• Tidak ada hasil yang ditemukan

kedalaman yang lebih besar di lereng agak atas, dan peran air bumi meningkat dari aliran airbumi sebelumnya. Pada saat kurva hidrograf menurun, debit airbumi menurun dibandingkan pada puncak hujan.

9.2Saran

Penelitian ini terlaksana dengan melalukan beberapa pendekatan melalui metodologi yang telah banyak dilakukan di luar negeri oleh para peneliti hidrologi proses. Untuk mendapatkan informasi yang lebih komprehensif tentang perilaku hidrokimia di dalam DAS, perlu dikembangkan penelitian sejenis pada masa yang akan datang, didukung oleh peralatan yang lebih memadai. Persamaan – persamaan dan model matematik serta penggunaan perangkat Sistem Informasi Geografis juga perlu dikembangkan dalam menyusun dinamika aliran bawah permukaan . Karena teknik pemisahan aliran permukaan ini dapat mengkuantifikasi sumber (source) limpasan yang sangat penting dalam mendesain stuktur hidraulik, evaluasi model hujan-aliran permukaan, mempelajari proses pengendalian banjir, serta pendugaan dan pengurangan kontaminasi air.

DAFTAR PUSTAKA

Anonim 2006. Integrated Water Resources Management in View of Environmental Sustainability Aspects in Indonesia. UNEP Support for Achieving the IWRM 2005 Target. National Report on Integrated Water Resources Management (IWRM) 2005. Southeast Asia Project. Directorate General of Water Resources Ministry of Public Works Indonesia.

Anonim 2004. Kebijakan Pengelolaan Sumber Daya Air di SWS Ciliwung Cisadane untuk Mengatasi Krisis Air Jakarta. Bappeda Propinsi Jawa Barat. Disampaikan pada Seminar Krisis Air Jakarta: Tinjauan Pengelolaan Sumber Daya Air Terpadu Ciliwung Cisadane. Kantor Kementerian PPN/Bappenas

Anderson SP, WE Dietrich, R Torres, DR Montgomery, dan K Loague. 1997. Concentration-discharge relationships in runoff from a steep, unchanneled catchment. Water Resources Research, 33(1): 211–225.

Bernal, S., Butturini, A., Sabater, F., 2006. Inferring Nitrate Sources Through End Member Mixing Analysis in An Intermittent Mediterranean Stream. Abstract.

Biogeochemistry 81, 269–289.

Bernal S, Butturini A, Sabater F. 2005. Seasonal variations of dissolved nitrogen and DOC:DON ratios in an intermittent Mediterranean stream. Biogeochemistry 75 (2): 351–372.

Beven K, and Germann P. 1982. Macropores and water flow in soils. Water Resources Research, 18(5): 1311–1325.

Buttle JM, Dillon PJ and Eerkes GR. 2004. Hydrologic coupling of slopes, riparian zones and streams: an example from the Canadian Shield. Journal of Hydrology. 287(1–4): 161–177.

Buttle JM, Lister SW, Hill AR. 2001. Controls on runoff components on a forested slope and implications for N transport. Hydrological Processes 15 (6): 1065– 1070

Buttle JM. 1994. Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins. Prog. Phys. Geogr. 18, 16–41.

Burns DA, Plummer LN, McDonnell JJ, Busenberg E, Casile GC, Kendall C, Hooper RP, Freer JE, Peters NE, Beven KJ and Schlosser P 2003. The geochemical evolution of riparian ground water in a forested piedmont catchment. Ground Water 41(7): 913–925.

Burns DA, McDonnell JJ, Hooper RP, Peters NE, Freer J, Kendall C, Beven KJ. 2001. Quantifying Contributions to Storm Runoff Through Eend-Member Mixing Analysis and Hydrologic Measurements at the Panola Mountain Research Watershed (Georgia, USA). Hydrological Processes 15 (10): 1903-1924.

Bonell M 1998. Progress in the understanding of runoff generation dynamics in forests.

Journal of Hydrology. 150: 217–275.

Boyer EW, Hornberger GM, Bencala KE, McKnight DM. 1997. Response characteristics of DOC flushing in an Alpine catchment. Hydrological Processes 11 (12): 1635–1647.

Brown VA, McDonnell JJ, Burns DA, Kendall C. 1999. The role of event water, a rapid shallow flow component, and catchment size in summer stormflow.

Journal of Hydrology 217: 171–190.

Buttle J.M, Peters DL 1997. Inferring hydrological processes in a temperate basin using isotopic and geochemical hydrograph separation: a re-evaluation.

Hydrological Processes 11: 557–573.

Bazemore DE, Eshelman KN, dan Hollenbeck KJ. 1994. The role of soil water in stormflow generation in a forested headwater catchment: synthesis of natural tracer and hydrometric evidence. J. Hydrol. 162: 47-75.

Beven KJ, Kirkby MJ. 1979. A physically based variable contributing area model of basin hydrology. Hydrology Science Bulletin 24(1): 43–69.

Buttle, J. M., 1994. Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins. Prog. Phys. Geogr., 18, 16–41.

Cary RH, JF Dowd, dan NE Peters. 2011. Determining watershed flow pathways using geochemistry and timing. Proceedings of the 2011 Georgia Water Resources Conference,April 11-13, 2011. The University of Georgia

Cook PG, Favreau G, Dighton JC and Tickell S, 2003. Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. Journal of Hydrology 277:74-88.

Chanat JG, KC Rice, dan GM Hornberger. 2002. Consistency of patterns of concentration-discharge plots. Water Resources Research 38(8): doi:10.1029/ 2001WR000971.

Crandall CA, Katz BG and Hirten JJ, 1999. Hydrochemical evidence for mixing of river water and groundwater during high-flow conditions, lower Suwannee River basin, Florida,USA. Hydrogeology Journal 7, 454-467.

Creed IF, Band LE, Foster NW, Morrison IK, Nicolson JA, Semkin RS, Jeffries DS. 1996. Regulation of nitrate-N release from temperate forests: a test of the N flushing hypothesis. Water Resources Research 32 (11): 3337–3354.

Christophersen N, TA Clair, C T Driscoll, D S Jeffries, C Neal, dan R G Semkin. 1994. Hydrochemical Studies. In B. Moldan dan J.Cerny (eds.). Biogeochemistry of Small Catchments: A Tool for Environmental Research. John Wiley & Sons Ltd.

Christophersen N, dan Hooper R P1992. Multivariate analysis of stream water chemical data: the use of principal components analysis for the end member mixing problem. Water Resour. Res., 28 (1), 99-107.

Christopherson N, Neal C, Hooper RP, Vogt RD, Andersen SCS. 1990. Modelling streamwater chemistry as a mixture of soilwater endmembers—a step towards second-generation acidification models. Journal of Hydrology 116: 307–320.

Dunn SM, JR Bacon, SI Vinogradoff, MC Graham, dan G Farmer 2005. Investigating the utility of simple hydrochemical sampling data for hydrological model calibration. Geophysical Research Abstracts, Vol. 7, 05406, 2005. European Geosciences Union 2005.

Dunn SM, McAlister E, Ferrier RC 1998. Development and application of a distributed catchment-scale hydrological model for the river Ythan, NE Scotland. Hydrological Processes 12: 401–416.

Davis JC 1986. Statistics and Data Analysis in Geology. Wiley, New York, p. 646.

EPA 2007. Water Quality Monitoring and Hydrochemical Loading Study Banda Aceh, Indonesia. Environmental Services Program. USAID/Indonesia. http://www. Esp,or.id/wp-content/uploads/2007/09/r-0193-water-quality-monitoring-and-hydrochemi cal-loading-study.pdf

Evans C, and Davies TD 1998. Causes of concentration/discharge hysteresis and its potential as a tool for analysis of episode hydrochemistry. Water Resour. Res. 3: 129-137.

Evans C, Davies TD, and Murdoch PS 1999. Component flow processes at four streams in the Catskill Mountains, New York, analysed using episodic concentration/discharge relationships. Hydrol. Process. 13: 563-575.

Frey K E, DI Siegel, and LC Smith 2007. Geochemistry of west Siberian streams and their potential response to permafrost degradation. Water Resour. Res., 43. W03406.

Freer J., McDonnell J.J., Beven K.J., Peters N.E., Burns D.A., Hooper R.P. and Aulenbach B. 2002. The role of bedrock topography on subsurface storm flow. Water Resources Research. 38(12): 1269. doi:10. 1029/ 2001 WR 000872.

Faeh AO, Scherrer S, and Naef F. 1997. A combined field and numerical approach to investigate flow processes in natural macroporous soils under extreme precipitation. Hydrology and Earth System Sciences. 1(4): 787–800.

Gibson JJ, Price JS, Aravena R, Fitzgerald DF, dan Maloney D. 2000. Runoff generation in a hypermaritime bo-forest upland. Hydrol. Process 14:2711-2730.

Genereux DP, Hooper RD 1998. Oxygen and hydrogen isotopes in rainfall-runoff studies. In Isotope Tracers in Catchment Hydrology. Kendall C, McDonnell J (eds). Elsevier.

Gaskin JW, Dowd JW, Nutter WL, Swank WT, 1989. Vertical and lateral components of soil nutrient flux in a hillslope. Journal of Environmental Quality 18 (4): 403–410.

Guebert MD, and Gardner TW. 2001. Macropore flow on a reclaimed surface mine: infiltration and hillslope hydrology.Geomorphology, 39: 151–169.

Hangen E, M Lindenlaub, Ch Leibundgut, K von Wilpert 2001. Investigating Mechanisms of Stormflow Generation by Natural Tracers and Hydrometric Data: A Small Catchment Study in The Black Forest, Germany. Abstract. Hydrological Processes 15 (2): 183–199.

Hooper RP 2001. Applying the scientific method to small catchment studies: A review of the Panola Mountain experience. Hydrological Processes 15(10): 2039-2050.

Hill AR, Kemp WA, Buttle JM, Goodyear D. 1999. Nitrogen chemistry of subsurface storm runoff on forested Canadian Shield hillslopes. Water Resources Research 35 (3): 811–821.

Hinton MJ, Schiff SL, English MC. 1997. The significance of storms for the concentration and export of dissolved organic carbon from two Precambrian Shield catchments. Biogeochemistry 36 (1): 67–88.

Hinton MJ, Schiff SL, dan English MC 1994. Examining the contributions of glacial till water to storm runoff using two and three component hydrograph separation. Water Resour.Res.30: 983-993.

Hooper RP, N Christophersen, and NE Peters 1990. Modelling streamwater chemistry as a mixture of soilwater end members: An application to the Panola Mountain watershed, Georgia, USA.Journal of Hydrology 116: 321–343.

Inamdar SP dan M J Mitchell 2007. Contributions of Riparian and Hillslope Waters to Storm Runoff Across Multiple Catchments and Storm Events in a Glaciated Forested Watershed. Journal of Hydrology 341(1-2): 116– 130.

Inamdar SP, MJ Mitchell 2006a. Hydrologic and topographic controls on storm-event exports of dissolved organic carbon (DOC) and nitrate across catchment scales.Water Resources Research 42. W03421.

Inamdar SP, N O’Leary, M J Mitchell, dan JT Riley 2006b. The impact of storm

events on solute exports from a glaciated forested watershed in western New York, USA. Hydrol. Process. 20: 3423–3439. Wiley Inter Science (www.interscience.wiley. com). DOI: 10.1002/hyp.6141.

Iriawan N, dan Astuti SP. 2006. Mengolah data statistik dengan mudah menggunakan Minitab 14. Penerbit ANDI Yogyakarta. 469 hal.

James AL, NT Roulet 2006. Investigating the applicability of end-member mixing analysis (EMMA) across scale: a study of eight small, nested catchments in a temperate forested watershed. Water Resources Research 42, W08434. doi:10.1029/ 2005WR004419.

Joerin C, KJ Beven, I Iorgulescu, A Musy 2002. Uncertainty in hydrograph separation based on geochemical mixing models. Journal of Hydrology: 255:90-106.

Jones JAA, and Connelly LJ. 2002. A semi-distributed simulation model for natural pipeflow. Journal of Hydrology 262(1–4): 28–49.

Jenkins A, Ferrier RC, Harriman R, Ogunkoya O 1994. A case study in catchment hydrochemistry: conflicting evidence from hydrological and chemical observations. Hydrological Processes 8: 335–349.

Jo¨reskog KG, Klovan JE, Reyment RA 1976. Geological Factor Analysis. Elsevier, Amsterdam, p. 178.

Krein A, M Salvia-Castellvi, JF Iffly, F Barnich, P Matgen R vd Bos, L Hoffmann, H Hofmann2, A Kies, dan L Pfister 2007. Uncertainty in Chemical Hydrograph

Separation. In L. Pfister dan L. Hoffmann (eds.). Uncertainties in the ‘Monitoring-Conceptualisation Modelling’ Sequence of Catchment Research. Proceedings of 11th Conference of the Euromediterranean Network of Experimental and Representative Basins (ERB) Luxembourg, 20 – 22 September 2006.

Kosugi K., Uchida T. and Mizuyama T. 2004. Numerical calculation of soil pipe flow and its effect on water dynamics in a slope. Hydrological Processes. 18(4):777–789.

Kusmana C 2003. Laporan Akhir Rencana Pengelolaan DAS Terpadu DAS Ciliwung.

Kerjasama Balai Penelitian Pengelolaan DAS Citarum-Ciliwung dengan Fakultas Kehutanan IPB. Bogor.

Lanni C, JJ McDonnell, dan R Rigon. 2011. On the relative role of upslope and downslope topography for describing water flow path and storage dynamics: a theoretical analysis. Hydrol. Process. 25: 3909–3923. Published online 28 September 2011 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/hyp.8263

Mas’ud AF, C Nugroho SP, IB. Pramono, 2004. Kriteria dan indikator pengelolaan

DAS yang digunakan dalam Gerakan Nasional Rehabilitasi Hutan dan Lahan (GNRHL) di Indonesia. In Mas’ud AF, C Nugroho SP, IB. Pramono, Agus F,

van Noordwijk M, dan Rahayu S (Editor). Dampak Hidrologis Hutan, Agroforestri, dan Pertanian Lahan Kering sebagai Dasar Pemberian Imbalan kepada Penghasil Jasa Lingkungan di Indonesia. Prosiding Lokakarya di Padang/Singkarak, Sumatera Barat, Indonesia, 25-28 Pebruari 2004. ICRAF-SEA, Bogor, Indonesia

McDonnell JJ 2003. Where does water go when it rains? Moving beyond variable source area concept of rainfall-runoff response. Hydrological Processes 17(9): 1869–1875.

McDonnell J.J. 1990. A rationale for old water discharge through macropores in a steep, humid catchment. Water Resources Research. 26(11): 2821–2832.

McGlynn B.L. and McDonnell J.J. 2003a. Quantifying the relative contributions of riparian and hillslope zones to catchment runoff. Water Resources Research. 39(11). doi:10.1029/2003WR002091.

McGlynn B.L. and McDonnell J.J. 2003b. Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics. Water Resources Research. 39(4) 1090. doi:10.1029/2002WR001525.

McGlynn BL, McDonnell JJ, Brammer D 2002. A review of the evolving perceptual model of hillslope flowpaths at the Maimai catchment, New Zealand. Journal. of Hydrology. 257(1-4): 1–26.

McGlynn BL, McDonnell JJ, Shanley JB, dan Kendall C. 1999. Riparian zone flowpath dynamics during snowmelt in small headwater catchment. Journal of Hydrology 222:75-92.

McHale MR, JJ McDonnell, MJ Mitchell, Cirmo CP 2002. A field-based study of soil water and groundwater nitrate release in an Adirondack forested watershed.

Water Resources Research. 38(4):1031.

Montgomery DR et al. 1997. Hydrologic response of a steep, unchanneled valley to natural and applied rainfall.Water Resources Research. 33(1): 91–109.

Mosley M.P. 1982. Subsurface flow velocities through selected forest soils, South Island, New Zealand. Journal of Hydrology 55: 65–92.

Mosley M.P. 1979. Streamflow generation in a forested watershed. Water Resources Research 15: 795–806.

Mulholland PJ and Hill WR 1997. Seasonal patterns in streamwater nutrient and dissolved organic carbon concentrations: separating catchment flow path and in-stream effects. Water Resour. Res. 33: 1297–1306

Mulholland PJ 1993. Hydrometric and stream chemistry evidence of three storm flowpaths in Walker Branch Watershed. J. Hydrol. 151 (2-4): 291–316.

McCarthy KA, McFarland WD, Wilkinson JM and White LD, 1992. The dynamic relationship between ground water and the Columbia River: using deuterium and oxygen-18 as tracers. Journal of Hydrology 135, 1-12.

Noguchi S, Tsuboyama Y, Sidle RC, and Hosoda I. 2001. Subsurface runoff characteristics from a forest hillslope soil profile including macropores, Hitachi Ohta, Japan. Hydrological Processes 15: 2131–2149.

Ockenden MC, dan NA Chappell. 2011. Identification of the dominant runoff pathways from data-based mechanistic modelling of nested catchments in temperate UK. Journal of Hydrology (2011):71-79

O’Loughlin EM. 1986. Predicition of subsurface saturation zones in natural

Pearce A.J., Stewart M.K. and Sklash M.G. 1986. Storm runoff generation in humid headwater catchments: 1. Where does the water come from? Water Resources Research 22:1263–1272.

Rahayu S, Widodo RH, van Noordwijk M, Suryadi I dan Verbist B. 2009. Monitoring air di daerah aliran sungai. Bogor, Indonesia. World Agroforestry Centre - Southeast Asia Regional Office. 104 p.

Reid JM, MacLeod DA, Cresser MS 1981. Factors affecting the chemistry of precipitation and river water in an upland catchment. Journal of Hydrology 50: 129–145.

Santoso H 2006. Di Indonesia Perlu Ada Kelembagaan Pengelolaan DAS. 1 September 2006 13:12. http://www.antara.co.id/print/index.php?id=41228.

Subagyono K, Tadashi T 2007. The role of subsurface flow dynamic on spatial and temporal variation of water chemistry in a headwater catchment. Indonesian

Journal of Agricultural Science 8(1): 17-30.

Subagyono K, Tanaka T, Hamada Y, Tsujimura M 2005. Defining Hydrochemical Evolution of Streamflow Through Flowpath Dynamics in Kawakami Headwater Catchment, Central Japan. Abstract. Hydrological Processes 19 (10):1939–1965.

Subagyono K, Tanaka T, Y Hamada 2002. The importance of near surface riparian on storm runoff generation and stream chemistry in Kawakami forested headwater catchment (in English)

Subagyono K. 2002. Linking of runoff generation to spatial and temporal variation of water chemistry. Dissertation.University of Tsukuba Japan

Sidle RC, Tsuboyama Y, Noguchi S, Hosoda I, Fujieda H and Shimizu T 2000. Stormflow generation in steep forested headwaters: a linked hydrogeomorphic paradigm. Hydrological Processes 14(3): 369–385.

Semkin RG, DS Jeffries, dan TA Clair 1994. Hydrochemical Methods and Relationships for Study of Stream Output from Small Catchments. In B. Moldan and J.Cerny (eds.) Biogeochemistry of Small Catchments: A Toolfor Environmental Research. John Wiley & Sons Ltd. http://globalecology. stanford.edu /DGE/ CIWDGE/ .../ SCOPE_51_7_Semkin_163-188.pdf. 23-11-2007.

Soulsby C Chen M, Helliwell RC, Ferrier RC, Jenkins A 1998. Hydrogeochemistry of groundwater in an upland Scottish catchment. Hydrological Processes 12: 1111–1118.

Sklash M.G., Stewart M.K. and Pearce A.J. 1986. Storm runoff generation in humid headwater catchments: 2. a case study of hillslope and low-order stream response. Water Resources Research 22(8): 1273–1282.

Tardy Y, Bustillo V, dan Boeglin JL. 2004. Geo-chemistry applied to the watershed survey: hydro-graph separation, erosion and soil dynamics. A case study: the basin of the Niger River, Africa. Appl. Geochem. 19(4): 469-518.

Tanaka T dan Ono T. 1998. Contribution of soil water and its flow path to stormflow Generation in a forested headwater catchment in Central Japan. In Kovar K, Tappeiner U, Peters NE, Craig RG(eds.). Hydrology, Water Resources and Ecology in Headwater. IAHS Publ.No 248:181-188.

Tani M. 1997. Runoff generation processes estimated from hydrological observations on a steep forested hillslope with a thin soil layer. Journal of Hydrology 200: 84–109.

Tanaka T. 1992. Storm runoff process in a small forested drainage basin. Environ. Geol. Water Sci. 19 (2) 179-191.

Tromp-van Meerveld HJ, AL James, JJ McDonnell, and NE Peters 2008. A reference data set of hillslope rainfallrunoff response, Panola Mountain Research Watershed,United States. Water Resour. Res., 44, W06502.

Tromp-van Meerveld HJ, dan JJ McDonnell. 2006. Threshold relations in subsurface stormflow:1.A 147-storm analysis of the Panola hillslope. Water Resources Research, 42(2). W02410.

Tsuboyama Y, Sidle RC, Noguchi S, and Hosoda I. 1994. Flow and solute transport through the soil matrix and macropores of a hillslope segment. Water Resources Research 30(4): 879–890.

Uchida T, McDonnell JJ, Asano Y. 2006. Functional intercomparison of hillslopes and small catchments constrained by water source, flowpath and mean residence time. Water Resources Research 40, W12401. Doi: 10.1029/ 2003WR00.

Uchida T, Kosugi KI and Mizuyama T. 2002. Effects of pipe flow and bedrock groundwater on runoff generation in a steep headwater catchment in Ashiu, central Japan. Water Resources Research 38(7). doi:10.1029 /2001WR000261.

Uchida T, Kosugi K and Mizuyama T 1999. Runoff characteristics of pipeflow and effects of pipeflow on rainfallrunoff phenomena in a mountainous watershed. Journal of Hydrology 222(1–4): 18–36.

Van Verseveld WJ, JJ McDonnell, dan K Lajtha 2008. Mechanistic assessment of nutrient flushing at the catchment scale. Journal of Hydrology 58: 268– 287. Vulava VM, CG Garrett, CL Ginn, TJ Callahan. 2008. Application of geochemical

end-member mixing analysis to delineate water sources in a lowland watershed. Proceedings of the 2008 South Carolina Water Resources Conference. Charleston Area Event Center.

Vanderbilt KL, Lajtha K, Swanson FJ. 2003. Biogeochemistry of unpolluted forested watersheds in the Oregon Cascades: temporal patterns of precipitation and stream nitrogen fluxes. Biogeochemistry 62 (1): 87–117.

Weiler M, McDonnell JJ. 2006. Testing nutrient flushing hypotheses at the hillslope scale: a virtual experiment approach. Journal of Hydrology 319 (1–4): 339– 356.

Weiler M, JJ McDonnell, I Tromp-Van Meerveld, dan T Uchida 2005. Subsurface Stormflow. Encyclopedia of Hydrological Sciences. Edited by M. G. Anderson. John Wiley & Sons, Ltd.

Weiler M. dan J.J. McDonnell. 2004. Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology. Journal of Hydrology 285(1–4): 3–18.

Weiler M, BL McGlynn KJ McGuire, dan J McDonnell 2003. How Does Rainfall Become Runoff? A Combined Tracer and Runoff Transfer Function Approach. Water Resources Research 39 (11):1315.

Wenninger J, Uhlenbrook S, Tilch N, Leibundgut C 2004. Experimental Evidence of Fast Groundwater Responses in a Hillslope/Floodplain Area in the Black Forest Mountains, Germany. Abstract. Hydrological Processes 18: 3305– 3322

Wheater HS, Kleissen F, Beck MB, Tuck S, Jenkins A, Harriman R 1990. Modelling short-term flow and chemical response in the Allt a’ Mharcaidh catchments. In Surface Water Acidification Programme, Mason BJ (ed.). Cambridge University Press: 47–54.

Woods R,and Rowe L. 1996. The changing spatial variability of subsurface flow across a hillside. Journal of Hydrology (NZ) 35(1): 51–86.

Lampiran 1 Hasil pengamatan kedalaman tanah dan batuan (bedrock) untuk

pemasangan peralatan pengamatan hidrokimia di DAS mikro Cakardipa.

Titik Pengamatan ke-1 (L1)

No Kedalaman (cm) Keterangan

1 0-100 Warna coklat kekuningan

2 100-200 Warna coklat kekuningan

3 200-300 Warna coklat kekuningan

4 300-400 Warna coklat kekuningan

5 400-500 Tanah bercampur batuan cadas (tufa) lunak

6 500-600 Tanah bercampur batuan cadas (tufa) lunak

7 600-700 Tanah bercampur batuan cadas (tufa) lunak

8 700-800 Tanah bercampur batuan cadas (tufa) lunak

9 800-900 Lahar lunak

10 900-1000 Lahar lunak bercampur dengan bahan lava

11 1000-1100 Lava lunak

12 1100-1200 Lava dengan kekerasan sedang

13 1200-1250 Lava dengan kekerasan sedang

14 > 1250 Lava keras tidak tembus bor dan kedap air

Titik Pengamatan ke-2 (L2)

No Kedalaman (cm) Keterangan

1 0-100 Warna coklat kekuningan (uraian profil tanah L1)

2 100-200 Warna coklat kekuningan

3 200-300 Warna coklat kekuningan

4 300-400 Tanah bercampur batuan cadas (tufa) lunak

5 400-500 Tanah bercampur batuan cadas (tufa) lunak

6 500-600 Tanah bercampur batuan cadas (tufa) lunak

7 600-700 Lahar lunak

8 700-800 Lahar lunak bercampur dengan bahan lava

9 800-900 Lava dengan kekerasan sedang

10 >900 Lava keras tidak tembus bor dan kedap air

Titik Pengamatan ke-3 (L3)

No Kedalaman (cm) Keterangan

1 0-150 Warna coklat kekelabuan

2 150-250 Warna coklat kekelabuan tekstur berkerikil

3 250-300 Warna coklat kekelabuan

4 300-400 Lahar lunak

5 400-450 Lava andesit kekerasan sedang, kedap air

Titik Pengamatan ke-4 (L4)

No Kedalaman (cm) Keterangan

1 0-100 Warna coklat kekelabuan

2 100-150 Warna coklat kekuningan , berkerikil hancuran tufa

3 150-200 Lahar lunak

4 200-290 Lava keras

5 >290 Lava tidak tembus dan kedap

Titik Pengamatan ke-5 (L5)

No Kedalaman (Cm) Keterangan

1 0-50 Tanah

2 50-100 Kerikil lepas

3 >100 Lava keras tidak tembus

Titik Pengamatan ke-6 (L6)

No Kedalaman (cm) Keterangan

1 0-100 Aluvial coklat agak padat

2 100-200 Aluvial berlumpur

3 200-280 Lapisan tanah berkerikil

4 280-400 Lapisan Tufa

5 >400 Lava keras dan kedap air

Titik Pengamatan ke-7 (L7)

No Kedalaman (cm) Keterangan

1 0-50 Aluvial coklat agak padat

2 50-150 Aluvial lunak

3 150-180 Lapisan kerikil

4 >180 Lava, keras, kedap air

Titik Pengamatan ke-8 (L8)

No Kedalaman (cm) Keterangan

1 0-150 Andosol Coklat , lunak

2 150-200 Horizon BC, agak lunak

3 200-400 Tufa andesit lunak

4 400-470 Tufa andesit agak keras tembus air

Titik Pengamatan ke-9 (L9)

No Kedalaman (cm) Keterangan

1 0-150 Andosol Coklat , lunak

2 150-200 Horizon BC, agak lunak

3 200-400 Tanah Andosol Coklat lunak

4 400-470 Horizon II BC, agak keras, tembus air

5 >470 Lava, Keras, Kedap Air

Titik Pengamatan ke-10 (L10)

No Kedalaman (cm) Keterangan

1 0-200 Andosol Coklat , lunak

2 200-250 Horizon BC, agak lunak

3 250-650 Tanah Andosol Coklat , lunak

4 650-670 Horizon II BC, agak keras, tembus air

5 670-1200 Tufa volkan lunak, bertekstur, SiCl dan tembus air

Lampiran 2 Uraian Profil Tanah Lereng Sebelah Timur

No pengamatan : 1

Fisiografi : Lungur volkan

Bahan Induk : Lahar dan tufa andesit Bentuk wilayah : Berbukit memanjang

Lereng : 35 %, posisi lereng atas

Keadaan permukaan : Terasering Penggunaan lahan : Kebun campuran

Vegetasi : afrika, pisang, talas, ubikayu

Klasifikasi

USDA 2007 : Typic Dystruepts

PPT 1983 : Latosol Coklat Kekuningan

Dokumen terkait