• Tidak ada hasil yang ditemukan

Bab ini merupakan penutup yang berisi kesimpulan yang diambil dari Tugas Akhir ini serta saran untuk pengembangan lebih lanjut.

g. DAFTAR PUSTAKA

Pada bagian ini akan dipaparkan tentang sumber-sumber literatur yang digunakan dalam pembutan laporan tugas akhir ini.

2.1. Unsur Hara Dalam Tanah

Unsur hara merupakan komponen penting dalam pertumbuhan tanaman, unsur hara banyak tersedia dialam, sehingga tumbuhan bisa memanfaatkannya untuk kebutuhan metabolismenya. Tetapi ketersediaan unsur hara di beberapa tempat tidak sama, ada yang berkecukupan sehingga pertumbuhan tanaman menjadi baik namun ada juga yang kekurangan, sehingga pertumbuhannya menjadi terhambat. Khusus untuk tanaman budidaya kebutuhan unsur haranya sangat tinggi, hal ini dikarenakan pada lahan atau tempat yang sama ditanami tanaman tertentu yang membutuhkan jumlah unsur yang sama setiap waktunya. Sedangkan persediaan dialam terus berkurang akibat diserap oleh tanaman budidaya yang ditanam dilahan tersebut musimnya (intensif), sehingga untuk dapat memenuhi kebutuhan tanaman akan unsur hara harus dilakukan penambahan unsur hara dalam bentuk pupuk dalam jumlah yang cukup.

Beberapa unsur hara yang dibutuhkan tanaman adalah Karbon (C), Hidrogen (H), Oksigen (O), Nitrogen (N), Fosfor (P), Kalium (K), Kalsium (Ca), Magnesium (Mg), Belerang (S), Besi (Fe), Mangan (Mn), Boron (B), Mo, Tembaga (Cu), Seng (Zn) dan Klor (Cl). Unsur hara tersebut tergolong unsur hara Essensial.

Berdasarkan jumlah kebutuhannya bagi tanaman, dikelompokkan menjadi dua, yaitu:

2.1.1 Unsur Hara Makro

Unsur hara yang diperlukan tanaman dalam jumlah besar. Unsur hara makro meliputi unsur hara makro primer dan makro sekunder. Unsur hara makro primer terdiri dari N, P, K, sedangkan makro sekunder terdiri dari Ca, Mg, S. Banyak para hobiis dan pencinta tanaman hias, bertanya tentang komposisi kandungan pupuk dan prosentase kandungan N, P dan K yang tepat untuk tanaman yang bibit, remaja atau dewasa/indukan.

a. Nitrogen ( N )

Nitrogen merupakan salah Satu unsur hara yang sangat penting dan diperlukan dalam jumlah besar . tanaman menyarap unsur ini dalam bentuk ion nitrat (NO3-) dan ion ammonium (NH4+).

Unsur ini secara langsung berperan dalam pembentukan protein, memacu pertumbuhan tanaman secara umum terutama pada fase vegetatif, berperan dalam pembentukan klorifil, asam amino, lemak enzim dan persenyawaan lain.

Gejala kekurangan unsur N pertumbuhan tanaman lambat dan kerdil, mula-mula daun menguning dan mengering lalu daun akan rontok dimana daun yang menguning diawali dari daun bagian bawah, lalu disusul daun bagian atas.

Didalam tubuh tanaman nitrogen bersifat dinamis sehingga jika terjadi kekurangan nitrogen pada bagian pucuk nitrogen yang tersimpan pada daun tua akan dipindahkan ke organ yang lebih muda, dengan demikian pada daun-daun yang lebih tua gejala kekurangan nitrogen akan terlihat lebih awal.

b. Fosfor ( P )

Fosfor merupakan unsur makro yang menyusun komponen setiap sel hidup, fosfor dalam tumbuhan sangat membantu pembentukan protein dan mineral yang sangat penting bagi tanaman, merangsang pembentukan bunga, buah, dan biji. Bahkan mampu mempercepat pemasakan buah dan membuat biji lebih berbobot. Bertugas mengedarkan energi keseluruh bagian tanaman , merangsang pertumbuhan dan perkembangan akar.

Gejala kekurangan fosfor pada tanaman mengakibatkan pertumbuhan terhambat atau kerdil dan daun menjadi hijau tua, tanaman tidak menghasilkan bunga dan buah, jika sudah terlanjur berbuah ukuranya kecil, jelek dan cepat matang.

c. Kalium ( K )

Kalium merupakan unsur makro seperti nitrogen dan fosfor, kalium berperan penting dalam fotosintesis, karena secara langsung meningkatkan pertumbuhan dan luas daun. Disamping itu kalium dapat meningkatkan pengambilan karbondioksida, memindahkan gula pada pembentukan pati dan protein, membantu proses membuka dan menutup stomata, kapasitas menyimpan air, memperluas pertumbuhan akar, meningkatkan ketahanan tanaman terhadap serangan hama dan penyakit, memperkuat tubuh tanaman supaya daun bunga dan buah tidak gampang rontok

Memperbaiki ukuran dan kualitas buah pada masa generatif/menambah rasa manis pada buah, mensuplai karbohidrat yang banyak terutama pada tanaman umbi-umbian.

Gejala kekurangan unsur hara ini pertumbuhan terhambat, batang kurang kuat dan mudah patah, biji buah menjadi kisut, daun mengerut/kriting timbul bercak-bercak merah coklat lalu kering dan mati.

2.1.2 Unsur Hara Mikro

Unsur hara yang diperlukan tanaman dalam jumlah kecil.Unsur hara mikro yang dibutuhkan tanaman dalam jumlah kecil antara lain Besi(Fe), Mangaan(Mn), Seng (Zn), Tembaga (Cu), Molibden (Mo), Boron (B), Klor(Cl).

a. Besi (Fe)

Besi (Fe) merupakan unsure mikro yang diserap dalam bentuk ion feri (Fe3+) ataupun fero (Fe2+). Fe dapat diserap dalam bentuk khelat (ikatan logam dengan bahan organik). Mineral Fe antara lain olivin (Mg, Fe)2SiO, pirit, siderit (FeCO3), gutit (FeOOH), magnetit (Fe3O4), hematit (Fe2O3) dan ilmenit (FeTiO3) Besi dapat juga diserap dalam bentuk khelat, sehingga pupuk Fe dibuat dalam bentuk khelat. Khelat Fe yang biasa digunakan adalah Fe-EDTA, Fe-DTPA dan khelat yang lain. Fe dalam tanaman sekitar 80% yang terdapat dalam kloroplas atau sitoplasma. Penyerapan Fe lewat daundianggap lebih cepat dibandingkan dengan penyerapan lewat akar, terutama pada tanaman yang mengalami defisiensi Fe. Dengan demikian pemupukan lewat daun sering diduga lebih ekonomis dan efisien. Fungsi Fe antara lain sebagai penyusun klorofil, protein, enzim, dan berperanan dalam perkembangan kloroplas. Sitokrom merupakan enzim yang mengandung Fe porfirin. Kerja katalase dan peroksidase digambarkan secara ringkas sebagai berikut:

Peroksidase : AH2 + H2O A + H2O

Fungsi lain Fe ialah sebagai pelaksana pemindahan electron dalam proses metabolisme. Proses tersebut misalnya reduksi N2, reduktase solfat, reduktase nitrat. Kekurangan Fe menyebabakan terhambatnya pembentukan klorofil dan akhirnya juga penyusunan protein menjadi tidak sempurna Defisiensi Fe menyebabkan kenaikan kaadar asam amino pada daun dan penurunan jumlah ribosom secara drastic. Penurunan kadar pigmen dan protein dapat disebabkan oleh kekurangan Fe. Juga akan mengakibatkan pengurangan aktivitas semua enzim.

b. Mangaan (Mn)

Mangaan diserap dalam bentuk ion Mn++. Seperti hara mikro lainnya, Mn dianggap dapat diserap dalam bentuk kompleks khelat dan pemupukan Mn sering disemprotkan lewat daun. Mn dalam tanaman tidak dapat bergerak atau beralih tempat dari logam yang satu ke organ lain yang membutuhkan. Mangaan terdapat dalam tanah berbentuk senyawa oksida, karbonat dan silikat dengan nama pyrolusit (MnO2), manganit (MnO(OH)), rhodochrosit (MnCO3) dan rhodoinit (MnSiO3). Mn umumnya terdapat dalam batuan primer, terutama dalam bahan ferro magnesium. Mn dilepaskan dari batuan karena proses pelapukan batuan. Hasil pelapukan batuan adalah mineral sekunder terutama pyrolusit (MnO2) dan manganit (MnO(OH)). Kadar Mn dalam tanah berkisar antara 300 sampai 2000 ppm. Bentuk Mn dapat berupa kation Mn++ atau mangan oksida, baik bervalensi dua maupun valensi empat. Penggenangan dan pengeringan yang berarti reduksi dan oksidasi pada tanah berpengaruh terhadap valensi Mn. Mn merupakan penyusun ribosom dan juga mengaktifkan polimerase, sintesis protein,

karbohidrat. Berperan sebagai activator bagi sejumlah enzim utama dalam siklus krebs, dibutuhkan untuk fungsi fotosintetik yang normal dalam kloroplas,ada indikasi dibutuhkan dalam sintesis klorofil. Defisiensi unsure Mn antara lain pada tanaman berdaun lebar, interveinal chlorosis pada daun muda mirip kekahatan Fe tapi lebih banyak menyebar sampai ke daun yang lebih tua, pada serealia bercak-bercak warna keabu-abuan sampai kecoklatan dan garis-garis pada bagian tengah dan pangkal daun muda, split seed pada tanaman lupin.

c. Seng (Zn)

Zn diserap oleh tanaman dalam bentuk ion Zn++ dan dalam tanah alkalis mungkin diserap dalam bentuk monovalen Zn(OH)+. Di samping itu, Zn diserap dalm bentuk kompleks khelat, misalnya Zn-EDTA. Seperti unsure mikro lain, Zn dapat diserap lewat daun. Kadr Zn dalam tanah berkisar antara 16-300 ppm, sedangkan kadar Zn dalam tanaman berkisar antara 20-70 ppm. Mineral Zn yang ada dalam tanah antara lain sulfida (ZnS), spalerit [(ZnFe)S], smithzonte (ZnCO3), zinkit (ZnO), wellemit (ZnSiO3 dan ZnSiO4). Fungsi Zn antara lain : pengaktif enim anolase, aldolase, asam oksalat dekarboksilase, lesitimase,sistein desulfihidrase, histidin deaminase, super okside demutase (SOD), dehidrogenase, karbon anhidrase, proteinase dan peptidase. Juga berperan dalam biosintesis auxin, pemanjangan sel dan ruas batang. Ketersediaan Zn menurun dengan naiknya pH, pengapuran yang berlebihan sering menyebabkan ketersediaaan Zn menurun. Tanah yang mempunyai pH tinggi sering menunjukkan adanya gejala defisiensi Zn, terytama pada tanah berkapur. Adapun gejala defisiensi Zn antara lain : tanaman kerdil, ruas-ruas batang memendek, daun mengecil dan mengumpul

(resetting) dan klorosis pada daun-daun muda dan intermedier serta adanya nekrosis.

d. Tembaga (Cu)

Tembaga (Cu) diserap dalam bentuk ion Cu++ dan mungkin dapat diserap dalam bentuk senyaewa kompleks organik, misalnya Cu-EDTA (Cu-ethilen diamine tetra acetate acid) dan Cu-DTPA (Cu di(Cu-ethilen triamine penta acetate acid). Dalam getah tanaman baik dalam xylem maupun floem hampir semua Cu membentuk kompleks senyawa dengan asam amino. Cu dalam akar tanaman dan dalam xylem > 99% dalam bentuk kompleks. Dalam tanah, Cu berbentuk senyawa dengan S, O, CO3 dan SiO4 misalnya kalkosit (Cu2S), kovelit (CuS), kalkopirit (CuFeS2), borinit (Cu5FeS4), luvigit (Cu3AsS4), tetrahidrit [(Cu,Fe)12SO4S3)], kufirit (Cu2O), sinorit (CuO), malasit [Cu2(OH)2CO3], adirit [(Cu3(OH)2(CO3)], brosanit [Cu4(OH)6SO4]. Kebanyakan Cu terdapat dalam kloroplas (>50%) dan diikat oleh plastosianin. Senyawa ini mempunyai berat molekul sekitar 10.000 dan masing-masing molekul mengandung satu atom Cu. Hara mikro Cu berpengaruh pafda klorofil, karotenoid, plastokuinon dan plastosianin. Fungsi dan peranan Cu antara lain : mengaktifkan enzim sitokrom-oksidase, askorbit-sitokrom-oksidase, asam butirat-fenolase dan laktase. Berperan dalam metabolisme protein dan karbohidrat, berperan terhadap perkembangan tanaman generatif, berperan terhadap fiksasi N secara simbiotis dan penyusunan lignin.Adapun gejala defisiensi / kekurangan Cu antara lain : pembungaan dan pembuahan terganggu, warna daun muda kuning dan kerdil, daun-daun lemah, layu dan pucuk mongering serta batang dan tangkai daun lemah.

e. Molibden (Mo)

Molibden diserap dalam bentuk ion MoO4-. Variasi antara titik kritik dengan toksis relatif besar. Bila tanaman terlalu tinggi, selain toksis bagi tanaman juga berbahaya bagi hewan yang memakannya. Hal ini agak berbeda dengan sifat hara mikro yang lain. Pada daun kapas, kadar Mo sering sekitar 1500 ppm. Umumnya tanah mineral cukup mengandung Mo. Mineral lempung yang terdapat di dalam tanah antara lain molibderit (MoS), powellit (CaMo)3.8H2O. Molibdenum (Mo) dalam larutan sebagai kation ataupun anion. Pada tanah gambut atau tanah organik sering terlihat adanya gejala defisiensi Mo. Walaupun demikian dengan senyawa organik Mo membentuk senyawa khelat yang melindungi Mo dari pencucian air. Tanah yang disawahkan menyebabkan kenaikan ketersediaan Mo dalam tanah. Hal ini disebabkan karena dilepaskannya Mo dari ikatan Fe (III) oksida menjadi Fe (II) oksida hidrat.

Fungsi Mo dalam tanaman adalah mengaktifkan enzim nitrogenase, nitrat reduktase dan xantine oksidase. Gejala yang timbul karena kekurangan Mo hampir menyerupai kekurangan N. Kekurangan Mo dapat menghambat pertumbuhan tanaman, daun menjadi pucat dan mati dan pembentukan bunga terlambat. Gejala defisiensi Mo dimulai dari daun tengah dan daun bawah. Daun menjadi kering kelayuan, tepi daun menggulung dan daun umumnya sempit. Bila defisiensi berat, maka lamina hanya terbentuk sedikit sehingga kelihatan tulang-tulang daun lebih dominan.

f. Boron (B)

Boron dalam tanah terutama sebagai asam borat (H2BO3) dan kadarnya berkisar antara 7-80 ppm. Boron dalam tanah umumnya berupa ion borat hidrat

B(OH)4-. Boron yang tersedia untuk tanaman hanya sekitar 5%dari kadar total boron dalam tanah. Boron ditransportasikan dari larutan tanah ke akar tanaman melalui proses aliran masa dan difusi. Selain itu, boron sering terdapat dalam bentuk senyawa organik. Boron juga banyak terjerap dalam kisi mineral lempung melalui proses substitusi isomorfik dengan Al3+ dan atau Si4+. Mineral dalam tanah yang mengandung boron antara lain turmalin (H2MgNaAl3(BO)2Si4O2) O20 yang mengandung 3%-4% boron. Mineral tersebut terbentuk dari batuan asam dan sedimen yang telah mengalami metomorfosis. Mineral lain yang mengandung boron adalah kernit (Na2B4O7.4H2O), kolamit (Ca2B6O11.5H2O), uleksit (NaCaB5O9.8H2O) dan aksinat. Boron diikat kuat oleh mineral tanah, terutama seskuioksida (Al2O3 + Fe2O3).

Fungsi boron dalam tanaman antara lain berperanan dalam metabolisme asam nukleat, karbohidrat, protein, fenol dan auksin. Di samping itu boron juga berperan dalam pembelahan, pemanjangan dan diferensiasi sel, permeabilitas membran, dan perkecambahan serbuk sari. Gejal defisiensi hara mikro ini antara lain : pertumbuhan terhambat pada jaringan meristematik (pucuk akar), mati pucuk (die back), mobilitas rendah, buah yang sedang berkembang sngat rentan, mudah terserang penyakit.

g. Klor(Cl)

Klor merupakan unsure yang diserap dalam bentuk ion Cl- oleh akar tanaman dan dapat diserap pula berupa gas atau larutan oleh bagian atas tanaman, misalnya daun. Kadar Cl dalam tanaman sekitar 2000-20.000 ppm berat tanaman kering. Kadar Cl yang terbaik pada tanaman adalah antara 340-1200 ppm dan dianggap masih dalam kisaran hara mikro. Klor dalam tanah tidak diikat oleh

mineral, sehingga sangat mobil dan mudah tercuci oleh air draiinase. Sumber Cl sering berasal dari air hujan, oleh karena itu, hara Cl kebanyakan bukan menimbulkan defisiensi, tetapi justru menimbulkan masalah keracunan tanaman. Klor berfungsi sebagai pemindah hara tanaman, meningkatkan osmose sel, mencegah kehilangan air yang tidak seimbang, memperbaiki penyerapan ion lain,untuk tanaman kelapa dan kelapa sawit dianggap hara makro yang penting. Juga berperan dalam fotosistem II dari proses fotosintesis, khususnya dalam evolusi oksigen.

Adapun defisiensi klor adalh antara lain pola percabangan akar abnormal, gejala wilting (daun lemah dan layu), warna keemasan (bronzing) pada daun, pada tanaman kol daun berbentuk mangkuk.

2.2. Unsur Hara dan Fungsinya Pada Tanaman Kedelai

Tanaman kedelai dapat tumbuh baik jika dreanase dan aerase tanah baik, untuk dapat tumbuh subur kedelai menghendaki tanah yang subur, gembur, serta kaya akan bahan organik. Pada akar terdapat bintil-bintil akar yang berkoloni dari bakteri Rhizhobium japonicum yang terbentuk di akar, yang dapat mengikat N, bersimbiosa dengan tanaman. Tanah yang dapat ditanami kedelai memiliki air dan hara tanaman untuk pertumbuhannya cukup. Serapan unsur P oleh tanaman juga dipengaruhi oleh adanya unsur N. Pemberian unsur P yang dikombinasikan dengan N dapat meningkatkan serapan P oleh tanaman. Tanaman kedelai memerlukan unsur P dalam setiap masa pertumbuhannya. Tanaman lebih banyak menyerap H2PO4 dibandingkan HPO4 dan PO4. Posfat didalam tanah mudah

tersedia pada pH tanah antara 5,5 – 7,0 jika pH tanah berada diatas atau dibawah kisaran tersebut maka serapan P oleh tanaman akan menyusut.

Status hara tanaman kedelai dan tanah di dalam bertanam kedelai erat kaitanya dengan tingkat hasil tanaman yang dapat dinilai dan digambarkan. Periode penggunaan P terbesar atau dibutuhkan dalam jumlah yang lebih banyak pada kedelai adalah dimulai pada pembentukan polong sampai kira-kira 10 hari biji berkembang penuh. Hal ini disebabkan karena P banyak terdapat didalam sel-sel tanaman.

Keadaan ini berhubungan dengan fungsi dari P dalam metabolisme sel. Posfat dapat pula dikatakan menstimulir pertumbuhan dan perkembangan perakaran tanaman. Unsur hara yang akan diserap oleh akar ditentukan oleh semua faktor yang mempengaruhi ketersediaan unsur hara sampai unsur hara tersebut berada di permukaan akar sehingga mempengaruhi pertumbuhan dan perkembangan serta hasil tanaman.

Pemberian pupuk pada pertanian intensif juga harus memperhatikan hukum penambahan hasil yang berkurang (The Law of Determinishing Return) yang dapat diartikan bahwa apabila penggunaan pupuk dalam jumlah besar meningkatkan hasil pertanian, sampai pada suatu kondisi dimana penambahan pupuk tidak lagi mampu meningkatkan hasil pertanian seperti sebelumnya.

2.3. K-Means

Teknik clustering digunakan untuk mencari kelompok yang cocok untuk sampel-sampel dari satu set data. Tidak ada pengetahuan apriori tentang data ini. Oleh karena itu, beberapa set sampel tidak dapat dianggap sebagai training set,

dan teknik klasifikasi tidak dapat digunakan dalam kasus ini. Algoritma k-means adalah salah satu yang paling populer algoritma untuk clustering. Ini adalah salah satu algoritma yang sering digunakan untuk data mining, sebagaimana telah ditempatkan di antara 10 algoritma teratas untuk data mining.

Algoritma K-Means partisi satu set data ke dalam k jumlah cluster yang diuraikan dengan mencari pola yang melekat di set. Parameter k biasanya jauh lebih kecil dari dimensi dari himpunan sampel, dan, secara umum, perlu memiliki nilai yang telah ditentukan sebelum menggunakan algoritma. Ada kasus di mana nilai k dapat diperoleh dari masalah yang diteliti. Misalnya, dalam contoh analisis tes darah, tujuannya adalah untuk membedakan antara pasien yang sehat dan sakit. Oleh karena itu, dua kelompok yang berbeda dapat didefinisikan, dan kemudian k = 2. Namun dalam aplikasi lain, parameter k tidak dapat didefinisikan dengan mudah. Dalam contoh memisahkan apel baik dari yang buruk, gambar apel perlu dianalisis. Himpunan gambar apel dapat dipartisi dengan cara yang berbeda. Satu partisi dapat diperoleh dengan membagi apel menjadi dua kelompok, satu berisi apel dengan cacat dan satu lagi berisi apel baik. Dalam kasus k = 2. Namun, apel cacat dapat diklasifikasikan berdasarkan tingkat cacat. Misalnya, jika apel memiliki cacat yang tidak terlalu terlihat, maka apel ini dapat dijual dengan harga lebih rendah. Oleh karena itu, bahkan apel yang rusak dapat dikelompokkan dalam kelompok yang berbeda. Dalam hal ini, k menunjukkan jumlah cacat yang dipertimbangkan. Ketika ada ketidakpastian pada nilai parameter k, satu set nilai yang mungkin dianggap dan algoritma dilakukan untuk setiap nilai. Partisi diperoleh terbaik dalam kelompok kemudian dapat dipertimbangkan.

Objective function yang berusaha diminimalkan oleh k-means adalah:

( , ) = ( ∗ ( _ , _ ) ) ( 2.1 )

Dimana :

• U adalah Matriks keanggotaan data ke masing-masing cluster yang berisikan nilai 0 dan 1

• V adalah matriks centroid/rata-rata masing-masing cluster • N adalah jumlah data

• c adalah jumlah cluster

• a_ik adalah keanggotaan data ke-k ke cluster ke-i • x_k adalah data ke-k

• v_i adalah nilai centroid cluster ke-i

Prosedur yang digunakan dalam melakukan optimasi menggunakan k-means adalah sebagai berikut:

1. Tentukan jumlah cluster

2. Alokasikan data ke dalam cluster secara random

3. Hitung centroid/rata-rata dari data yang ada di masing-masing cluster.

4. Alokasikan masing-masing data ke centroid/rata-rata terdekat

5. Kembali ke Step 3, apabila masih ada data yang berpindah cluster atau apabila perubahan nilai centroid, ada yang di atas nilai

threshold yang ditentukan atau apabila perubahan nilai pada objective function yang digunakan, di atas nilai threshold yang ditentukan Centroid/rata-rata dari data yang ada di masing-masing cluster yang dihitung pada Step 3. didapatkan menggunakan rumus sebagai berikut:

= ( 2.2 )

Dimana:

• i,k adalah indeks dari cluster • j adalah indeks dari variabel

• v_ij adalah centroid/rata-rata cluster ke-i untuk variabel ke-j • x_kj adalah nilai data ke-k yang ada di dalam cluster tersebut

untuk variabel ke-j

• N_i adalah Jumlah data yang menjadi anggota cluster ke-i

Sedangkan pengalokasian data ke masing-masing cluster yang dilakukan pada Step 4. dilakukan secara penuh, dimana nilai yang memungkinkan untuk a_ik adalah 0 atau 1. Nilai 1 untuk data yang dialokasikan ke cluster dan nilai 0 untuk data yang dialokasikan ke cluster yang lain. Dalam menentukan apakah suatu data teralokasikan ke suatu cluster atau tidak, dapat dilakukan dengan menghitung jarak data tersebut ke masing centroid/rata-rata masing-masing cluster. Dalam hal ini, a_ik akan bernilai 1 untuk cluster yang centroidnya terdekat dengan data tersebut, dan bernilai 0 untuk yang lainnya.

Gambar 2.1. Flowchart K-Means. 2.4. MATLAB

MATLAB adalah sebuah lingkungan komputasi numerikal dan bahasa pemrograman komputer generasi keempat. Dikembangkan oleh The MathWorks, MATLAB memungkinkan manipulasi matriks, pem-plot-an fungsi dan data, implementasi algoritma, pembuatan antarmuka pengguna, dan peng-antarmuka-an

dengan program dalam bahasa lainnya. Meskipun hanya bernuansa numerik, sebuah kotak kakas (toolbox) yang menggunakan mesin simbolik MuPAD, memungkinkan akses terhadap kemampuan aljabar komputer. Sebuah paket tambahan, Simulink, menambahkan simulasi grafis multiranah dan Desain Berdasar-Model untuk sistem terlekat dan dinamik. Pada tahun 2004, MathWorks mengklaim bahwa MATLAB telah dimanfaatkan oleh lebih dari satu juta pengguna di dunia pendidikan dan industri.

MATLAB (yang berarti "matrix laboratory") diciptakan pada akhir tahun 1970-an oleh Cleve Moler, yang kemudian menjadi Ketua Departemen Ilmu Komputer di Universitas New Mexico. Ia merancangnya untuk memberikan akses bagi mahasiswa dalam memakai LINPACK dan EISPACK tanpa harus mempelajari Fortran. Karyanya itu segera menyebar ke universitas-universitas lain dan memperoleh sambutan hangat di kalangan komunitas matematika terapan. Jack Little, seorang insinyur, dipertemukan dengan karyanya tersebut selama kunjungan Moler ke Universitas Stanford pada tahun 1983. Menyadari potensi komersialnya, ia bergabung dengan Moler dan Steve Bangert. Mereka menulis ulang MATLAB dalam bahasa pemrograman C, kemudian mendirikan The MathWorks pada tahun 1984 untuk melanjutkan pengembangannya. Pustaka yang ditulis ulang tadi kini dikenal dengan nama JACKPAC.[rujukan?] Pada tahun 2000, MATLAB ditulis ulang dengan pemakaian sekumpulan pustaka baru untuk manipulasi matriks, LAPACK.

MATLAB pertama kali diadopsi oleh insinyur rancangan kontrol (yang juga spesialisasi Little), tapi lalu menyebar secara cepat ke berbagai bidang lain. Kini juga digunakan di bidang pendidikan, khususnya dalam pengajaran aljabar

linear dan analisis numerik, serta populer di kalangan ilmuwan yang menekuni bidang pengolahan citra.

Ga mbar 2.2. Antarmuka Matlab 2010a.

Fitur-fitur MATLAB sudah banyak dikembangkan, dan lebih kita kenal dengan nama toolbox. Sangat penting bagi seorang pengguna Matlab, toolbox mana yang mandukung untuk learn dan apply technologi yang sedang dipelajarinya. Toolbox toolbox ini merupakan kumpulan dari fungsi-fungsi MATLAB (M-files) yang telah dikembangkan ke suatu lingkungan kerja MATLAB untuk memecahkan masalah dalam kelas particular. Area-area yang

Dokumen terkait