• Tidak ada hasil yang ditemukan

BAB V PENUTUP

5.2 SARAN

Kami memberikan saran untuk penelitian-penelitian selanjutnya dapat melakukan hal, sebagai berikut:

1. Melakukan dengan metode penelitian yang lain, seperti menggunakan software selain yang digunakan pada penelitian ini.

REFERENSI

[1] R. D. Skeel, T. Term, and T. Term, “COMPUTER SCIENCE 50100 Computing for Science and Engineering,” pp. 1–3, 2015.

[2] T. Yusufaly, “Tight-Binding Formalism in the Context of the PythTB Package Basic definitions,” pp. 1–9, 2012.

[3] “Anaconda The World’s Most Popular Data Science Platform,” 2020. . [4] G.A. Slack ; D. M. Rowe, “CRC Handbook of Thermoelectrics,” CRC

Handb. Thermoelectr., no. 603, pp. 15–17, 2018, doi:

10.1201/9781420049718.

[5] Y. Ouyang and J. Guo, “A theoretical study on thermoelectric properties of graphene nanoribbons,” Appl. Phys. Lett., vol. 94, no. 26, 2009, doi: 10.1063/1.3171933.

[6] Y. Xu, Z. Li, and W. Duan, “Thermal and thermoelectric properties of graphene,” Small, vol. 10, no. 11, pp. 2182–2199, 2014, doi:

10.1002/smll.201303701.

[7] S. Morichi, Y. Okahiro, Y. Komoda, H. Inagaki, and H. Itami,

“Examination on the vertical normal strain observed at the grounds surface during earthquakes,” Doboku Gakkai Ronbunshuu A, vol. 64, no. 2, pp. 452–457, 2008, doi: 10.2208/jsceja.64.452.

[8] M. S. Foster and I. L. Aleiner, “Slow imbalance relaxation and

42

10.1103/PhysRevB.79.085415.

[9] Y. M. Zuev, W. Chang, and P. Kim, “Thermoelectric and

Magnetothermoelectric Transport Measurements of Graphene,” vol. 096807, no. March, pp. 1–4, 2009, doi: 10.1103/PhysRevLett.102.096807. [10] M. Koshino, “Relativistic electrons in graphene.,” vol. 2, no. 2, pp. 1–13,

2015.

[11] P. Hawkins, Electronic Materials & Devices Engage us : .

[12] B. Aufray et al., “Graphene-like silicon nanoribbons on Ag ( 110 ): A possible formation of silicene Graphene-like silicon nanoribbons on Ag „ 110 … : A possible formation of silicene,” vol. 183102, no. 110, pp. 1–4, 2013, doi: 10.1063/1.3419932.

[13] S. Z. Butler et al., “Opportunities in Two-Dimensional Materials Beyond Graphene,” no. 4, pp. 2898–2926, 2013, doi: 10.1021/nn400280c.

[14] T. Aplikasi, B. W. Nuryadin, and M. Si, “Pengantar Fisika Nanomaterial.” [15] M. Caridad, C. Stampfer, G. Calogero, N. Ru, and P. Bøggild, “A

two-dimensional Dirac fermion microscope,” 2017, doi: 10.1038/ncomms15783.

[16] F. Wetenschappen, D. Fysica, and D. Moldovan, “Electronic properties of strained graphene and supercritical charge centers Elektronische

eigenschappen van uitgerekt grafeen en superkritische ladingscenters Members of the jury,” 2016.

“Photo-Thermoelectric Effect at a Graphene Interface Junction,” pp. 562– 566, 2010, doi: 10.1021/nl903451y.

[18] K. S. Novoselov et al., “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197–200, 2005, doi:

10.1038/nature04233.

[19] F. Wetenschappen and D. Fysica, “Transport properties of nanostructures and superlattices on single-layer and bilayer graphene

Transporteigenschappen van nanostructuren en superroosters in ´ e ´ en- en tweelagig grafeen,” 2012.

[20] J. S. Townsend, A MODER N APPROACH TO QUANTUM MECHA NICS. .

[21] D. J. Griffiths and D. F. Schroeter, Introduction to Quantum Mechanics

Third Edition. .

[22] K. S. Novoselov et al., “Electric field in atomically thin carbon films,”

Science (80-. )., vol. 306, no. 5696, pp. 666–669, 2004, doi:

10.1126/science.1102896.

[23] P. Wei, W. Bao, Y. Pu, C. N. Lau, and J. Shi, “Anomalous thermoelectric transport of dirac particles in graphene,” Phys. Rev. Lett., vol. 102, no. 16, pp. 1–4, 2009, doi: 10.1103/PhysRevLett.102.166808.

[24] S. I. Salam, P. S. Fisika, F. Sains, D. A. N. Teknologi, U. Islam, and N. Syarif, PERHITUNGAN MOMEN MAGNET HALF-HEUSLER ALLOY

XMnSb ( X = Mn , Fe , Co , DAN Ni ) DENGAN PENDEKATAN TIGHT-BINDING. 2019.

44

[25] W. Yonatan, F. Matematika, D. A. N. Ilmu, P. Alam, and P. S. Fisika, “UNIVERSITAS INDONESIA STUDI TEORITIK PENGARUH SUBSTRAT TERHADAP,” 2014.

[26] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, no. 1, pp. 109–162, 2009, doi: 10.1103/RevModPhys.81.109.

[27] S. A. Ketabi and F. M. Peeters, “Komunikasi Fisika Komputer Tight-Binding Studio : Paket perangkat lunak teknis untuk menemukan file,” vol. 254, pp. 1–10, 2020.

[28] A. P. Introduction, “DENSITY FUNCTIONAL THEORY.” [29] G. Calogero, N. R. Papior, and B. Peter, “Large-scale tight-binding

simulations of quantum transport in ballistic graphene,” 2018. [30] P. Koskinen and V. Mäkinen, “Density-functional tight-binding for

beginners,” Comput. Mater. Sci., vol. 47, no. 1, pp. 237–253, 2009, doi: 10.1016/j.commatsci.2009.07.013.

[31] Advanced Thermoelectrics. .

[32] H. ; M. A. Goldsmid, “Introduction to Thermoelectricity,” J. Chem. Inf.

Model., vol. 53, no. 9, pp. 1689–1699, 2019, doi:

10.1017/CBO9781107415324.004.

[33] A. A. Balandin, “nanostructured carbon materials,” Nat. Publ. Gr., vol. 10, no. 8, pp. 569–581, 2011, doi: 10.1038/nmat3064.

conductivity of graphene flakes : Comparison with bulk graphite Lattice thermal conductivity of graphene flakes : Comparison,” vol. 203103, pp. 1– 4, 2009, doi: 10.1063/1.3136860.

[35] D. D. Pineda, A. Rezaniakolaei, and E. All, Thermoelectric Energy

Conversion. .

[36] X. Wang and S. Lu, “Thermoelectric Transport in Graphyne Nanotubes,” 2013, doi: 10.1021/jp406536e.

[37] B. Poudel et al., “High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys,” vol. 1871, no. May, 2008. [38] M. S. Dresselhaus, “Low-dimensional thermoelectric materials,” vol. 41,

no. 5, pp. 3–6, 1999.

[39] Z. W. Tan, J. Wang, and C. K. Gan, “First-Principles Study of Heat

Transport Properties of Graphene Nanoribbons,” vol. 6, pp. 214–219, 2011, doi: 10.1021/nl103508m.

[40] Z. Zhang, Y. Xie, Q. Peng, and Y. Chen, “A theoretical prediction of super high-performance thermoelectric materials based on MoS 2 / WS 2 hybrid nanoribbons,” Nat. Publ. Gr., no. January, pp. 1–8, 2016, doi:

10.1038/srep21639.

[41] C. Science, “structures on,” vol. 47, no. 19, pp. 727–731, 1993. [42] K. Biswas and J. Morante, Thermoelectric Thin Films. .

[43] G. W. Luckey, Introduction to Solid State Physics, vol. 79, no. 12. 1957. [44] C. N. Pan, Z. X. Xie, L. M. Tang, and K. Q. Chen, “Ballistic thermoelectric

46

properties in graphene-nanoribbon-based heterojunctions,” Appl. Phys.

Lett., vol. 101, no. 10, 2012, doi: 10.1063/1.4751287.

[45] D. Dragoman and M. Dragoman, “Giant thermoelectric effect in graphene,”

Appl. Phys. Lett., vol. 91, no. 20, pp. 1–4, 2007, doi: 10.1063/1.2814080.

[46] Terry M. Tritt, Thermal Conductivity Theory, Properties, and Applications. .

[47] K. X. Chen, X. M. Wang, D. C. Mo, and S. S. Lyu, “Thermoelectric Properties of Transition Metal Dichalcogenides: From Monolayers to Nanotubes,” J. Phys. Chem. C, vol. 119, no. 47, pp. 26706–26711, 2015, doi: 10.1021/acs.jpcc.5b06728.

[48] H. Sevinçli and G. Cuniberti, “Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons,” Phys. Rev. B - Condens.

Matter Mater. Phys., vol. 81, no. 11, pp. 1–4, 2010, doi:

10.1103/PhysRevB.81.113401.

[49] H. Zheng et al., “Enhanced thermoelectric performance of graphene nanoribbons,” Appl. Phys. Lett., vol. 100, no. 9, pp. 1–6, 2012, doi: 10.1063/1.3689780.

[50] S. T. Rodriguez, I. Grosu, M. Crisan, and I. Ţifrea, “Thermoelectric transport properties in graphene connected molecular junctions,” Phys. E

Low-Dimensional Syst. Nanostructures, vol. 96, pp. 1–5, 2017, doi:

LAMPIRAN

Lampiran 1 File perhitungan struktur pita elektronik dan DOS graphene #PERHITUNGAN STRUKTUR PITA ELEKTRONIK & DOS MATERIAL

GRAPHENE (ILHAM MASHORI)

from pythtb import * %matplotlib inline

# lattice vectors and orbital positions lat=[[1.0, 0.0], [0.5, np.sqrt(3.0)/2.0]] orb=[[1./3., 1./3.], [2./3., 2./3.]]

# two-dimensional Thigt-Binding model gra=tb_model(2, 2, lat, orb)

# set model parameters delta=0.0

t=1.0

# define hopping between orbitals gra.set_onsite([-delta,delta]) gra.set_hop(t, 0, 1, [ 0, 0]) gra.set_hop(t, 1, 0, [ 1, 0]) gra.set_hop(t, 1, 0, [ 0, 1])

# solve model on a path in k-space

k=[[0.0, 0.0],[1./3., 2./3.],[0.5,0.5],[0.0, 0.0]] (k_vec,k_dist,k_node)=gra.k_path(k, 100) evals=gra.solve_all(k_vec) # plot bandstructure import matplotlib.pyplot as plt fig, ax = plt.subplots() plt.hlines(0,0,2,color='r',linestyle='--') ax.plot(k_dist,evals[0,:],linewidth=2) ax.plot(k_dist,evals[1,:],linewidth=2) ax.set_xticks(k_node) ax.set_xticklabels(["$\Gamma$","K","M","$\Gamma$"])

48

ax.set_xlim(k_node[0],k_node[-1]) # add vertical lines at node positions for n in range(len(k_node)): ax.axvline(x=k_node[n],linewidth=0.5, color='k') # put title ax.set_xlabel("Path in K-Space") ax.set_ylabel("Band Energy") fig.savefig("bandsgraphene.png") print() print('---') print('starting DOS calculation')

print('---') print('Calculating DOS...')

# calculate density of states

# first solve the model on a mesh and return all energies kmesh=59

kpts=[]

for i in range(kmesh): for j in range(kmesh):

kpts.append([float(i)/float(kmesh),float(j)/float(kmesh)]) # solve the model on this mesh

evals=gra.solve_all(kpts) # flatten completely the matrix evals=evals.flatten()

print (kmesh) # plotting DOS

print('Plotting DOS...') # now plot density of states fig, ax = plt.subplots()

counts,bins,bars = ax.hist(evals,200,range=(-4.,4.)) print(counts)

print(len(counts)) print(bins) print(len(bins)) print(bars) ax.set_ylim(0.0,140.0) # put title

ax.set_title("Graphene model density of states") ax.set_xlabel("Band energy")

ax.set_ylabel("Number of states") # make an PDF figure of a plot fig.tight_layout()

fig.savefig("Graphene_dos.pdf") print('Done.\n')

#Grafik Garis DOS

# MEMBUAT GRAFIK GARIS PADA DOS GRAPHENE y=( 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 37., 48., 36., 30., 48., 42., 30., 42., 48., 36., 42., 36., 42., 42., 36., 54., 36., 60., 24., 66., 36., 54., 30., 72., 42., 30., 60., 30., 72., 30., 66., 48., 42., 72., 36., 60., 60., 30., 84., 48., 72., 60., 54., 96., 54., 48., 108., 60., 126., 96., 96., 120., 48., 102., 36., 42., 78., 24., 30., 60., 12., 48., 12., 24., 36., 18., 30., 0., 12., 18., 12., 6., 0., 6., 0., 0, 0., 6., 0., 6., 12., 18., 12., 0., 30., 18., 36., 24., 12., 48., 12., 60., 30., 24., 78., 42., 36., 102., 48., 120., 96., 96., 126., 60., 108., 48., 54., 96., 54., 60., 72., 48., 84., 30., 60., 60., 36., 72., 42., 48., 66., 30., 72., 30., 60., 30., 42., 72., 30., 54., 36., 66., 24., 60., 36., 54., 36., 42., 42., 36., 42., 36., 48., 42., 30., 42., 48., 30., 36., 48., 36., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.) print(len(y)) x=(-4., -3.96, -3.92, -3.88, -3.84, -3.8, -3.76, -3.72, -3.68, -3.64, -3.6, -3.56, -3.52, -3.48, -3.44, -3.4, -3.36, -3.32, -3.28, -3.24, -3.2, -3.16, -3.12, -3.08, -3.04, -3., -2.96, -2.92, -2.88, -2.84, -2.8, -2.76, -2.72, -2.68, -2.64, -2.6 , -2.56, -2.52, -2.48, -2.44, -2.4, -2.36, -2.32, -2.28 ,-2.24, -2.2, -2.16, -2.12, -2.08, -2.04, -2., -1.96, -1.92, -1.88, -1.84, -1.8, -1.76, -1.72, -1.68, -1.64,

50 -1.6, -1.56, -1.52 ,-1.48, -1.44, -1.4, -1.36, -1.32, -1.28, -1.24, -1.2, -1.16, -1.12, -1.08 ,-1.04, -1., -0.96, -0.92, -0.88, -0.84, -0.8, -0.76, -0.72, -0.68, -0.64, -0.6, -0.56, -0.52, -0.48, -0.44, -0.4, -0.36, -0.32, -0.28, -0.24, -0.2, -0.16, -0.12, -0.08, -0.04, 0., 0.04, 0.08, 0.12, 0.16, 0.2, 0.24, 0.28, 0.32, 0.36, 0.4, 0.44, 0.48, 0.52, 0.56, 0.6, 0.64, 0.68, 0.72, 0.76, 0.8, 0.84, 0.88, 0.92, 0.96, 1., 1.04, 1.08, 1.12, 1.16, 1.2, 1.24, 1.28, 1.32, 1.36, 1.4, 1.44, 1.48, 1.52, 1.56, 1.6, 1.64, 1.68, 1.72, 1.76, 1.8, 1.84, 1.88, 1.92, 1.96, 2., 2.04, 2.08, 2.12, 2.16, 2.2, 2.24, 2.28, 2.32, 2.36, 2.4, 2.44, 2.48, 2.52, 2.56, 2.6, 2.64, 2.68, 2.72, 2.76, 2.8, 2.84, 2.88, 2.92, 2.96, 3., 3.04, 3.08, 3.12, 3.16, 3.2, 3.24, 3.28, 3.32, 3.36, 3.4, 3.44, 3.48, 3.52 , 3.56, 3.6, 3.64, 3.68, 3.72, 3.76, 3.8, 3.84, 3.88, 3.92, 3.96, 4. ) print(len(x))

# now plot density of states import matplotlib.pyplot as plt

from scipy.interpolate import splrep,splev fig, ax = plt.subplots()

# put title

ax.set_xlabel("Energy (eV)")

ax.set_ylabel("Density of States (1 / eV)") plt.text(0.1,113,"μ") plt.vlines(0,0,115,color='r',linestyle='--') ax.set_ylim(0,120.0) bspl = splrep(x,y,s=40000) bspl_y = splev(x,bspl) plt.plot(x,bspl_y) plt.show()

# make an PDF figure of a plot fig.tight_layout()

fig.savefig("GrapheneDOS.png") print('Done.\n')

Lampiran 2 File perhitungan karakteristik termoelektrik graphene #PERHITUNGAN KARAKTERISTIK TERMOELEKTRIK GRAPHENE

from __future__ import division from scipy import integrate import numpy as np mu = 6.835937499999999e-5 T = 200.0 * 8.621738e-5 v = 1e+6 tau = 1e-14 E = xE q = 1

dfermi = -np.exp((E - mu)/(T))/(T*(np.exp((E - mu)/(T)) + 1)**2) L = []

for i in range (3) :

func = tau * v**2 * yDOS * -dfermi * (E - mu)**i j = integrate.trapz(func, E) print('L','(',i,')',' = ', j) L.append(j) L = np.array(L) #rumus seebeck S = L[1]/(q*T*L[0]) print('Seebeck Coef = ',S) #termal konduktivitas kappa_e=(L[2]-(L[1]**2/L[0]))*(1/T) print('kappa_e = ',kappa_e) sigma=(L[2]-kappa_e*T)/((S**2)*(T**2)) print('sigma = ',sigma) ZT= ((((S**2)*sigma)/kappa_e)*T) print('Figure of Merit=',ZT)

52

Lampiran 3 File grafik karakteristik termoelektrik graphene

#PERHITUNGAN SEEBECK, Konduktivitas Termal, Konduktansi Listrik, dan ZT import numpy as np xx=([200,250,300,350,400,450,500,550,600,650,700,750,800,850,900]) yy=([0.0143230628745862,0.00853330768546766,0.0056082557742676035, 0.00402863134491746,0.003134893511013128,0.00260147124636047, 0.0022588286543981755,0.00201822841924204,0.0018340463134383447, 0.00168333013468192,0.0015546494030743577,0.00144220067675734, 0.0013428255964603951,0.00125457233456609,0.0011760356031282437]) # now plot density of states

import matplotlib.pyplot as plt

from scipy.interpolate import splrep,splev fig, ax = plt.subplots() # put title ax.set_xlabel("Temperatur (K)") ax.set_ylabel("S (μV/K)") ax.set_ylim(0,0.016) ax.set_xlim(0,900) plt.plot(xx,yy,linewidth=2.5,color='g',marker='o') plt.show()

# make an PDF figure of a plot fig.tight_layout()

fig.savefig("seebeck.png") print('Done.\n')

Dokumen terkait