• Tidak ada hasil yang ditemukan

BAB II TINJAUAN PUSTAKA

2.4. Analisa Hidrologi

2.4.1. Curah Hujan

2.4.1 Curah Hujan

Data jumlah curah hujan (CH) rata -rata untuk suatu daerah tangkapan air (catchment area) atau daerah aliran sungai (DAS) merupakan informasi yang sangat diperlukan oleh pakar bidang hidrologi. Pengukuran curah hujan dapat bdilakukan dengan dua cara yaitu dengan alat penakar hujan dan pengamatan menggunakan radar. Yang paling umum digunakan dari dua alat ukur tersebut adalah alat penakar hujan. Pada pembangunan PLTM, curah hujan digunakan untuk mengetahui debit sungai sepanjang tahun di suatu area dimana PLTM akan dibangun. Untuk dapat mewakili besarnya curah hujan di suatu wilayah/daerah diperlukan penakar curah hujan dalam jumlah yang cukup. Semakin banyak penakar dipasang di lapangan diharapkan dapat diketahui besarnya rata -rata curah hujan yang menunjukkan besarnya curah hujan yang terjadi di daerah tersebut. Disamping itu juga diketahui variasi curah hujan di suatu titik pengamatan.

Menurut (Hutchinson, 1970 ; Browning, 1987 dalam Asdak C. 1995) Ketelitian hasil pengukuran curah hujan tegantung pada variabilitas spasial curah hujan, maksudnya diperlukan semakin banyak lagi penakar curah hujan bila kita mengukur curah hujan di suatu daerah yang variasi curah hujannya besar. Ketelitian akan semakin meningkat dengan semakin banyaknya penakar yang dipasang, tetapi memerlukan biaya mahal dan juga memerlukan banyak waktu dan tenaga dalam pencatatannya di lapangan.

Data curah hujan disuatu lokasi tertentu dimana alat penakar hujan dipasang, dicatat dan hasil pencatatannya untuk jangka waktu sepanjang mungkin digunakan untuk keperluan analisis selanjutnya. Untuk mengetahui curah hujan rata-rata wilayah untuk stasiun yang berbeda digunakan metode-metode berikut ini:

• Metode rata-rata aritmatik • Metode poligon Theissen • Metode Ishoyet

• Metode Dr. F.J. Mock

2.4.1.1 Cara Rata-Rata Aritmatik

Cara rata-rata aritamatik adalah cara yang paling mudah diantara cara lainnya (poligon dan isohet). Digunakan khususnya untuk daerah seragam dengan variasi curah hujan kecil. Cara ini dilakukan dengan mengukur serempak untuk lama waktu tertentu dari semua alat penakar dan dijumlahkan seluruhnya. Kemudian hasil penjumlahannya dibagi dengan jumlah penakar hujan maka akan dihasilkan rata-rata curah hujan di daerah tersebut. Secara matimatik ditulis persamaan sbb:

Rata-rata CH = (( ∑Ri ) / n) (2.9)

dimana :

Ri = besarnya CH pada stasiun i n = jumlah penakar (stasiun)

contoh: Untuk mengukur rata-rata curah hujan yang mewakili suatu daerah X diperlukan 4 (empat buah) penakar hujan yaitu pada stasiun A, B, C dan D. Tercatat selama waktu tertentu di stasiun A sebesar 5 cm, di B (7 cm), di C (6 cm) dan di D (9 cm).

2.4.1.2 Cara Poligon (Thiessen polygon)

Cara ini untuk daerah yang tidak seragam dan variasi CH besar. Menurut Shaw (1985) cara ini tidak cocok untuk daerah bergunung dengan intensitas CH tinggi. Dilakukan dengan membagi suatu wilayah (luasnya A) ke dalam beberapa daerah-daerah membentuk poligon (luas masing-masing daerah ai), seperti contoh dapat dilihat pada Gambar 2.3 berikut:

Gambar 2.3. Analisis curah hujan metode Poligon

Cara ini selain memperhatikan tebal hujan dan jumlah stasiun, juga memperkirakan luas wilayah yang diwakili oleh masing-masing stasiun untuk digunakan sebagai salah satu faktor dalam menghitung hujan rata-rata daerah yang bersangkutan. Poligon dibuat dengan cara menghubungkan garis-garis berat diagonal terpendek dari para stasiun hujan yang ada.

2.4.1.3. Cara Isohiet (Isohyetal)

Isohiet adalah garis yang menghubungkan tempat-tempat yang mempunyai tinggi hujan yang sama. Metode ini menggunakan isohiet sebagai garis-garis yang membagi daerah aliran sungai menjadi daerah-daerah yang

diwakili oleh stasiun-stasiun yang bersangkutan, yang luasnya dipakai sebagai faktor koreksi dalam perhitungan hujan rata-rata. Cara ini dipandang paling baik, tetapi bersifat subyektif dan tergantung pada keahlian, pengalaman, pengetahuan pemakai terhadap sifat curah hujan pada daerah setempat.

Gambar 2.4. Analisis curah hujan metode Isohiet

Dalam metode isohet ini wilayah dibagi dalam daerah -daerah yang masing-masing dibatasi oleh dua garis isohet yang berdekatan, misalnya Isohet 1 dan 2 atau (I1 – I2). Oleh karena itu, dalam Gambar 2.4, curah hujan rata –rata untuk daerah I1 – I2 adalah (7 cm + 6,5 cm)/2 = 6,75 cm. Untuk menghitung luas darah ( I1 – I2) dalam suatu peta kita bisa menggunakan Planimeter. Secara sederhana bisa juga menggunakan kertas milimeter block dengan cara menghitung kotak yang masuk dalam batas daerah yang diukur.

1.1. 2.4.1.4 Metode Meteorological Water Balance Dr. F.J. Mock

Metode ini ditemukan oleh Dr. F.J. Mock pada tahun 1973 dimana metode ini didasarkan atas fenomena alam dibeberapa tempat di Indonesia. Dengan metode ini, besarnya aliran dari data curah hujan , karakteristik hidrologi daerah pengaliran dan evapotranspirasi dapat dihitung. Pada dasarnya metode ini adalah hujan yang jatuh pada catchment area sebagian akan hilang sebagai

evapotranspirasi, sebagian akan langsung menjadi aliran permukaan (direct run off) dan sebagian lagi akan masuk kedalam tanah (infiltrasi), dimana infiltrasi pertama-tama akan menjenuhkan top soil, kemudian menjadi perkolasi membentuk air bawah tanah (ground water) yang nantinya akan keluar ke sungai sebagai aliran dasar (base flow). Adapun ketentuan dari metode ini adalah sebagai berikut :

1. Data meteorologi

Data meterologi yang digunakan mencakup :

a. Data presipitasi dalam hal ini adalah curah hujan bulanan dan data curah hujan harian.

b. Data klimatologi berupa data kecepatan angin, kelembapan udara, tempratur udara dan penyinaran matahari untuk menentukan evapotranspirasi potensial (Eto) yang dihitung berdasarkan metode “ Penman Modifikasi “

2. Evapotranspirasi Aktual ( Ea)

Penentuan harga evapotranspirasi actual ditentuakan berdasarkan persamaan :

E = Eto x d/30 x m (2.10) E = Eto x (m / 20) x (18-n) (2.11)

Ea = Eto – E (2.12)

dimana : Ea = Evapotranspirasi aktual (mm), Eto = Evapotranspirasi potensial (mm),

D= 27 – (3/2) x n,

N = jumlah hari hujan dalam sebulan,

m = Perbandingan permukaan tanah yang tidak tertutup dengan tumbuh-tumbuhan penahan hujan koefisien yang tergantung jenis area dan musiman dalam % , m = 0 untuk lahan dengan hutan lebat, M =Untuk lahan dengan hutan sekunder pada akhir musim dan bertambah 10 % setiap bulan berikutnya.

m = 10 – 40% untuk lahan yang erosi ,

m = 30 –50 % untuk lahan pertanian yang diolah ( sawah ). 3. Keseimbangan air dipermukaan tanah (ΔS)

a. Air hujan yang mencapai permukaan tanah dapat dirumuskan sebagai berikut:

dimana : ΔS = Keseimbangan air dipermukaan tanah, R = Hujan Bulanan ,

Ea = Evapotranspirasi Aktual.

Bila harga positif (R > Ea) maka air akan masuk ke dalam tanah bila kapasitas kelembapan tanah belum terpenuhi. Sebaliknya bila kondisi kelembapan tanah sudah tercapai maka akan terjadi limpasan permukaan (surface runoff). Bila harga tanah ΔS negatif ( R > Ea ) , air hujan tidak dapat masuk kedalam tanah (infltrasi) tetapi air tanah akan keluar dan tanah akan kekurangan air (defisit).

b. Perubahan kandungan air tanah (soil storage) tergantung dari harga ΔS. Bila ΔS negatif maka kapasitas kelembapan tanah akan kekurangan dan bila harga ΔS positif akan menambah kekurangan kapasitas kelembapan tanah bulan sebelumnya.

c. Kapasitas kelembapan tanah (soil moisture capacity). Didalam memperkirakan kapasitas kelembapan tanah awal diperlukan pada saat dimulainya perhitungan dan besarnya tergantung dari kondisi porositas lapisan tanah atas dari daerah pengaliran. Biasanya diambil 50 s/d 250 mm, yaitu kapasitas kandungan air didalam tanah per m3. semakin besar porositas tanah maka kelembapan tanah akan besar pula.

d. Kelebihan Air (water surplus)

e. Besarnya air lebih dapat mengikuti formula sbb :

WS = ΔS - Tampungan tanah (2.14)

dimana : WS = water surplus, ∆S = R- Ea,

Tampungan Tanah = Perbedaan Kelembapan tanah.

4. Limpasan dan penyimpanan air tanah (Run off dan Ground Water storage).

a. Infiltrasi (i)

Infiltrasi ditaksir berdasarkan kondisi porositas tanah dan kemiringan daerah pengaliran. Daya infiltrasi ditentukan oleh permukaan lapisan atas

dari tanah. Misalnya kerikil mempuyai daya infiltrasi yang lebih tinggi dibandingkan dengan tanah liat yang kedap air. Untuk lahan yang terjal dimana air sangat cepat menikis diatas permukaan tanah sehingga air tidak dapat sempat berinfltrasi yang menyebabkan daya infiltrasi lebih kecil. Formula dari infiltrasi ini adalah sebagai berikut:

i = Koefisien Infiltrasi x WS (2.15) dimana :

i = Infiltrasi (Koefisien Infiltrasi (i) = 0 s/d 1,0 ), WS = kelebihan air

b. Penyimpanan air tanah (ground water storage).

Pada permulaan perhitungan yang telah ditentukan penyimpanan air awal yang besarnya tergantung dari kondisi geologi setempat dan waktu.Persamaan yang digunakan adalah (sumber : PT. Tricon Jaya, Sistim Planing Irigasi Ongka Persatuan Kab. Donggala Hal V-4)

Vn = k. (Vn – 1) + ½ (1 + k ) in (2.16) dimana :

Vn = Volume simpanan ait tanah periode n ( m3), Vn – 1 = Volume simpanan air tanah periode n – 1 (m3),

K = qt/qo = Faktor resesi aliran air tanah (catchment are recession factor ) k =Faktor resesi aliran tanah berkisar antara 0 s/d 1 , )

qt = Aliran tanah pada waktu t (bulan ke t) , qo = Aliran tanah pada awal (bulan ke 0), in = Infiltrasi bulan ke n (mm).

Untuk mendapatkan perubahan volume aliran air dalam tanah mengikuti persamaan : Vn = Vn - Vn – 1 (2.17)

c. Limpasan (Run off )

Air hujan atau presipitasi akan menempuh tiga jalur menuju kesungai. Satu bagian akan mengalir sebagai limpasan permukaan dan masuk kedalam tanah lalu mengalir ke kiri dan kananya membentuk aliran antara. Bagian ketiga akan berperkolasi jauh kedalam tanah hingga mencapai lapisan air tanah. Aliran permukaan tanah serta aliran antara sering digabungkan sebagai

limpasan langsung (direc run off) Untuk memperoleh limpasan, maka persamaan yang digunakan adalah :

BF = I - (Δ Vn ) (2.18) Dro = WS – I (2.19) Ron = BF +Dro (2.20)

dimana : BF = Aliran dasar (M3/dtk/km), I = Infltrasi (mm),

Δ Vn = Perubahan volume aliran tanah (M3), Dro = Limpasan Langsung (mm),

WS = Kelebihan air ,

Ron = Limpasan periode n (M3/dtk/km2) d. Banyaknya air yang tersedia dari sumbernya.

Persamaan yang digunakan adalah:

Qn = Ron x A (2.21) dimana: Qn= Banyaknya air yg tersedia dari sumbernya, periode n (m3/dtk),

A = Luas daerah tangkapan (catchment area) Km2.

Dokumen terkait