Untuk memastikan keragaman genetik mtDNA yang rendah pada populasi Serayu, maka perlu dilakukan analisis keragaman mtDNA dengan melakukan analisis keragaman DNA pada daerah selain D-loop mtDNA.
31
DAFTAR PUSTAKA
Alawi HM, Ahmad, Rusliadi, Pardiman. 1992. Some biological aspect of micrones catfish (Macrones nemurus C.V) from Kampar River. Terubuk XVII 52:32-47.
Allendorf FW, Luikart G. 2008. Conservation and the Genetic of Populations. Blacwell Publishing.
Arifin OZ, Kurniasih T. 2007. Variasi genetik tiga populasi ikan nila (Oreochromis niloticus) berdasarkan polimorfisme mtDNA. J. Riset Akuakultur 2 (1):67-75.
Baker AJ, Birt P. 2000. Polymerase Chain Reaction Molecular Methods In Ecology. Blacwell Science Ltd. Oxford.
Beaumont AR, Hoare K. 2003. Biotechnology and Genetics in Fisheries and Aquaculture. Blacwell Publishing.
Carvalho GR, Pitcher TJ. 1994. Molecular Genetics and Fisheries. Chapman and Hall. London.
Chambers SM. 1983. Genetic Principle for Manager.Bringlame. New York. Dunham RA. 2004. Aquaculture and Fisheries Biotechnology: Genetic
Approaches. UK Cabi Publishing.
Frommen JG, Luz C, Mazzi D, Bakker TCM. 2007. Inbreeeding depression affects fertilization success and survival but not breeding coleration in threespine stickleback. Behavior145 (425-441). Also available online- www.brill.nl/beh [12 Mei 2012].
Gaffar AK, Muflikhah N. 1992. Pemijahan Buatan dan Pemeliharaan Larva Ikan Baung.Prosiding Seminar Hasil Penelitian Perikanan Air Tawar 1991/1992. Balitkanwar Bogor.
Gardner EJ, Simmon MJ, Snustad PD. 1991. Population and Evolutionary Genetics. Chichester Brisbane, New York.
Griffiths AJF, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM. 2000. An Introduction Genetic Analysis. Seventh Edition. W. H. Freeman. New York.
Hanny U. 2003. Karakterisasi beberapa ras ikan baung (Mystus nemurus) dengan menggunakan mtDNA markers di laboratorium balai riset perikanan budidaya air tawar sempur-bogor [skripsi]. Bogor: Fakultas Pertanian, Universitas Djuanda.
32
Hardjamulia A, Suhenda N. 2000. Evaluasi sifat reproduksi dan sifat gelondong generasi pertama empat strain ikan baung (Mystsu nemurus) di Jaring apung. JPPI6 (3-4):24-35.
Imsiridou A . 1997. Genetic differentiation and phylogenetic relationship among greek chub Leuciscus cephalus L. (Pisces, Cyprinidae) population as revealed by RFLP analysis of mitochondrial DNA. Bioch Syst Ecol. 26:415-429.
Kottelat M, Whittenm AJ, Kartikasari SN, Wirjoatmodjo S. 1993. Freshwater Fishes of Western Indonesia and Sulawesi: Ikan Air Tawar Indonesia bagian barat dan Sulawesi. Jakarta: Periplus Edition (HK) ltd.
Lemire B. 2005. Mitochondrial genetics. Wormbook, ed. The C. elegans Research Community, Wormbook, doi/10.1895/wormbook.1.25.1, http://wormbook.org/pdf [12Mei 2012].
Leesa-Nga SN et al. 2000. Biochemical polymorphism in yellow chatfish, Mystus nemurus (C&V), from Thailand. Bioch genet 38:77-85.
Muflikhah N, Yosmaniar, Zahri M. 1993. Pematangan gonad dan pemijahan buatan ikan baung (Mystus nemurus). Prosiding Seminar Hasil Penelitian Perikanan Air Tawar 1992/1993. Balitkanwar, Puslitbangkan, Badan Litbang Pertanian. hlm243-247.
Muflikhah N, Aida SN. 1996. Pengaruh frekuensi pemberian pakan yang berbeda terhadap pertumbuhan dan kelangsungan hidup benih ikan baung (Mystus nemurus). Prociding Lolitkanwar. No. 2/1996.hlm 108-111.
Mulyasari, Iskandariah, Anang HK, Gleni HH. 2010. Analisis variasi genotipe ikan kelabau (Osteochilus kelabau) dengan metode mitokondria-restriction fragment length polymorphism (RFLP). J Riset Akuakultur 5(1):43-45.
Nasution Z, Utomo AD, Prasetyo D dan Yusuf S. 1993. Kajian ekonomi pada sumber daya perikanan baung di DAS Batang Hari, propinsi Jambi. Rakernis Balitkanwar Sukamandi 24-26 Mei 1993.
Nelson JS. 2006. Fishes of The World. Fouth Edition.J Willey. New Jersey. Nugroho E. 2001. Genetic divergence of kingfish from Japan, Australia and New
Zealand inferred by microsatellite and mitochondrial DNA control region marker. Fish Sci. 67.
Nugroho E. 2002. Rapid fluctuation of genetic variability in artificially propogated population of red sea bream. Indonesian Jurnal Agriculture Biotechnology. Indonesian Agency for Agriculture Research and Devolopment 7(1): 1-7.
Nugroho E, Subagya J, Aisih S. 2005. Perbaikan produktivitas ikan baung melalui perbaikan mutu genetik dengan program selective breeding. Laporan riset balai riset perikanan budidaya air tawar tahun anggaran
33
2005.Depertemen kelautan dan perikanan Badan riset kelautan dan perikanan, pusat riset perikanan budidaya, balai riset balai riset perikan budidaya air tawar tahun 2005.
Nugroho E, Subagya J, Asih S, Kurniasih T. 2006. Evaluasi keragaman genetik ikan kancra dengan menggunakan marker mtDNA D-loop dan random amplified polymorpishm DNA (RAPD). J. riset akuakultur 1 (2):211-217.
Olesen I, Gjadrem T, Bentsen HB, Gjerde B, Rye M. 2003. Breeding program for sustainable aquaculture. Di dalam: B. B Jana and Carl D. Webster, editor. Sustainable Aquaculture.Global Perspective. Food Product Press an Imprint of The Haworth Press, Inc.hlm 179-204.
Park LK, Moran P. 1995. Development in molecular genetic techniques in fisheries. Di dalam: Gary R. Carvalho and T. T. Pitcher, editor. Molecular Genetics in Fisheries. Padstow: Chapman and Hall, TJ Press Ltd.hlm 1-28.
Randi E. Mitochondrial DNA di dalam: Baker, Alan J, editor Molecular Method in Ecology. Oxford: Blackwell Science. hlm 136-167.
Rina. 2001. Keragaman genetik ikan Pangasius Indonesia berdasarkan analisis DNA mitokondria dengan teknik PCR-RFLP [tesis]. Bogor: Program Pascasarjana, Institut Pertanian Bogor.
Samuel S, Adjie, Akrimi. 1995. Beberapa aspek biologi ikan baung (Mystus nemurus) di daerah aliran sungai Batang Hari, Propinsi Jambi. Oceanologi dan Limnologi di Indonesia 28: 1-13.
Simmons M, Mickett K, Kucuktas H, Li P, Dunham R, Luiz Z. 2006. Comparison of domestic and wild channel catfish (Ictalurus puncatus) population provides no evidence for genetic impact. Fish Molecular Genetic and Biotechnology Laboratory, 203 Swingle Hall, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomic Unit, Auburn University, Auburn .AL 36894, USA. Aquaculture 252:133-146.
Slamat. 2009. Keanekaragaman genetik ikan betok (Anabas testudineus Bloch) pada tiga ekosistem perairan rawa di Provinsi Kalimantan Selatan [tesis]. Bogor: Sekolah Pascasarjana, Intitut Pertanian Bogor.
Soewardi K. 2007. Pengelolaan Keragaman Genetik Sumberdaya Perikanan dan Kelautan.Departemen Manajemen Sumberdaya Perikanan Fakultas Perikanan dan Kelautan IPB.153 hal.
Subagya J, Nugroho E, Prakoso V. 2011. Peningkatan produksi dan produktivitas melalui perbaikan mutu induk dan teknologi budidaya ikan baung (Hemibagrus nemurus). Laporan Kegiatan Seminar Hasil Riset Balai Penelitian dan Pengembangan Budidaya Air Tawar tahun 2011.Tanggal 12-13 Desember 2011.
34
Sukendi. 2001. Biologi reproduksi dan pengendaliannya dalam upaya pembenihan ikan baung (Mystus nemurus) di perairan sungai Kampar Riau. Disertasi.Program pasca sarjana ipb.
Sukendi. 2005. Pengaruh kombinasi penyuntikan hCG dan ekstrak kelenjar hipofisa ikan mas (Cyprinus carpio) terhadap daya rangsang ovulasi dan kualitas telur ikan baung (Mystus nemurus C.V). J. Perikanan dan Kelautan 102: 75-81.
Sumadi, Marianti A. 2007. Biologi Sel. Graha Ilmu. Yogyakarta.
Toha AHA. 2001. Deoxyribo Nucleid Acid. Ekspresi, Rekayasa, Keanekaragaman, Efek Pemanfaatannya. Alfabeta. Bandung.
35
37
Lampiran 1 Lokasi penyamplingan populasi ikan baung (Hemibagrus nemurus)
no Populasi Provinsi Lokasi
1 Cirata Jawa Barat Waduk Cirata
2 Serayu Jawa Tengah Sungai Serayu perbatsan dengan Cilacap
3 Jambi Jambi Hasil domestikasi BBAT Jambi
4 Bogor Jawa Barat Sungai Cisadane perbatasan dengan
38
Lampiran 2 Hasil analisis menggunakan software TFPGA untuk nilai Variasi genetik empat populasi ikan baung berdasarkan D-loop mtDNA yang dipotong dengan 4 enzim yaitu MboI, HaeIII,AluI dan RsaI. 1). Cirata; 2). Serayu; 3).Jambi; 4). Bogor.
Data set contains genotypes of individuals sampled from populations. Organism Type: Diploid
Marker Type: Codominant
DESCRIPTIVE STATISTICS
RESULTS FOR EACH POPULATION.
POPULATION 1
Locus 1 # obs. at locus= 10
allele: # obs: allele freq: # hets: het freq: 1 12 0.6000 0.0000 0.0000 2 8 0.4000 0.0000 0.0000 3 0 0.0000 0.0000 0.0000 4 0 0.0000 0.0000 0.0000 5 0 0.0000 0.0000 0.0000 6 0 0.0000 0.0000 0.0000 7 0 0.0000 0.0000 0.0000 Heterozygosity: 0.4800 Heterozygosity (unbiased): 0.5053 Heterozygosity (direct count): 0.0000
39
--- Results over all loci
Ave. sample size: 10.0000 Ave. heterozygosity: 0.4800
Ave. heterozygosity (unbiased): 0.5053 Ave. heterozygosity (direct count): 0.0000 % polymorphic loci (no criterion): 100.0000 % polymorphic loci (99% criterion): 100.0000 % polymorphic loci (95% criterion): 100.0000 ---
POPULATION 2
Locus 1 # obs. at locus= 10
allele: # obs: allele freq: # hets: het freq: 1 0 0.0000 0.0000 0.0000 2 0 0.0000 0.0000 0.0000 3 20 1.0000 0.0000 0.0000 4 0 0.0000 0.0000 0.0000 5 0 0.0000 0.0000 0.0000 6 0 0.0000 0.0000 0.0000 7 0 0.0000 0.0000 0.0000 Heterozygosity: 0.0000 Heterozygosity (unbiased): 0.0000 Heterozygosity (direct count): 0.0000
40
--- Results over all loci
Ave. sample size: 10.0000 Ave. heterozygosity: 0.0000
Ave. heterozygosity (unbiased): 0.0000 Ave. heterozygosity (direct count): 0.0000 % polymorphic loci (no criterion): 0.0000 % polymorphic loci (99% criterion): 0.0000 % polymorphic loci (95% criterion): 0.0000 ---
POPULATION 3
Locus 1 # obs. at locus= 10
allele: # obs: allele freq: # hets: het freq: 1 0 0.0000 0.0000 0.0000 2 0 0.0000 0.0000 0.0000 3 0 0.0000 0.0000 0.0000 4 12 0.6000 0.0000 0.0000 5 4 0.2000 0.0000 0.0000 6 2 0.1000 0.0000 0.0000 7 2 0.1000 0.0000 0.0000 Heterozygosity: 0.5800 Heterozygosity (unbiased): 0.6105 Heterozygosity (direct count): 0.0000
41
Results over all loci
Ave. sample size: 10.0000 Ave. heterozygosity: 0.5800
Ave. heterozygosity (unbiased): 0.6105 Ave. heterozygosity (direct count): 0.0000 % polymorphic loci (no criterion): 100.0000 % polymorphic loci (99% criterion): 100.0000 % polymorphic loci (95% criterion): 100.0000 ---
POPULATION 4
Locus 1 # obs. at locus= 10
allele: # obs: allele freq: # hets: het freq: 1 10 0.5000 0.0000 0.0000 2 10 0.5000 0.0000 0.0000 3 0 0.0000 0.0000 0.0000 4 0 0.0000 0.0000 0.0000 5 0 0.0000 0.0000 0.0000 6 0 0.0000 0.0000 0.0000 7 0 0.0000 0.0000 0.0000 Heterozygosity: 0.5000 Heterozygosity (unbiased): 0.5263 Heterozygosity (direct count): 0.0000
--- Results over all loci
42
Ave. sample size: 10.0000 Ave. heterozygosity: 0.5000
Ave. heterozygosity (unbiased): 0.5263 Ave. heterozygosity (direct count): 0.0000 % polymorphic loci (no criterion): 100.0000 % polymorphic loci (99% criterion): 100.0000 % polymorphic loci (95% criterion): 100.0000
43
Lampiran 3Hasil analisis menggunakan software TFPGA untuk nilai jarak genetikempat populasi ikan baung berdasarkan D-loop mtDNA yang dipotong dengan 4 enzim yaitu MboI, HaeIII,AluI dan RsaI. 1). Cirata; 2). Serayu; 3).Jambi; 4). Bogor.
Data set contains genotypes of individuals sampled from populations. Organism Type: Diploid
Marker Type: Codominant
GENETIC DISTANCES
Roger's (1972) distance and Wright's (1978) modification.
Populations Roger's Wright's compared distance modification 1 vs. 2 0.8718 0.8718 1 vs. 3 0.6856 0.6856 1 vs. 4 0.1000 0.1000 2 vs. 3 0.8426 0.8426 2 vs. 4 0.8660 0.8660 3 vs. 4 0.6782 0.6782
44
Lampiran 4Hasil analisis menggunakan software TFPGA untuk nilai uji Fst berpasanganempat populasi ikan baung berdasarkan mtDNA yang dipotong dengan 4 enzim yaitu MboI, HaeIII,AluI dan RsaI. 1). Cirata; 2). Serayu; 3).Jambi; 4). Bogor.
Data set contains genotypes of individuals sampled from populations. Organism Type: Diploid
Marker Type: Codominant
Exact tests for population differentiation (Raymond and Rousset 1995)
# of dememorization steps: 1000 # of batches: 10
# of permutations per batch: 2000
Pairwise analysis of all populations
Groups compared: 1 vs. 2
locus 1 : p = 0.0000 S.E. :0.0000
Results over loci not calculated
Groups compared: 1 vs. 3
locus 1 : p = 0.0000 S.E. :0.0000
Results over loci not calculated
Groups compared: 1 vs. 4
locus 1 : p = 0.7535 S.E. :0.0061
45
Groups compared: 2 vs. 3
locus 1 : p = 0.0000 S.E. :0.0000
Results over loci not calculated
Groups compared: 2 vs. 4
locus 1 : p = 0.0000 S.E. :0.0000
Results over loci not calculated
Groups compared: 3 vs. 4
locus 1 : p = 0.0000 S.E. :0.0000