• Tidak ada hasil yang ditemukan

BAB IV HASIL DAN PEMBAHASAN ................. Error! Bookmark not defined

5.2 Saran

1. Perlu dilakukan peningkatan variasi suhu dan waktu pada proses catalytic

cracking minyak nyamplung untuk mendapatkan hasil selektivitas biofuel

yang optimum.

2. Dilakukan proses fraksinasi pada hasil biofuel yang diperoleh untuk mendapatkan hasil yang lebih murni.

64 DAFTAR PUSTAKA

Abimanyu Haznan dan Hendrana Sunit. 2014. Konversi Biomassa untuk Energi

Alternatif di Indonesia: Tinjauan Sumber daya, Teknologi, Manajemen, dan Kebijakan. Jakarta: LIPI Press.

Agus B, Danawati H P, Kusno B, Achmad R, dan Ratna E. 2014. Biofuel Produced from Nyamplung Oil Using Catalytic Cracking Process with Zn-HZSM-5 Catalyst. Journal of Proceeding Series,. 1, 2354-6026.

Ahmadpour J dan Taghizadeh M. 2015. Selective production of propylene from methanol over high-silica mesoporous ZSM-5 zeolites treated with NaOH and NaOH/tetrapropylammonium hydroxide. Comptes Rendus Chimie, 18(8), 834–847.

Akhmad dan Amir. 2018. Study of Fuel Supply and Consumtion In Indonesian.

International Journal of Energy Economics and Policy. 8(4), 13-20.

Al-Muttaqii M, Marlinda L, Roesyadi A, dan Danawati H P. 2017. Co-Ni/HZSM-5 catalyst for hydrocracking of Sunan candlenut oil (Reutealis trisperma (Blanco) airy shaw) for production of biofuel. Journal of Pure and Applied

Chemistry Research. 6(2), 84–92.

Al-Muttaqii M, Kurniawansyah F, Danawati H P, dan Roesyadi A. 2019. Hydrocracking of Coconut Oil over NiFe/HZSM-5 Catalyst to Produce Hydrocarbon Biofuel. Indonesian Journal of Chemistry. 19(2), 319–327. Ashokkumar S, Vivekanandan G, Krishnamurthy K R, dan Viswanathan B. 2018.

Bimetallic Co-Ni/TiO2 Catalyst for Selective Hydrogeneration of Cinnamaldehyde. Research on Chemical Intermediates. 44, 6703-6720. Augustine R L. 1996. Heterogenous Catalysis for the Synthetic Chemist. New

York: Marcel Dekker Inc.

Aziz I, Adhani L, Yolanda T, dan Saridewi N. 2019. Catalytic cracking of Jatropa curcas oil using natural zeolite of Lampung as a catalyst Catalytic cracking of Jatropa curcas oil using natural zeolite of Lampung as a catalyst. IOP

Earth and Environmental Science, 2-7.

Balitbanghut (Badan Penelitian dan Pengembangan Kehutanan). 2008. Nyamplung (Calophyllum inophyllum L) Sumber energi biofuel yang potensial. Jakarta.

Budiharto M dan Priangkoso T. 2013. Hubungan Jenis Bahan Bakar Dengan Konsumsi Bahan Bakar Sepeda Motor Bertransmisi Cvt, Semi-Otomatik Dan Manual. Momentum, 9(2), 22–24.

65 Cadar O, Senila M, Hoaghia M A, Scurtu D, Miu I, dan Levei E A. 2020. Effects of Thermal Treatment on Natural Clinoptilolite-Rich Zeolite Behavior in Simulated Biological Fluids. Molecules, 25(11), 4-12.

Campbell I M. 1988. Catalysis at Surface. New York: Chapman and Hall Ltd. Chae H J, Kim J H, Lee S C, Kim H S, Jo S B, Ryu J H, Kim T Y, Lee C H, Kim

S J, Kang S H, Kim J C, dan Park M J. 2020. Catalytic Technologies for CO Hydrogenation for the Production of Light Hydrocarbons and Middle Distillates. Catalysts. 10(1), 1-32.

Clementi E, Raimondi D L, dan Reinhardt W P. 1967. Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons. The

Journal of Chemical Physics. 47(4), 1300–1307.

Cotton FA. 1989. Kimia Anorganik Dasar. Jakarta: Universitas Indonesia Press. Cychosz K A, Guillet-Nicolas R, García-Martínez J, dan Thommes M.

2017. Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chemical Society Reviews. 46(2), 389– 414.

De S C, Ferrer F, Leus K, dan Spanoghe P. 2015. Removal of Pesticides from Aqueous Solutions by Adsorption on Zeolites as Solid Adsorbents.

Adsorption Science & Technology. 33(5), 457–485.

Dewajani H, Rochmadi, Purwono S, dan Budiman A. 2016. Effect of modification ZSM-5 catalyst in upgrading quality of organic liquid product derived from catalytic cracking of Indonesian nyamplung oil (Calophyllum inophyllum). AIP Conference Proceedings. 1755(1), 1-6. Dewanto M A R, Januartrika A A, Dewajani H,dan Budiman A. 2017. Synthesis

Catalytic and Termal Cracking Processes of Waste Cooking Oil for Biogasoline Synthesis. International Conference on Chemistry Procces

and Enggineering (IC3PE). 1823, 1–8.

Dewi T K dan Novriyansyah T. 2016. Pengaruh Rasio Reaktan pada Impregnasi dan Suhu Reduksi terhadap Karakter Katalis Kobalt/Zeolit Alam Aktif.

Jurnal Teknik Kimia. 22(3), 34-42.

Dyer A, Las T, dan Zubair M. 2000. The Use Of Natural Zeolites For Radioactive Waste Treatment : Studies on Leaching From Zeolite/Cement Composites.

Journal Of Radioanalytical and Nuclear Chemistry. 243(3), 839–841.

Elysabeth T, Zulnovri, Ramayanti G, Setiadi, dan Slamet. 2019. Modification of Lampung and Bayah Natural Zeolite to Enhance the Efficiency of Removal of Ammonia from Wastewater. Asian Journal of Chemistry, 31(4), 873–878.

66 Emwas A, Al-talla Z A, dan Kharbatia N. 2015. Gas Chromatography-Mass Spectrometry of Bioflids and Extracts. Springer Science and Business

Media New York. 1227, 4-16.

Estephane J, Aouad S, Hany S, Khoury B El, Gennequin C, Zakhem H El, dan Aad E A. 2015. CO2 reforming of methane over NiCo/ZSM5 catalysts . Aging and carbon deposition study. Interntional Journal of Hydrogen

Energy. (1), 1–8.

Evans G dan Maxwell W M C. 1987. Salamon’s Atificial Insemination of Sheep

and Goats. Edisi Kedua. Butter Worth. Sydney.

Faghihian H, Talebi M, dan Pirouzi M. 2008. Adsorption of nitrogen from natural gas by clinoptilolite. Journal of the Iranian Chemical Society. 5(3), 394– 399.

Febriyani F. 2019. Sintesis dan Karakteerisasi Cr2O3/Zeolit serta uji aktivitasnya pada catalytic cracking crude biodiesel. Skripsi. UIN: Jakarta.

Feliczak-Guzik A. 2018. Hierarchical Zeolites: Synthesis and Catalytic Properties. Microporous and Mesoporous Materials 259, 33–45.

Fessenden J R, dan Fessenden S J. 1981. Kimia Organik. Jilid 2. Edisi ketiga. Jakarta: Erlangga.

Gan Q, Wang B, Chen J, Tian J, Isimjan T T, dan Yang X. 2019. Exploring the effect of Ni/Cr contents on the sheet-like NiCr-oxide-decorated CNT composites as highly active and stable catalysts for urea electrooxidation.

Clean Energy, 4(1), 58–66.

Gates B C. 1992. Catalytic Chemistry. John Willey and Sons. USA.

Gea S, Haryono A, Andriayani A, Sihombing J L, Pulungan A N, Nasution T, Rahayu R, Hutapea Y A. 2020. The Effect Of Chemical Activation Using Base Solution with Various Concentrations Towards Sarulla Natural Zeolite. Journal of Islamic Science and Technology, 6(1), 85-95.

Genchi G, Carocci A, Lauria G, Sinicropi M S, dan Catalano A. 2020. Nickel: Human Health and Environmental Toxicology. International Journal of

Environmental Research and Public Health, 17(3), 679.

Gregg S J dan Sing K S W. 1982. Adsorption, Surface Area and Porosity. Edisi kedua, London: Academic Press.

Guo X Y, Zhang P, Xu J J, Wang Z H, dan Jiao Q J. 2015. Research on the Mechanism and Kinetics of Polymorphic Transitions of ε-CL-20 in Composite Systems. Central European Journal of Energetic Materials. 12(4), 689-702.

67 Gustama D. 2020. Sintesis dan Karakterisasi Zeolit Hierarki Terimpreg Logam Ni-Co Untuk Catalytic Cracking Minyak Jarak Pagar (Jatropha curcas L.). Skripsi. UIN: Jakarta.

Hadi A dan Wahyudi. 2009. Pemanfaatan Minyak Biji Nyamplung (Calophyllum Inophyllum L.) Sebagai Bahan Bakar Minyak Pengganti Solar. Jurnal

Riset Daerah. 8(2), 1044-1052.

Handayana S. 2006. Kimia Pemisahan. Bandung : PT Remaja Rosdakarya.

Hart H. 2004. Kimia Organik. Edisi Kesebelas. Amerika Serikat: Michigan State University.

Kartika I A, Fathiyah S, Desrial, dan Purwanto Y A. 2010. Pemurnian Minyak Nyamplung dan Aplikasinya Sebagai Bahan Bakar Nabati. Journal

Teknologi Industri dan Pertanian. 20(2), 122-129.

Korde A, Min B, Almas Q, Chiang Y, Nair S, dan Jones C W. 2019. Effect of Si/Al Ratio on the Catalytic Activity of Two‐dimensional MFI Nanosheets in Aromatic Alkylation and Alcohol Etherification. ChemCatChem. 11(18), 4548-4557.

Kumar P, Varkolu M, Mailaram S, Kunamalla A, dan Maity S K. 2019. Biorefinery Polyutilization Systems: Production of Green Transportation Fuels From Biomass. Polygeneration with Polystorage for

Chemical and Energy Hubs, Chapter 12, 373–407. Academic Press.

Kurniati S, Soeparman S, Setyo Yuwono S, Hakim L, dan Syam S. 2019. A Novel Process for Production of Calophyllum inophyllum Biodiesel with Electromagnetic Induction. Energies. 12(3), 14-20.

Las T. 2004. Potensi Zeolit untuk Mengolah Limbah Industri dan Radioaktif. P2PLR BATAN, Serpong.

Li L, Quan K, Xu J, Liu F, Liu S, Yu S, Xie C, Zhang B, dan Ge X. 2014. Liquid hydrocarbon fuels from catalytic cracking of rubber seed oil using USY as catalyst. Fuel. 123, 189–193.

Li D, Xin H, Du X, Hao X, Liu Q, dan Hu C. 2015. Recent advances for the production of hydrocarbon biofuel via deoxygenation progress. Science

Bulletin. 60(24), 2096–2106.

Margeta K, Logar N Z, Siljeg M, dan Farkas A. 2013. Natural Zeolite in Water

Treatment. IntechOpen. London.

Martinez C dan Pariente J P. 2011. Zeolites and Ordered Porous Solids:

68 Masruroh, Manggara A B, Papilaka T, dan Triandi R. 2010. Penentuan ukuran Kristal (crystallite size) lapisan tipis PZT dengan metode XRD melalui pendekatan persamaan Debye Scherrer. Kimia, 24–29.

McNair dan Bonelli E J. 1988. Dasar kromatografi Gas. Bandung : ITB press. Miskolczi N, Juzsakova T, dan Sója J. 2017. Preparation and application of metal

loaded ZSM-5 and y-zeolite catalysts for thermo-catalytic pyrolysis of real end of life vehicle plastics waste. Journal of the Energy Institute. 92(1), 118-127.

Moore D M dan Reynolds Jr R C. 1997. X-Ray diffraction and the identification

and analysis of clay minerals. Edisi Kedua. Oxford University Press, New

York.

Moshoeshoe M, Nadiye M S, Tabbiruka, dan Obuseng V. 2017. A Review of the Chemistry, Structure, Properties and Applications of Zeolites. American

Journal of Materials Science. 7(5), 196-221.

Musta R. 2010. Preparasi dan Karakterisasi Katalis CoMo/H-Zeolit Y. Fisika

Flux. 7(2), 149–159.

Nasikin M dan Susanto BH. 2010. Katalisis Heterogen. Jakarta (ID) : UI Press. Nicholas L,Kirk R, Alison G, dan Michael N. 2012. Kerosene: A Review Of

Household Uses and Their Hazards In low and Middle Income Countries.

Journal Toxicol Environ Health B Crit Rev. 15(6), 396–432.

Nindita V. 2015. Studi Berbagai Metode Pembuatan BBM Dari Sampah Plastik Jenis LDPE dan PVC dengan Metode Thermal & Catalytic Cracking (Ni-Cr/Zeolit). TEKNIS. 10(3), 137-144.

Ningrat, Kusuma W, dan Adnyana. 2016. Pengaruh Penggunaan Bahan Bakar Pertalite Terhadap Akselerasi Dan Emisi Gas Buang Pada Sepeda Motor Bertransmisi Otomatis. METTEK. 2(1), 59–67.

Olegario, Sanchez E, dan Pelicano C M. 2017. Comparative study of As (III) and Zn (II) removal from aqueous solutions using Philippine natural zeolite and alumina. AIP Conference Proceedings. 1901, 1-6.

Oxtoby D W, Gillis H P, dan Nachtarieb N B. 2003. Prinsip-prinsip Kimia

Modern. Edisi keempat. Jakarta: Erlangga.

Permata M L, Trisunaryanti W, Falah I I, Hapsari M T, dan Fatmawati D A. 2020. The Effect Of Nickel Content Impregnated On Zeolite Toward Catalytic Activity and Selectivity For Hydrotreating Of Cashew Nut Shell Liquid Oil. Rasayan J. Chem. 13(1), 772-779.

69 Prihandana R, Kartika N, Praptiningsih G, Adinurani, Dwi S, Setiadi S, dan Roy H. 2007. Bioetanol Ubi Kayu Bahan Bakar Masa Depan. Jakarta (ID): Agromedia.

Quraish Shihab. 2002. Tafsir Al-Misbah Volum 4 Jakarta: Lentera Hati h. 144. Rasyid R, Prihartantyo A, Mahmud M, dan Roesyadi A. 2014. Hydrocracking of

Calophyllum inophyllum Oil with Non-Sulfide CoMo Catalysts. Bulletin

of Chemical Reaction Engineering & Catalysis. 10(1), 61-69.

Rasyid R, Malik R, Kusuma H S, Roesyadi A, dan Mahfud M. 2018. Triglycerides Hydrocracking Reaction of Nyamplung Oil with Non-sulfided CoMo/γ-Al2O3 Catalysts. Bulletin of Chemical Reaction

Engineering & Catalysis. 13(2), 196-203.

Razzak M T, Las T, dan Priyambodo. 2013. The Characterization of Indonesian’s Natural Zeolite For Water Filtration System. Valensi. 3(2), 129–137. Rengga W D P, Handayani P A, Kadarwati S, dan Feinnudin A. 2015. Kinetic

Study on Catalytic Cracking of Rubber Seed (Hevea brasiliensis) Oil to Liquid Fuels. Bulletin of Chemical Reaction Engineering & Catalysis. 10(1), 50-60.

Retnaningsih T. 2020. Sintesis dan Karakterisasi Zeolit Hierarki Terimpreg Ni-Mo Untuk Catalytic Cracking Minyak Jarak Pagar (Jatropha curcas L.).

Skripsi. UIN: Jakarta.

Rianto L B, Amalia S, dan Khalifa S N. 2012. Pengaru Impregnasi Logam Titanium Pada Zeolit Alam Malang terhadap Luas permukaan Zeolit.

Alchemy. (2), 58–67.

Richter M, Fait M J G, Eckelt R, Schneider M, Radnik J, Heidemann D, dan Fricke R. 2007. Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure. Journal of

Catalysis. 245, 11–24.

Rini A S dan Restiana S. 2019. Diffraction Pattern Simulation of Crystal Structure towards the Ionic Radius Changes Via Vesta Program. Journal of

Technomaterials Physics. 1(2), 139 – 147.

Rodrigues J P, Jacianto M J, Oliveira H L, Falcao Y H, Suarez P A, dan Rossi L M. 2014. Comparing Thermal-Cracking and Catalytic Hydrocracking in the Presence of Rh and Ru Catalysts to Produce Liquid Hydrocarbons from Vegetable Oils. Chem. Soc. 25(12), 2364-2369.

Rosyid M, Nawangsih E, dan Dewita. 2012. Perbaikan Surface Area Analyzer Nova-1000 (Alat Penganalisis Luas Permukaan Serbuk). In Prosiding

Seminar Penelitian dan Pengelolaan Perangkat Nuklir. 467–471.

70 Sadeghbeigi R. 2000. Fluid Catalytic Cracking Handbook. Edisi Kedua. Texas:

Gulf Publishing Company.

Sadowska K, Góra-Marek K, Drozdek M, Kuśtrowski P, Datka J, Martinez Triguero J, dan Rey F. 2013. Desilication of highly siliceous zeolite ZSM-5 with NaOH and NaOH/tetrabutylamine hydroxide. Microporous and

Mesoporous Materials. 168, 195–205.

Sakizci M. 2016. Investigation Of Termal And Structural Properties Of Natural And Ion-Exchanged Analcime. Applied Science and Engineering. 17(4), 724–734.

Saleh A, Setianingrum A, dan Karolina T. 2011. Premium untuk Mencapai Bilangan Oktan. Jurnal Teknik Kimia. 17(5), 18–28.

Sari E. 2013. Green Diesel Production Via Catalytic Hydrogenation/ Decarboxylation Of Triglycerides And Fatty Acids Of Vegetable Oil And Brown Grease. Wayne State University.

Savitri, Effendi R, dan Tursiloadi S. 2016. Cracking vegetable oil from Callophylluminnophyllum L. seeds to bio-gasoline by Ni-Mo/Al2O3 and Ni-Mo/Zeolite as micro-porous catalysts. AIP Conf. Proc. 1712, 3-7. Shimadzu. 2010. GCMS-QP2010.

Sibarani K L. 2012. Preparasi, Karaktersasi, dan Uji Aktivitas Katalis Ni-Cr /Zeolit Alam Pada Proses Perengkahan Limbah Plastik Menjadi Fraksi Bensin. Skripsi. Jakarta: Universitas indonesia.

Silva L, Akemi C, Miguel S, Marcucci P, dan Luis V. 2019. Desilication of ZSM-5 and ZSM-12 Zeolites with Different Crystal Sizes : Effect on Acidity and Mesoporous Initiation. Material Research, 22(2), 4-9.

Singh L, Rekha P, dan Chand S. 2016. Cu-impregnated zeolite Y as highly active and stable heterogeneous Fenton-like catalyst for degradation of Congo red dye. Separation and Purification Technology. 170, 321–336.

Sihite E B dan Budiarto. 2019. Analisis Pengaruh Penuaan Dan Media Pendingin Terhadap Kekerasan Dan Strukturmikro Paduan CuHfcCo. Jurnal Kajian

Ilmiah Universitas Bhayangkara Jakarta Raya. 19(3), 3-8.

Song G, Chen W, Dang P, Yang S, Zhang Y, Wang Y, Xiao R, Ma R, dan Li F. 2018. Synthesis and Characterization of Hierarchical ZSM-5 Zeolites with Outstanding Mesoporosity and Excellent Catalytic Properties. Nanoscale

Research Letters. 13(364), 11-13.

Sotelo-Boyás R, Trejo-Zárraga F, Hernández-Loyo F de J. 2012.

Hydroconversion of Triglycerides into Green Liquid Fuels‖. Chapter 8,

71 Speight J G. 2010. The Refinery of the Future. Elsevier Inc. UK.

Spreitzer D, dan Schenk J. 2019. Reduction of Iron Oxides with Hydrogen—A

Review. Steel Research International. 90(10), 15-17.

Sterrfield C N. 1991. Heterogenous Catalysis in Industrial Practice. New York: Mc. Graw. Hill, Inc.

Sudipta D, Jiaguang Z, Rafael L, dan Ning Y. 2016. Ni-Based Bimetallic Heterogeneous Catalysts for Energy and Environmental Applications.

Energy and Environmental science. 9(33), 14–47.

Sugiyarto K H. 2012. Dasar-Dasar Kimia Anorganik Transisi (Pertama). Yogyakarta: Graha Ilmu.

Supraniningsih J. 2012. Pengembangan Kelapa Sawit sebagai Biofuel dan

Produksi Minyak Sawit Serta Hambatannya. Jakarta: Erlangga.

Susila I W. 2018. Nyamplung Tanaman MultiFungsi: Potensi Sebaran dan

Manfaatnya Di Nusa Tenggara dan Bali.Yogyakarta: PT Kanisius.

Suwardi. 2009. Teknik Aplikasi Zeolit Di Bidang Pertanian. 8, 33–38.

Szerement J, Ambro A, dan Piasek J. 2014. Use Of Zeolite In Agriculture And Environmental Protection . A Short Review. UDC: 172–176.

Tan Y H, Davis J A, Fujikawa K, Ganesh N V, Demchenko A V, dan Stine K J. 2012. Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy. Journal Materials Chemistry. 22(14), 6733–6745.

Taufiq A. 1995. Sifat Katalitik dan Kimia Permukaan Sistem Perlakuan ZnO/Al2O3 untuk Dekomposisi Metanol. Skripsi. Depok: Universitas Indonesia.

Taufiqurrahmi N dan Bhatia S. 2011. Catalytic cracking of edible and non-edible oils for the production of biofuels. Energy & Environmental Science. 4(4), 1087.

Thomas J.M, dan Thomas W.J. 1997. Principle and Practise of Heterogeneous

Catalysis. New York : VC Publishers Inc.

Thommes M, Kaneko K, Neimark, A V, Olivier J P, Rodriguez-reinoso F, Rouquerol J, dan Sing K S W. 2015. Physisorption of gases , with special reference to the evaluation of surface area and pore size distribution. (IUPAC Technical Report). Pure and Applied Chemistry. 87(10), 8-19. Trisupakitti S, Jamradloedluk J, dan Wiriyaumpaiwong S. 2016. Adsorption

72

Materials Science and Engineering. 2016, 1–8.

Triyono T, Trisunaryanti W, Putri Y W, Fatmawati D A, dan Chasanah U. Modification of Mordenite Characters by H2C2O4 and/or NaOH Treatments and Its Catalytic Activity Test in Hydrotreating of Pyrolyzed α-Cellulose. Bulletin of Chemical Reaction Engineering & Catalysis.16(1), 9-21.

Wang Z, Dornath P, Chang C, Chen H, dan Fan F. 2013. Confined synthesis of threedimensionally ordered mesoporousimprinted zeolites with tunable morphology and Si/Al ratio, Microporous Mesoporous Mater., 181, 8-16. Wei Y, Parmentier Tanja E, Krijn P, Jong de, dan Zekevic J. 2015. Tailoring and

Visualizing the pore architecture of hierarchical zeolites. Chem. Soc. Rev. 44, 7234-7261.

Weitkamp J. 1999. Catalyst and Zeolits. New York (USA) : Springer Co.

Whyman R. 1994. Applied Organometallic Chemistry and Catalysis. New York : Oxford Universitas Press.

Widayat W, dan Annisa A N. 2017. Synthesis and Characterization of ZSM-5 Catalyst at Different Temperatures. IOP Conference Series: Materials

Science and Engineering, 214, 012032, 2-7.

Xiao W, Wang F, dan Xiao G. 2015. Performance of hierarchical HZSM-5 zeolites prepared by NaOH treatments in the aromatization of glycerol.

RSC Advances. 1-8.

Xu X, Gao J, dan Hong W. 2016. Ni-based chromite spinel for high-performance supercapacitors. RSC Advances. 6(35), 29646–29653.

Yulianis Y, Muhammad S, Pontas K, Mariana M, dan Mahidin M. 2018. Characterization and Activation of Indonesian Natural Zeolite from Southwest Aceh District-Aceh Province. Material Science and

Engineering, 358, 1-7.

Zhao X, Wei L, Cheng S, Julson J. 2017. Review of Heterogeneous Catalysts for Catalytically Upgrading Vegetable Oils into Hydrocarbon Biofuels.

73 LAMPIRAN

Lampiran 1. Perhitungan sintesis katalis NiCr/ZH A. Perhitungan

Logam NiCr (10%) dalam zeolit

NiCr = NiCr = 1,5 gram  Ni-Cr (8:2) Logam Ni = Logam Ni = Logam Ni = 1,2 gram

Logam Cr = 1,5 gram – 1,2 gram Logam Cr = 0,3 gram Ni(NO3)2.6H2O Ni mol Ni = mol Ni = mol Ni = 0,020 mol Berat Ni(NO3)2.6H2O

Ni(NO3)2.6H2O = mol Ni x mr Ni(NO3)2.6H2O Ni(NO3)2.6H2O = 0,020 mol x 290,7949 g/mol Ni(NO3)2.6H2O = 5,816 gram Cr(NO3)2.6H2O Cr mol Cr = mol Cr = mol Cr = 0,0058 mol Berat Cr(NO3)2.6H2O

Cr(NO3)2.6H2O = mol Cr x mr Cr(NO3)2.6H2O Cr(NO3)2.6H2O = 0,0058 mol x 284,0949 g/mol Cr(NO3)2.6H2O = 1,648 gram

74 Lampiran 2. Perhitungan ukuran kristal zeolit

Sampel k λ (nm) (rad) θ (deg) Cos θ FWHM D (nm) Zeolit alam 0,9 0,15406 0,00703 22,4035 0,9245 0,40310 21,32 Zeolit hierarki 0,9 0,15406 0,00615 22,4225 0,9244 0,35260 24,40 NiCr/ZH 0,9 0,15406 0,00577 22,4049 0,9245 0,33110 25,99 β = FWHM x D = Zeolit alam : D = Zeolit hierarki : D = NiCr/ZH : D =

75 Lampiran 3. Hasil XRD

76 b. zeolit hierarki

77 c. NiCr/ZH

78 Lampiran 4. Hasil SAA

79 b. Zeolit hierarki

80 c. NiCr/ZH

81 Lampiran 5. Hasil analisis produk GCMS

a. Minyak nyamplung

Peak# R.Time Area Area% Name Similarity

1 29.659 18966286 14.43 Hexadecanoic acid, methyl ester 94 2 32.375 38800740 29.53 9,12-Octadecadienoic acid (Z,Z)-, methyl ester 95 3 32.491 50851961 38.70 9-Octadecenoic acid (Z)-, methyl ester 94 4 32.888 22786429 17.34 Octadecanoic acid, methyl ester 95 Total 131405416 100.00

82 b. NiCr/ZH (T: 350oC, t : 1 jam)

Peak# R.Time Area Area% Name Similarity

1 3.217 482561 1.89 n-Heptane 91 2 4.308 469257 1.83 Toluene 52 3 4.933 535900 2.09 n-Octane 53 4 6.325 885487 3.46 Ethylbenzene 82 5 7.275 579972 2.27 n-Nonane 92 6 9.883 559008 2.19 n-Decane 59 7 11.800 448982 1.76 heptanoic acid 83 8 12.517 548123 2.14 n-undecane 51 9 14.250 280878 1.10 octanoic acid 82 10 15.050 590629 2.31 n-dodecane 91 11 16.617 405182 1.58 nonanoic acid 82 12 17.450 577478 2.26 n-tridecane 91 13 19.708 761356 2.98 n-tetradecane 93 14 21.857 5872580 22.96 n-pentadecane 97 15 23.883 806562 3.15 n-hexadecane 93 16 25.804 9091274 35.54 n-heptadecane 98 17 27.625 313010 1.22 n-octadecane 73 18 29.367 892611 3.49 n-eicosane 66 19 30.333 1481345 5.79 Hexadecanoic acid 84 Total 25582191 100.00

83 c. NiCr/ZH (T: 350oC, t : 2 jam)

Peak# R.Time Area Area% Name Similarity

1 4.316 2121222 2.27 Toluene 96 2 4.939 3783267 4.04 n-Octane 91 3 6.330 3263809 3.49 Ethylbenzene 87 4 7.283 3115486 3.33 n-Nonane 97 5 9.896 2434044 2.60 n-Decane 96 6 12.526 2949217 3.15 n-Undecane 96 7 15.057 2462224 2.63 n-Dodecane 97 8 16.666 1332347 1.42 Nonoic acid 82 9 17.459 3038139 3.24 n-Tridecane 94 10 19.725 3531581 3.77 n-Tetradecane 96 11 21.872 22119163 23.62 n-Pentadecane 97 12 23.893 3437693 3.67 n-Hexadecane 96 13 25.138 1574757 1.68 1-Heptadecene 91 14 25.821 31158853 33.28 Heptadecane 98 15 27.639 1121897 1.20 n-Octadecane 92 16 29.381 2421770 2.59 n-Eicosane 92 17 30.369 2285659 2.44 Hexadecanoic acid 92 18 33.537 1478600 1.58 Octadecanoic acid 84 Total 93629728 100.00

84 d. NiCr/ZH (T: 350oC, t : 3 jam)

Peak# R.Time Area Area% Name Similarity

1 3.109 1122881 2.06 1-Heptene 94 2 3.217 2113329 3.88 n-Heptane 95 3 4.313 1934725 3.55 Toluene 96 4 4.758 861399 1.58 1-Octene 90 5 6.327 2368066 4.35 Ethylbenzene 90 6 7.279 2091545 3.84 n-Nonane 45 7 9.892 1922572 3.53 n-Decane 96 8 12.522 1861155 3.42 n-undecane 81 9 15.055 1706164 3.13 n-Dodecane 95 10 17.458 2114301 3.88 Tridecane 92 11 19.724 2263419 4.16 n-tetradecane 95 12 21.869 12253095 22.50 n-Pentadecane 97 13 23.893 1814745 3.33 n-hexadecane 95 14 25.819 15629496 28.69 Heptadecane 98 15 27.642 625809 1.15 n-Octadecane 89 16 29.379 1160772 2.13 n-eicosane 90 17 30.370 1545611 2.84 n-Hexadecoic acid 91 18 33.542 1079386 1.98 Octadecanoic acid 81 Total 54468469 100.00

85 e. NiCr/ZH (T: 325oC, t : 3 jam)

Peak# R.Time Area Area% Name Similarity

1 3.158 588542 1.18 n-Heptane 89 2 4.225 549232 1.10 Toluene 88 3 4.850 1015638 2.03 n-octane 37 4 6.227 1463017 2.92 Ethylbenzene 82 5 7.181 1143119 2.28 n-Nonane 37 6 9.787 1008026 2.01 n-Decane 93 7 12.413 1020131 2.04 n-Undecane 91 8 14.941 901462 1.80 n-Dodecane 93 9 16.486 850528 1.70 Nonanoic acid 86 10 17.338 1247592 2.49 n-Tridecane 91 11 18.734 875526 1.75 Decanoic acid 85 12 19.607 1355021 2.71 n-Tetradecane 95 13 21.754 11809815 23.59 n-Pentadecane 97 14 23.775 1537252 3.07 n-Hexadecane 94 15 25.375 2647493 5.29 8-Heptadecene 87 16 25.703 17866489 35.70 n-Heptadecane 97 17 29.260 1280433 2.56 n-Eicosane 90 18 30.226 2893631 5.78 Hexadecanoic acid 93 Total 50052946 100.00

86 f. NiCr/ZH (T: 350oC, t : 3 jam)

Peak# R.Time Area Area% Name Similarity

1 3.109 1122881 2.06 1-Heptene 94 2 3.217 2113329 3.88 n-Heptane 95 3 4.313 1934725 3.55 Toluene 96 4 4.758 861399 1.58 1-Octene 90 5 6.327 2368066 4.35 Ethylbenzene 90 6 7.279 2091545 3.84 n-Nonane 45 7 9.892 1922572 3.53 n-Decane 96 8 12.522 1861155 3.42 n-undecane 81 9 15.055 1706164 3.13 n-Dodecane 95 10 17.458 2114301 3.88 Tridecane 92 11 19.724 2263419 4.16 n-tetradecane 95 12 21.869 12253095 22.50 n-Pentadecane 97 13 23.893 1814745 3.33 n-hexadecane 95 14 25.819 15629496 28.69 Heptadecane 98 15 27.642 625809 1.15 n-Octadecane 89 16 29.379 1160772 2.13 n-eicosane 90 17 30.370 1545611 2.84 n-Hexadecoic acid 91 18 33.542 1079386 1.98 Octadecanoic acid 81 Total 54468469 100.00

87 g. NiCr/ZH (T: 375oC, t : 3 jam)

Peak# R.Time Area Area% Name Similarity

1 3.151 4588454 3.60 n-Heptane 95 2 3.247 1359754 1.07 2-Heptene 93 3 4.223 3610484 2.83 Toluene 96 4 4.848 6229744 4.89 n-Octane 92 5 5.141 1415282 1.11 3-Octene 87 6 6.218 4895898 3.84 Ethylbenzene 94 7 6.432 2076614 1.63 1,2-Dimethyl-benzene 90 8 7.176 4655736 3.65 n-Nonane 97 9 9.620 1214709 0.95 1,3,5-Trimethylbenzene 87 10 9.780 4573431 3.59 n-Decane 97 11 12.406 4722689 3.71 n-Undecane 96 12 14.935 4120526 3.23 n-Dodecane 96 13 17.333 4572668 3.59 n-Tridecane 94 14 19.600 5575871 4.37 n-Tetradecane 97 15 21.753 27490555 21.57 n-Pentadecane 97 16 23.769 4389154 3.44 n-Hexadecane 97 17 25.702 35600677 27.93 n-Heptadecane 98 18 27.514 1557580 1.22 n-Octadecane 93 19 29.253 2579437 2.02 n-Eicosane 93 20 33.402 2229193 1.75 Octadecanoic acid 90 Total 127458456 100.00

88 Lampiran 6. Perhitungan selektivitas biofuel

% Selektivitas gasolin =

% Selektivitas kerosin =

% Selektivitas diesel =

% Selektivitas asam lemak =

a. NiCr/ZH (T: 350oC, t : 1 jam)

No Nama Senyawa Rumus

Molekul

Area % Area Fraksi

Gasolin Kerosin Diesel Asam Lemak 1 n-Heptane C7H16 482561 1,89  2 Toluene C7H8 469257 1,83 3 n-Octane C8H18 535900 2,09 4 Ethylbenzene C8H10 885487 3,46 5 n-Nonane C9H20 579972 2,27 6 n-Decane C10H22 559008 2,19 7 heptanoic acid C7H14O2 448982 1,76 Ket :

89 8 n-undecane C11H24 548123 2,14 9 octanoic acid C8H16O2 280878 1,10 10 n-dodecane C12H26 590629 2,31 11 nonanoic acid C9H18O2 405182 1,58 12 n-tridecane C13H28 577478 2,26 13 n-tetradecane C14H30 761356 2,98 14 n-pentadecane C15H32 5872580 22,96 15 n-hexadecane C16H34 806562 3,15 16 n-heptadecane C17H36 9091274 35,54 17 n-octadecane C18H38 313010 1,22 18 n-eicosane C20H42 892611 3,49 19 Hexadecanoic acid C16H32O2 1481345 5,79 Total 25582191 100 15,87% 30,50% 43,40% 10,23% % Selektivitas gasolin = = 15,87 % % Selektivitas kerosin = = 30,50 % % Selektivitas diesel = = 43,40 %

90 b. NiCr/ZH (T: 350oC, t : 2 jam)

% Selektivitas gasolin = = 18,87 %

% Selektivitas kerosin = = 33,27 %

% Selektivitas diesel = = 42,42 %

% Selektivitas asam lemak = = 5,44 %

c. NiCr/ZH (T: 350oC, t : 3 jam)

% Selektivitas gasolin = = 26,21 %

% Selektivitas kerosin = = 33,67 %

% Selektivitas diesel = = 35,31 %

% Selektivitas asam lemak = = 4,82 %

d. NiCr/ZH (T: 325oC, t : 3 jam)

% Selektivitas gasolin = = 13,56 %

% Selektivitas kerosin = = 30,60 %

% Selektivitas diesel = = 46,61 %

91 e. NiCr/ZH (T: 350oC, t : 3 jam)

% Selektivitas gasolin = = 26,21 %

% Selektivitas kerosin = = 33,67 %

% Selektivitas diesel = = 35,31 %

% Selektivitas asam lemak = = 4,82 %

f. NiCr/ZH (T: 375oC, t : 3 jam)

% Selektivitas gasolin = = 30,87 %

% Selektivitas kerosin = = 32,76 %

% Selektivitas diesel = = 34,62 %

92 Lampiran 7. Biodata diri

BIODATA MAHASISWA

IDENTITAS PRIBADI

Nama Lengkap : Raihan Hilmy Alim

Tempat, Tanggal Lahir : Jakarta, 15 September 1999

NIM : 11170960000042

Alamat : Jalan Kemanggisan Ilir GG.3 No.25 RT 04/13 Kec.Palmerah, Kel.Palmerah – Jakarta Barat

Telp/HP : 081280742528

Email : raihanhilmy165@gmail.com

RIWAYAT PENDIDIKAN

Perguruan Tinggi : UIN Syarif Hidayatullah Jakarta (2017-2021)

Sekolah Menengah Atas : SMAS Al-Chasanah (2014-2017) Sekolah Menengah Pertama : SMP Muhammadiyah 26 (2011-2014) Sekolah Dasar : SDN Depok Jaya 1 (2005-2011) PENGALAMAN ORGANISASI

1. Himpunan Mahasiswa : Staff Magang Departemen Riset dan Teknologi Kimia (2018)

PENGALAMAN KERJA/MAGANG

1. BATAN : PKL 2020 dengan Judul Penelitian “Analisis Kandungan Fluorida dan Klorida pada Uranium Oksida dengan Metode Elektrode Ion Selektif

Dokumen terkait