• Tidak ada hasil yang ditemukan

Rincian dana investasi dan modal kerja pembangunan industri CDS

Proses pemurnian gliserol harus dilakukan untuk meningkatkan derajat kemurnian gliserol sebelum digunakan. Yong et al. (2001) melakukan pemurnian gliserol yang diperoleh dari industri metil ester minyak inti sawit melalui proses destilasi sederhana pada suhu 120oC – 126oC, tekanan 4,0 x 10-1 - 4.0 x 10-2 mbar dan kemudian didinginkan pada suhu 8oC. Proses pemurnian ini berhasil meningkatkan kemurnian gliserol dari 50,4% menjadi 96,6%. Adanya penggunaan panas pada proses destilasi metode tersebut menyebabkan meningkatnya biaya pemurnian gliserol yang tidak sebanding dengan nilai ekonomi yang diperoleh. Proses peningkatan kemurnian gliserol yang lebih sederhana dan relatif lebih murah dilakukan oleh Farobie (2009) dengan cara mereaksikan gliserol kasar dengan sejumlah asam fosfat sampai terbentuk endapan garam kalium fosfat. Tujuan utama proses ini adalah untuk menetralkan sisa katalis basa (KOH) dengan asam fosfat. Proses ini berhasil meningkatkan kemurnian gliserol dari 50% menjadi 80%. Proses ini juga menghasilkan produk samping berupa garam kalium fosfat yang dapat digunakan sebagai pupuk. Selain garam kalium fosfat, produk lain yang dihasilkan pada saat pemurnian gliserol dengan menggunakan metode ini adalah asam lemak.

Selain diproduksi melalui transesterifikasi minyak dan lemak, gliserol juga diproduksi melalui proses produksi dari alil klorida, propene oksida, proses fermentasi dari gula dan proses hidrogenasi karbohidrat. Beberapa proses non komersial lainnya yang memungkinkan terbentuknya gliserol adalah photoproduction dari biomassa, sintetis hidrogenasi katalitik karbon dioksida, serta proses produksi gliserol sintetis dari molase yang terhenti sejak tahun 1969. Gliserol yang dihasilkan baik dari proses transesterifikasi minyak dan lemak maupun yang disintesis dengan berbagai proses tersebut di atas merupakan bahan baku utama dan pendukung yang digunakan dalam berbagai industri. National Biodiesel Board (2010) menyatakan bahwa gliserol paling banyak digunakan di enam bidang industri yaitu industri makanan dan minuman, farmasi, kosmetika, rokok, kertas dan percetakan serta industri tekstil. Gliserol digunakan baik sebagai bahan baku proses, bahan antara dan sebagai bahan tambahan yang berfungsi untuk meningkatkan kualitas suatu produk. Rincian penggunaan gliserol di berbagai macam industri dapat dilihat pada Tabel 3.

Tabel 3 Macam-macam penggunaan gliserol di industri

Bidang Industri Fungsi Produk

Makanan dan minuman

Pelembab, pemanis dan pengawet intermediet

Minuman ringan, permen, kue, pelapis daging dan keju, makanan hewan peliharaan, margarin, salad, makanan beku dan kemasan makanan.

Farmasi Pelembut, media Kapsul, obat infeksi, anestesi, obat batuk, pelega tenggorokan, obat kulit, antiseptik dan

antibiotik. Kosmetika dan

toiletris

Pelembab, pelembut Pasta gigi, krim dan lotion kulit, lotion cukur, deodorant, make up, lipstik dan maskara.

Kertas dan pencetakan

Pelembut, mencegah penyusutan

Kertas minyak, kemasan makanan, kertas cetakan tinta Tekstil Pemasti ukuran,

pelunak,

Kain, serat dan benang

Lain—lain Pelumas, pelicin, pelapis, menambah fleksibilitas,

Kemasan resin, plastik, karet, busa, dinamit, komponen radio dan lampu neon.

Sumber : National Biodiesel Board, 2010

2.4 Debu Batubara

Batubara (coal) adalah bahan bakar yang berasal dari endapan sedimen tumbuhan purba yang hidup 100-400 juta tahun yang lalu. Batubara mengandung sejumlah tertentu karbon, nitrogen, oksigen dan belerang yang bersatu dengan elemen lainnya termasuk mineral-mineral (ASTM D 121-00, 2000). Batubara merupakan padatan yang rapuh, mudah terbakar, yang dibentuk oleh dekomposisi dan perubahan vegetasi dengan pemadatan, suhu dan tekanan. Penampakan batubara berbeda-beda tergantung karakteristiknya. Warna batubara bervariasi dari coklat sampai hitam dan biasanya bertingkat. Tanaman purba yang menjadi

13

batubara diidentifikasi mayoritas berasal dari lumut dan tumbuhan tingkat rendah (Speight 2005).

Komposisi kimia batubara sangat dipengaruhi oleh jenis batubara itu sendiri. International Energy Agency (2009) mengklasifikasikan batubara berdasarkan kandungan sedimen terbakar ke dalam empat kelompok yaitu Anthracite, Bituminous, Sub-bituminous dan Lignite/Brown coal. Walaupun demikian, secara garis besar IEA mengikuti The International Coal Classification of the Economic Commission for Europe (UN/ECE) dalam membagi batubara menjadi dua golongan besar yaitu hard coal – yaitu batubara yang memiliki jumlah kalori lebih besar dari 5 700 kcal/kg (23,9 GJ/t) dan brown coal – batu bara yang memiliki nilai kalori lebih rendah dari 5 700 kcal/kg (23,9 GJ/t). Rumus struktur batubara dapat dilihat pada Gambar 4.

Gambar 4 Rumus struktur batubara (Hambly 1998)

Karakteristik batubara berbeda-beda sesuai dengan lingkungan dan formasi batuan asalnya. Batubara dikelompokkan berdasarkan kandungan energinya menjadi beberapa kelompok antara lain antrasitik, bituminous, sub bituminous dan lignitik (ASTM D 388-99, 2002).

Masalah lingkungan yang berkaitan dengan penggunaan batubara sebagai sumber energi adalah timbulnya pencemaran pada saat transportasi dan pada saat

pembakaran. Pencemaran udara pada saat transportasi batubara berupa paparan debu batubara, sedangkan pada proses pembakaran, pencemaran yang terjadi berupa emisi buangan yang banyak mengandung oksida asam seperti nitrogen monooksida (NO). NO merupakan salah satu penyebab utama terjadinya hujan asam. Hujan asam dianggap sebagai salah satu perusakan terparah yang diakibatkan manusia terhadap bumi (Monk 2004)

Pencemaran debu batubara disebabkan oleh terbentuknya partikel-partikel yang sangat kecil dan mudah tertiup angin dari satu lokasi ke lokasi lainnya. Pencemaran batubara pada kondisi yang ekstrim sangat berbahaya terhadap kesehatan. Tiga jenis efek yang ditimbulkan oleh pencemaran debu batubara terhadap kesehatan menurut Federal Coal Mine Health and Safety Act (1969) adalah gangguan pernapasan, penyakit epidemi seperti Coal Workers Pneumoconiosis (CWP) dan Progressive Massive Fibrosis (PMF), serta gangguan mekanisme seluler (United States Department of Labor 2006). Epidemi yang paling umum yaitu CWP, dapat mengakibatkan kerusakan paru-paru yang sangat parah (Pinho 2004). Kerusakan paru-paru tersebut dapat dilihat pada Gambar 5.

Gambar 5 Foto kerusakan paru-paru (CWP) akibat polusi debu batubara (Connor 2011)

Pengaruh pencemaran debu batubara terhadap kesehatan dan lingkungan tidak berbeda jauh dengan pengaruh pencemaran debu batubara terhadap manusia. Pencemaran debu batubara bersamaan dengan aktivitas pembakaran batubara

15

berkontribusi terhadap pencemaran lingkungan perairan, udara dan daratan. Penebalan lapisan debu batubara pada daun tanaman di sekitar lokasi pencemaran akan menyebabkan terganggunya aktivitas fotosintesis tanaman tersebut (Naidoo dan Chirkoot 2004). Selain itu, debu batubara di udara juga dapat menyebabkan berubahnya pH air hujan.

2.5 Coal Dust Suppressant (CDS)

Coal Dust Suppressant (CDS) merupakan senyawa kimia yang digunakan untuk mencegah penyebaran debu batubara pada saat batubara dipindahkan dari satu tempat ke tempat lain (Dohner 1988). Selain itu, CDS juga dapat digunakan pada penanganan debu batubara yang timbul dari aktivitas transportasi truk-truk pengangkut batubara di lokasi sekitar penimbunan batubara (stockpile).

Prinsip kerja utama CDS dalam mencegah pembentukan debu batubara adalah dengan memperbesar ukuran partikel, memperberat bobot partikel dan mengikat partikel debu batubara satu sama lain. Polimer pada komponen CDS akan membentuk lapisan film yang membungkus granula CDS menjadi lebih berat dan lebih besar ukurannya, sehingga relatif tidak mudah terbang. Gliserol berfungsi sebagai agen pembasah yang menahan kelembaban partikel debu batubara, sehingga tidak mudah lepas dan saling terikat dengan partikel yang lain. Surfaktan nonionik pada formula CDS berfungsi untuk menurunkan tegangan permukaan air, sehingga derajat kebasahan batubara menjadi meningkat terhadap air (Talamoni 2010).

Beberapa bahan telah digunakan sebagai bahan baku formulasi CDS. Talamoni (2010) menggunakan Poly Vinil Alkohol (PVA) sebagai komponen yang dominan diantara komponen CDS lainnya dengan persentase mencapai 40% dari total komponen di dalam formula. Gliserin ditambahkan pada kisaran 7% sebagai plasticizer dan sekaligus wetting agent sekunder. Pullen et al. (1994) menggunakan surfaktan anionik untuk meningkatkan kebasahan batubara terhadap air. Beberapa bahan lain yang ditambahkan sebagai komponen minor CDS adalah minyak bekas, Alkyl-phenyl poly-ethoxy ether, resin, magnesium klorida, dan lain- lain.

3

METODOLOGI PENELITIAN

3.1 Kerangka Pemikiran

Peningkatan nilai tambah produk turunan minyak jarak pagar mutlak diperlukan agar industri biodiesel jarak pagar dapat berkembang dengan baik. Saat ini, perkembangan industri biodiesel sangat dipengaruhi oleh naik turunnya harga jual biodiesel sebagai satu-satunya produk yang bernilai ekonomis. Pada saat harga biodiesel tidak dapat bersaing dengan bahan bakar berbasis minyak bumi, maka industri biodiesel tidak mendapat nilai tambah sama sekali. Padahal, selain peningkatan nilai tambah dari biodiesel sebagai produk utama, industri biodiesel dapat memperoleh peningkatan nilai tambah dengan cara mengolah produk samping dan limbah industri biodiesel menjadi suatu produk yang memiliki nilai ekonomi yang baik.

Penemuan produk baru yang berbahan baku produk samping industri biodiesel minyak jarak pagar diharapkan akan mampu meningkatkan nilai tambah industri biodiesel. Tentu saja peningkatan nilai tambah ini terlepas dari perkembangan harga biodiesel dan minyak bumi, sehingga dapat berdiri sebagai unit usaha tersendiri.

Gliserol kasar merupakan produk turunan minyak jarak pagar terbanyak kedua setelah biodiesel. Dengan persentase produksi gliserol kasar sebanyak 10% dari total produk yang dihasilkan, maka apabila tidak ditangani dengan baik, gliserol kasar akan berubah fungsi dari produk samping menjadi limbah yang harus ditangani secara serius.

Teknologi pemurnian gliserol yang saat ini biasa digunakan adalah teknologi destilasi, baik secara sederhana maupun secara kompleks. Teknologi destilasi melibatkan dua proses utama yaitu pemanasan gliserol kasar dan pendinginan uap gliserol menjadi gliserol dengan derajat kemurnian yang lebih tinggi. Kedua proses tersebut melibatkan konsumsi energi yang sangat besar, sehingga biaya produksi menjadi sangat tinggi. Biaya produksi tersebut akan lebih tinggi lagi karena gliserol yang dimurnikan merupakan gliserol kasar dengan komposisi bahan yang kompleks dan tahapan pemurnian menjadi lebih banyak.

Untuk mengatasi hal tersebut, maka diperlukan adanya pengembangan aplikasi gliserol dengan kemurnian rendah, sehingga biaya produksinya dapat diminimalkan. Salah satu aplikasi gliserol yang potensial untuk dikembangkan adalah penggunaan gliserol sebagai CDS. Walaupun demikian, adanya kandungan bahan lain dalam gliserol kasar menjadikan karakteristiknya sedikit berbeda dibandingkan dengan gliserol komersial. Dengan demikian diperlukan penelitian untuk mengetahui pengaruh penambahan gliserol kasar terhadap sifat fisikokimia dan kinerja CDS serta analisis kelayakan finansial pendirian industri CDS.

3.2 Bahan dan Alat

Bahan-bahan yang digunakan dalam penelitian ini terbagi menjadi bahan- bahan untuk produksi biodiesel, bahan-bahan untuk peningkatan kemurnian gliserol dan bahan-bahan untuk formulasi dan analisis CDS. Bahan-bahan untuk produksi biodiesel adalah minyak jarak pagar, metanol, asam sulfat, KOH dan air. Adapun bahan-bahan yang digunakan dalam peningkatan kemurnian gliserol adalah asam fosfat, air aquades dan kertas saring. Gliserol hasil peningkatan kemurnian, polimer Poli Vinil Alkohol (PVA), surfaktan Sodium Lauril Sulfat (SLS) dan air, sedangkan pada saat pengujian digunakan debu batubara.

Peralatan yang digunakan selama penelitian terbagi menjadi peralatan produksi biodiesel, peralatan peningkatan pemurnian gliserol serta peralatan formulasi dan analisis sifat fisikokimia dan kinerja CDS. Peralatan utama yang digunakan pada saat produksi biodiesel jarak pagar adalah reaktor esterifikasi- transesterifikasi skala 100 liter per batch. Tabung Erlenmeyer, gelas ukur, hotplate, magnetic stirrer, pompa vakum, dan corong Buchner merupakan peralatan yang digunakan untuk meningkatkan kemurnian gliserol hasil samping produksi biodiesel jarak pagar. Selain itu, hotplate, magnetic stirrer, Erlenmeyer, gelas ukur dan neraca analitik juga digunakan pada saat formulasi CDS. Peralatan analisis yang digunakan untuk menguji sifat fisikokimia dan kinerja CDS adalah densitometer Anton Paar DMA 4500 M, Viskometer Brookfield LV DVIII Ultra, pH meter portabel Schotts, oven, tabung Dustiness index, neraca analitik, cawan petri, pipet tetes dan stopwatch.

19

3.3 Waktu dan Tempat Penelitian

Penelitian ini dilaksanakan pada bulan Agustus 2010 sampai bulan Januari 2011 di Laboratorium Pusat Penelitian Surfaktan dan Bioenergi – LPPM Institut Pertanian Bogor.

3.4 Metode

Tahapan pelaksanaan penelitian terdiri dari 7 tahapan yaitu : 1) Analisis sifat fisikokimia minyak jarak pagar, 2) Pembuatan biodiesel dari minyak jarak pagar, 3) Peningkatan kemurnian gliserol hasil samping produksi biodiesel jarak pagar, 4) Formulasi CDS, 5) Analisis sifat fisikokimia formula CDS, 6) Analisis kinerja CDS, dan 7) Analisis kelayakan finansial pendirian industri CDS. Diagram alir tahapan penelitian dapat dilihat pada Gambar 6.

Pembuatan biodiesel dari minyak jarak pagar

Peningkatan kemurnian gliserol hasil samping produksi biodiesel jarak pagar

Mulai

Formulasi CDS

Analisis sifat fisikokimia formula CDS

Analisis kinerja formula CDS

Analisis kelayakan finansial pendirian industri CDS

Selesai

Analisis sifat fisikokimia minyak jarak pagar

3.4.1. Analisis Sifat Fisikokimia Minyak Jarak Pagar

Analisis sifat fisikokimia minyak jarak pagar dilakukan untuk mengetahui sifat fisikokimia minyak jarak pagar seperti persentase FFA, bilangan asam, densitas, bilangan iod dan viskositas. Prosedur analisis pengujian sifat fisikokimia minyak jarak pagar dilampirkan pada Lampiran 1.

3.4.2. Pembuatan Biodiesel dari Minyak Jarak Pagar

Berdasarkan hasil pengujian nilai FFA yang terkandung di dalam minyak jarak pagar, maka urutan proses pembuatan biodiesel ditentukan. Pada umumnya nilai FFA minyak jarak pagar lebih besar dari 5%, sehingga diperlukan tahapan esterifikasi terlebih dahulu untuk mengkonversi FFA menjadi Fatty Acid Methyl Ester (FAME). Jumlah reaktan pada proses esterifikasi juga dihitung berdasarkan kandungan nilai FFA di dalam minyak jarak pagar. Proses esterifikasi yang dilakukan selama 1 jam pada suhu 50oC dengan menggunakan pereaksi metanol yang mengandung asam sulfat 1%, sebanyak 225% dari kandungan asam lemak bebas seperti yang dilakukan oleh Berchmans dan Hirata (2008). Setelah proses esterifikasi selesai, campuran metanol dan air dipisahkan dari campuran minyak jarak pagar dengan FAME. Pada tahapan kedua, sisa minyak jarak pagar kemudian ditransesterifikasi menggunakan metanol dan katalis basa. Jumlah metanol yang ditambahkan adalah 15% dengan kandungan katalis basa (KOH) sebanyak 1%. Lama reaksi transesterifikasi adalah satu jam dengan suhu 50oC. Setelah itu, campuran kemudian dimasukkan ke dalam tangki pemisah (settling tank) untuk diendapkan sampai komponen polar (gliserol, sisa metanol dan air) terpisah pada bagian bawah, sedangkan komponen non polar (FAME dan metil ester) berada pada bagian atas. Gliserol bersama dengan komponen polar lainnya kemudian dialirkan dan ditampung menggunakan wadah tersendiri.

3.4.3. Peningkatan Kemurnian Gliserol Hasil Samping Produksi Biodiesel Jarak Pagar

Gliserol kasar yang diperoleh dari tangki pemisah memiliki kandungan gliserol rata-rata 50%. Untuk dapat diaplikasikan sebagai CDS,

21

maka kemurniannya harus ditingkatkan. Peningkatan kemurnian gliserol kasar hasil samping produksi biodiesel dilakukan sebagaimana yang telah dilakukan oleh Farobie (2009) yang menetralkan komponen gliserol yang mengandung katalis basa (KOH) menggunakan asam fosfat sampai diperoleh garam kalium fosfat. Diagram alir proses peningkatan kemurnian gliserol kasar hasil samping produksi biodiesel jarak pagar dapat dilihat pada Gambar 7.

Gambar 7 Diagram alir proses peningkatan kemurnian gliserol kasar hasil samping produksi biodiesel jarak pagar (Farobie 2009).

3.4.4. Formulasi CDS

CDS tersusun atas empat jenis bahan yaitu polimer Poli Vinil Alkohol (PVA), surfaktan Sodium Lauril Sulfat (SLS), gliserol hasil samping produksi biodiesel jarak pagar dan air. Tahap awal formulasi

dilakukan dengan membuat formula dari keempat bahan tersebut dengan konsentrasi masing-masing bahan ditampilkan pada Tabel 4.

Tabel 4 Komposisi formula CDS yang dikembangkan

No. Formula Polimer PVA (%) Surfaktan SLS (%) Gliserol (%) Air (%) 1 40 40 5 15 2 40 40 10 10 3 40 40 15 5

Seluruh bahan dilarutkan di dalam air sesuai dengan konsentrasi yang sudah ditentukan. Pengadukan kemudian dilakukan selama 30 menit menggunakan magnetic stirrer dan hotplate pada suhu kamar.

3.4.5. Analisis Sifat Fisikokimia Formula CDS

Sifat fisikokimia CDS yang dianalisis adalah densitas, pH dan viskositas. Analisis densitas formula CDS dilakukan menggunakan alat Densitometer Anton Paar DMA 4500M. Alat tersebut bekerja menggunakan sistem tabung osilasi. Pada sistem ini, respon tabung terhadap gelombang osilasi diukur sebagai fungsi dari nilai densitas sampel di dalam tabung. Alat ini memiliki akurasi 5 digit desimal.

Analisis nilai pH dilakukan dengan menggunakan alat pengukur pH portabel Schotts yang memiliki akurasi dua digit desimal. Pengukuran dilakukan dengan cara memasukkan elektroda ke dalam formula. Viskositas formula CDS diukur dengan menggunakan Brookfield LV DVIII Ultra pada suhu 25oC. Prosedur analisis sifat fisikokimia CDS selengkapnya dapat dilihat pada Lampiran 2.

3.4.6. Analisis Kinerja Formula CDS

Kinerja formula CDS selain dilihat dari kemampuannya menekan pembentukan debu (Hamelmann dan Schmidt, 2003) juga kemampuannya dalam menekan laju penguapan air yang terkandung di dalam debu batubara sehinga debu batubara tidak mudah terbang. Pengukuran kinerja formula CDS dilakukan pada ketiga formula dengan 3 konsentrasi pengenceran yaitu 50, 100 dan 150 kali. Prosedur analisis Evaporation Rate dan Dustiness Index dilampirkan pada Lampiran 3 dan 4.

23

Kedua analisis tersebut juga digunakan untuk membandingkan kinerja formula CDS hasil penelitian dengan formula CDS komersial. Selain itu, analisis ER dan DI juga dilakukan terhadap air karena air seringkali digunakan sebagai substitusi CDS oleh perusahaan. Blanko yang berupa debu batubara tanpa perlakuan penambahan formula apapun juga digunakan di dalam kedua analisis sebagai kontrol seluruh perlakuan.

3.4.7. Rancangan Percobaan

Pengaruh penambahan gliserol dan konsentrasi pengenceran formula serta interaksinya terhadap kinerja formula CDS, terutama nilai ER dan persentase DI dianalisis secara statistik dengan menggunakan metode Rancangan Acak Lengkap (RAL) lalu dilanjutkan dengan uji beda nyata Fisher (Aunudin 2005). Model rancangan tersebut adalah

Yijk = μ + Ai + Bj + (AB)ij + εijk Keterangan:

Yijk = nilai laju penguapan dan persentase pembentukan debu

formula pada konsentrasi gliserol ke-i, pengenceran ke-j, serta ulangan ke-k,

dengan i = 1, 2, 3 j = 1, 2, 3 dan k = 1, 2,. μ = rataan umum

Ai = pengaruh penambahan gliserol ke-i Bj = pengaruh pengenceran formula ke-j

(AB)ij = pengaruh interaksi penambahan gliserol ke-i serta pengenceran formula ke-j

eijk = pengaruh acak dari penambahan gliserol ke-i, pengenceran formula ke-j, serta ulangan ke-k.

Hipotesis yang diuji

1 Pengaruh penambahan gliserol

Ho = A1 = A2 = A3 = 0 (penambahan gliserol memberikan pengaruh yang sama terhadap nilai Evaporation Rate dan persentase Dustiness Index)

2 Pengaruh pengenceran formula CDS

Ho = B1 = B2 = B3 = 0 ( pengenceran formula CDS memberikan pengaruh yang sama terhadap nilai Evaporation Rate dan persentase Dustiness Index)

H1 = setidaknya ada satu j dengan Bj ≠ 0, j = 1, 2, 3

3 Pengaruh interaksi antara penambahan gliserol dan pengenceran formula CDS

Ho = (AB)ij = 0 untuk semua ij

H1 = setidaknya ada satu pasangan interaksi i dan j dengan (AB)ij≠ 0 3.4.8. Analisis Kelayakan Finansial Pendirian Industri CDS

CDS merupakan salah satu produk yang memiliki peluang untuk dikembangkan sebagai salah satu produk agroindustri. Hal ini disebabkan adanya industri batubara baik pengguna maupun produsen dituntut oleh pemerintah dan masyarakat untuk dapat mengelola batubara sebaik mungkin tanpa menyebabkan terjadinya pencemaran udara. Dengan demikian, kebutuhan industri pengguna batubara terhadap CDS akan selalu ada seiring dengan berjalannya aktivitas produksi pada industri yang bersangkutan.

Menurut Umar (2005), analisis finansial usaha perlu dilakukan untuk mengetahui apakah suatu rencana usaha dapat dilaksanakan atau tidak. Beberapa metode yang digunakan untuk menilai kelayakan investasi adalah Net Present Value (NPV), Internal Rate of Return (IRR), Net Benefit / Cost (NBC), Payback Period (PBP), dan Average Break Even Point (BEP).

Net Present Value (NPV) adalah metode yang digunakan untuk mengetahui selisih antara nilai sekarang (Present Value) dari investasi dengan nilai sekarang dari penerimaan-penerimaan kas bersih. Perhitungan nilai sekarang dilakukan berdasarkan tingkat bunga yang relevan. Berikut di bawah ini adalah metode perhitungan NPV.

25

Keterangan : CFt = aliran kas per tahun pada periode t I0 = investasi awal pada tahun 0 K = suku bunga (discount rate)

Metode Internal Rate of Return (IRR) digunakan untuk mencari tingkat bunga yang dapat dibandingkan dengan nilai sekarang dari arus kas yang diharapkan di masa datang, tanpa memperhitungkan investasi awal. Apabila nilai IRR yang diperoleh ternyata lebih besar dari Rate of Return yang ditentukan, maka investasi dapat diterima. Perhitungan IRR adalah sebagai berikut.

Keterangan : t = tahun ke..

n = jumlah tahun

I0 = nilai investasi awal CF = arus kas bersih

IRR = tingkat bunga yang dicari harganya.

Untuk mengetahui sejauhmana perbandingan antara nilai sekarang dari rencana penerimaan kas dengan nilai sekarang dari investasi yang telah dilaksanakan, maka dilakukan perhitungan Net Benefit / Cost atau Profitability Index (PI).

Payback period merupakan kurun waktu yang diperlukan untuk menutup kembali pengeluaran investasi. Semakin cepat payback period suatu investasi, semakin layak investasi tersebut dilakukan. Apabila payback period lebih pendek waktunya dibandingkan maximum payback period-nya, maka usulan investasi dapat diterima. Payback period menggunakan rumus berikut ini.

Hubungan antar beberapa variabel di dalam kegiatan perusahaan, seperti luas produksi atau tingkat produksi yang dilaksanakan, biaya yang dikeluarkan, serta pendapatan yang diterima oleh perusahaan dari

kegiatannya dianalisis dengan menggunakan metode Break Even Point. Kondisi Break Event Point terjadi ketika pendapatan penerimaan perusahaan (Total Revenue) adalah sama dengan biaya yang ditanggungnya (Total Cost). Pendapatan penerimaan perusahaan merupakan hasil perkalian antara jumlah unit barang terjual dengan harga satuannya, sedangkan biaya yang ditanggung adalah penjumlahan dari biaya tetap dan biaya variabelnya.

4

HASIL DAN PEMBAHASAN

4.1 Sifat Fisikokimia Minyak Jarak Pagar

Sifat fisikokimia minyak jarak pagar merupakan salah satu informasi awal yang harus diperoleh untuk memproduksi biodiesel jarak pagar. Informasi tersebut menjadi acuan utama dalam proses produksi biodiesel jarak pagar, terutama dalam menentukan tahapan proses dan jenis serta jumlah reaktan yang diperlukan. Beberapa sifat fisikokimia minyak jarak pagar yang dianalisis adalah kandungan asam lemak bebas, bilangan asam, densitas, bilangan iod dan viskositas.

Penghitungan kandungan asam lemak bebas dilakukan untuk mengetahui persentase jumlah asam lemak yang telah terhidrolisis, sehingga terlepas dari molekul trigliserida. Hal ini diperlukan sebagai dasar penghitungan metanol yang dibutuhkan pada reaksi esterifikasi. Adapun total asam yang terkandung di dalam minyak jarak pagar dianalisis dengan menggunakan metode bilangan asam yang

Dokumen terkait