating Grease

D 4340 - Test Method for Corrosion of Cast Aluminum Alloys in Engine Coolants under Heat-Rejecting Conditions

D 4585 - Practice for Testing Water Resistance of Coatings Using Controlled Condensation

D 4627 - Test Method for Iron Chip Corrosion for Water-Dilutable Metalworking Fluids

***

E 712 - Practice for Laboratory Screening of Metallic Containment Materials for Use with Liquids in Solar Heating and Cooling Systems

E 745 - Practices for Simulated Service Testing for Corrosion of Metallic Containment Materials for Use with Heat-Transfer Fluids in Solar Heating and Cooling Systems

E 937 - Test Method for Corrosion of Steel by Sprayed Fire-Resistive Material (SFRM) Applied to Structural Members

***

F 326 - Test Method for Electronic Hydrogen Embrittlement Test for Cadmium Electroplating Processes

F 359 - Practice for Static Immersion Testing of Unstressed Materials in Nitrogen Tetroxide (N2O4)

F 482 - Test Method for Corrosion of Aircraft Metals by Total Immersion in Maintenance Chemicals

F 483 - Test Method for Total Immersion Corrosion Test for Aircraft Maintenance Chemicals

F 519 - Test Method for Mechanical Hydrogen Embrittlement Testing of Plating Processes and Aircraft Maintenance Chemicals

F 746 - Test Method for Pitting or Crevice Corrosion of Metallic Surgical Implant Materials

F 897 - Test Method for Measuring Fretting Corrosion of Osteosynthesis Plates and Screws

F 945 - Test Method for Stress-Corrosion of Titanium Alloys by Aircraft Engine Cleaning Materials

F 1089 - Test Method for Corrosion of Surgical Instruments

F 1110 - Test Method for Sandwich Corrosion Test ***

G 1 - Practice for Preparing, Cleaning, and Evaluating Corrosion Test

Specimens

G 2 - Test Method for Corrosion Testing of Products of Zirconium, Hafnium

and Their Alloys in Water at 680F or in Steam at 750F

G 2M - Test Method for Corrosion Testing of Products of Zirconium,

Hafnium, and Their Alloys in Water at 633K or in Steam at 673K (Metric)

G 3 - Practice for Conventions Applicable to Electrochemical

Measurements in Corrosion Testing

G 4 - Guide for Conducting Corrosion Coupon Tests in Field Applications

G 5 - Reference Test Method for Making Potentiostatic and

Potentiodynamic Anodic Polarization Measurement

G 15 - Terminology Relating to Corrosion and Corrosion Testing

G 16 - Guide for Applying Statistics to Analysis of Corrosion Data

G 28 - Test Methods of Detecting Susceptibility to Intergranular Attack in

Wrought, Nickel-Rich, Chromium Bearing Alloys

G 30 - Practice for Making and Using U-Bend Stress-Corrosion Test

Specimens

G 31 - Practice for Laboratory Immersion Corrosion Testing of Metals

G 32 - Test Method for Cavitations Erosion Using Vibratory Apparatus

G 33 - Practice for Recording Data from Atmospheric Corrosion Tests of

Metallic-Coated Steel Specimens

G 34 - Test Method for Exfoliation Corrosion Susceptibility in 2XXX and

7XXX Series Aluminum Alloys (EXCO Test)

G 35 - Practice for Determining the Susceptibility of Stainless Steels and

Related Nickel-Chromium-Iron Alloys to Stress-Corrosion Cracking in Polythionic Acids

G 36 - Practice for Evaluating Stress-Corrosion-Cracking Resistance of

Metals and Alloys in a Boiling Magnesium Chloride Solution

G 37 - Practice for Use of Mattsson’s Solution of pH 7.2 to Evaluate the

Stress-Corrosion Cracking Susceptibility of Copper-Zinc Alloys

G 38 - Practice for Making and Using C-Ring Stress-Corrosion Test

Specimens

G 39 - Practice for Preparation and Use of Bent-Beam Stress-Corrosion Test

Specimens

G 41 - Practice for Determining Cracking Susceptibility of Metals Exposed Under Stress to a Hot Salt Environment

G 44 - Practice for Evaluating Stress Corrosion Cracking Resistance of

Metals and Alloys by Alternate Immersion in 3.5 % Sodium Chloride Solution

G 46 - Guide for Examination and Evaluation of Pitting Corrosion

G 47 - Test Method for Determining Susceptibility to Stress-Corrosion

Cracking of High-Strength Aluminum Alloy Products

G 48 - Test Methods for Pitting and Crevice Corrosion Resistance of

Stainless Steels and Related Alloys by Ferric Chloride Solution

G 49 - Practice for Preparation and Use of Direct Tension Stress-Corrosion

Test Specimens

G 50 - Practice for Conducting Atmospheric Corrosion Tests on Metals

G 51 - Test Method for Measuring pH of Soil for Use in Corrosion Testing

G 52 - Practice for Exposing and Evaluating Metals and Alloys in Surface

Seawater

G 54 - Practice for Simple Static Oxidation Testing

G 56 - Test Method for Abrasiveness of Ink-Impregnated Fabric Printer

Ribbons

G 57 - Test Method for Field Measurement of Soil Resistivity Using the

Wenner Four-Electrode Method

G 58 - Practice for Preparation of Stress-Corrosion Test Specimens for

Weldments

G 59 - Practice for Conducting Potentiodynamic Polarization Resistance

Measurements

G 60 - Test Method for Conducting Cyclic Humidity Tests

G 61 - Test Method for Conducting Cyclic Potentiodynamic Polarization

Measurements for Localized Corrosion Susceptibility of Iron, Nickel, or Cobalt Based Alloys

G 64 - Classification of Resistance to Stress-Corrosion Cracking of

Heat-Treatable Aluminum Alloys

G 65 - Test Method for Measuring Abrasion Using the Dry Sand/Rubber

Wheel Apparatus

G 66 - Test Method for Visual Assessment of Exfoliation Corrosion

Susceptibility of 5XXX Series Aluminum Alloys (ASSET Test)

G 67 - Test Method for Determining the Susceptibility to Intergranular

Corrosion of 5XXX Series Aluminum Alloys by Mass loss Alter Exposure to Nitric Acid (NAMLT Test)

G 69 - Practice for Measurement of Corrosion Potentials of Aluminum Alloys

G 71 - Guide for Conducting and Evaluating Galvanic Corrosion Tests in

Electrolytes

G 73 - Practice for Liquid Impingement Erosion Testing

G 75 - Test Method for Determination of Slurry Abrasivity (Miller Number)

and Slurry Abrasion Response of Materials (SAR Number)

G 76 - Test Method for Conducting Erosion Tests by Solid Particle

G 77 - Test Method for Ranking Resistance of Materials to Sliding Wear Using Block-on-Ring Wear Test

G 78 - Guide for Crevice Corrosion Testing of Iron-Base and Nickel-Base

Stainless Alloys in Seawater and Other Chloride-Containing Aqueous Environments

G 79 - Practice for Evaluation of Metals Exposed to Carbuzization

Environments

G 81 - Test Method for Jaw Crusher Gouging Abrasion Test

Dokumen terkait