• Tidak ada hasil yang ditemukan

Sensor Photodioda Pengertian Photodioda

TINJAUAN PUSTAKA

2.1 Sensor Photodioda Pengertian Photodioda

Photodioda adalah suatu jenis dioda yang resistansinya berubah-ubah kalau cahaya yang jatuh pada dioda berubahubah intensitasnya. Dalam gelap nilai tahanannya sangat besar hingga praktis tidak ada arus yang mengalir. Semakin kuat cahaya yang jatuh pada dioda maka makin kecil nilai tahanannya, sehingga arus yang mengalir semakin besar. Jika photodioda persambungan p-n bertegangan balik disinari, maka arus akan berubah secara linier dengan kenaikan fluks cahaya yang dikenakan pada persambungan tersebut.

Photodioda terbuat dari bahan semikonduktor. Biasanya yang dipakai adalah silicon (Si) atau gallium arsenide (GaAs), dan lain-lain termasuk indium antimonide (InSb), indium arsenide (InAs), lead selenide (PbSe), dan timah sulfide (PBS). Bahan-bahan ini menyerap cahaya melalui karakteristik jangkauan panjang gelombang, misalnya: 250 nm ke 1100 untuk nm silicon, dan 800 nm ke 2,0 μm untuk GaAs.

Dioda foto adalah jenis dioda yang berfungsi mendeteksi cahaya. Berbeda dengan diode biasa, komponen elektronika ini akan mengubah cahaya menjadi arus listrik. Cahaya yang dapat dideteksi oleh diode foto ini mulai dari cahaya infra merah, cahaya tampak, ultra ungu sampai dengan sinar-X. Aplikasi diode foto mulai dari penghitung kendaraan di jalan umum secara otomatis, pengukur cahaya pada kamera serta beberapa peralatan di bidang medis. (Irma Tri Anjaswati. 2013)

Sensor Photodioda

Photodioda adalah sensor cahaya yang termasuk kategori sensor cahaya photo conductive yaitu sensor cahaya yang akan mengubah perubahan intensitas cahaya yang diterima menjadi perubahan konduktansi pada terminal sensor tersebut. Dioda photo merupakan sensor cahaya yang akan mengalirkan arus listrik satu arah saja dimana akan menglirkan arus listrik dari kaki anoda ke kaki katoda pada saat menerima intensitas cahaya. Photodioda sering digunakan pada aplikasi penerima cahaya infra merah ataupun pada aplikasi sensor pembaca garis pada robot line follower atau line tracert.

Photodioda ini dapat dikonfigurasikan untuk memberikan logika HIGH atau LOW tergantung dari konfigurasi rangkaian yang digunakan. Berikut contoh aplikasi rangkaian sensor cahaya menggunakan dioda Photodioda Photo Didesain Untuk Memberikan Logika LOW Pada Saat Menerima Cahaya Dengan konfigurasi rangkaian dioda photo seperti diatas maka rangkaian akan memberikan logika LOW pada saat dioda photo menerima pancaran cahaya.

Proses tersebut terjadi pada saat dioda photo menerima cahaya dan dioda photo menjadi konduk (ON) sehingga basis TR1 mendapat bias tegangan dan transistor ON dimana terminal output diambil pada terminal kolektor transistor TR1 sehingga terminal output dihubungkan ke ground oleh TR1 melalui kolektor dan emitornya. Begitu sebaliknya pada saat dioda photo tidak menerima cahaya maka basis transistor tidak mendapat bias sehingga transistor TR1 OFF dan terminal output mendapat sumber tegangan dari VCC melalui RL sehingga berlogika HIGH.

Dioda Photo Didesain Untuk Memberikan Logika HIGH Pada Saat Menerima Cahaya Rangkaian diatas akan memberikan logika HIG pada saat dioda photo mendapat atau menerima intensitas cahaya. Kondisi tersebut disebabkan oleh dioda photo dipasang menghubungkan basis transistor TR1 ke VCC dan output diambil pada titik emitor transistor TR1. Pada saat dioda photo menerima intensitas cahaya maka dioda photo akan menghantar dan basis TR1 mendapat bias basis sehingga titik output yang terhubung ke VCC melalui kolektor dan emitor transistor TR1 sehingga berlogika HIGH begitu sebaliknya saat dioda photo tidak menerima cahaya maka basis TR1 tidak mendapat bias sehingga terminal output tidak mendapat sumber tegangan

dari VCC dan terhubung keground melalui RL sehingga berlogikaLOW.

(elektronika-dasar.web.id) Simbol dari diode foto

Alat yang mirip dengan Dioda foto adalah Transistor foto (Phototransistor).Transistor foto ini pada dasarnya adalah jenis transistor bipolar yang menggunakan kontak (junction) base-collector untuk menerima cahaya. Komponen ini mempunyai sensitivitas yang lebih baik jika dibandingkan dengan Dioda Foto. Hal ini disebabkan karena elektronyang ditimbulkan oleh foton cahaya pada junction ini di-injeksikan di bagian Base dan diperkuat di bagian Kolektornya. Namun demikian, waktu respons dari Transistor-foto secara umum akan lebih lambat dari pada Dioda-Foto.

Gambar 2.1 Simbol Photodioda Simbol dari dioda foto

Alat yang mirip dengan Dioda foto adalah Transistor foto (Phototransistor).Transistor foto ini pada dasarnya adalah jenis transistor bipolar yang menggunakan kontak (junction) base-collector untuk menerima cahaya. Komponen ini mempunyai sensitivitas yang lebih baik jika dibandingkan dengan Dioda Foto. Hal ini disebabkan karena elektronyang ditimbulkan oleh foton cahaya pada junction ini di-injeksikan di bagian Base dan diperkuat di bagian Kolektornya. Namun demikian, waktu respons dari Transistor-foto secara umum akan lebih lambat dari pada Dioda-Foto.

Photodioda digunakan sebagai komponen pendeteksi ada tidaknya cahaya maupun dapat digunakan untuk membentuk sebuah alat ukur akurat yang dapat mendeteksi intensitas cahaya dibawah 1pW/cm2 sampai intensitas diatas 10mW/cm2. Photo dioda mempunyai resistansi yang rendah pada kondisi forward bias, kita dapat memanfaatkan photo dioda ini pada kondisi reverse bias dimana resistansi dari photo dioda akan turun seiring dengan intensitas cahaya yang masuk.

Komponen ini mempunyai sensitivitas yang lebih baik jika dibandingkan dengan dioda peka cahaya. Hal ini disebabkan karena elektron yang ditimbulkan oleh foton cahaya pada junction ini diinjeksikan di bagian Base dan diperkuat di bagian kolektornya. Namun demikian,waktu respons dari transistor foto secara umum akan lebih lambat dari pada dioda peka cahaya.

Jika photo dioda tidak terkena cahaya, maka tidak ada arus yang mengalir ke rangkaian pembanding, jika photo dioda terkena cahaya maka photodiode akan bersifat sebagai tegangan, sehingga Vcc dan photo dioda tersusun seri, akibatnya terdapat arus yang mengalir ke rangkaian pembanding.

Bahan dari Photo Dioda

Photodioda terbuat dari bahan semikonduktor yaitu silicon (Si), atau Galium Arsenida, dan yang lain adalah Insb, InAs, PbSe. Material-material ini meyerap cahaya dengan karakteristik panjang gelombang mencangkup: 2500 Å – 11000 Å untuk silicon, 8000 Å – 20,000 Å untuk GaAs. Ketika sebuah photon (satu satuan energi dalam cahaya) dari sumber cahaya diserap, hal tersebut membangkitkan suatu elektron dan menghasilkan sepasang pembawa muatan tunggal, sebuah elektron dan sebuah hole, di mana suatu hole adalah bagian dari kisi-kisi semikonduktor yang kehilangan elektron.

Prinsip Kerja Photo Dioda

Photodioda dibuat dari semikonduktor dengan bahan yang populer adalah silicon ( Si) atau galium arsenida ( GaAs), dan yang lain meliputi InSb, InAs, PbSe. Material ini menyerap cahaya dengan karakteristik panjang gelombang mencakup: 2500 Å – 11000 Å untuk silicon, 8000 Å – 20,000 Å untuk GaAs.

Ketika sebuah photon (satu satuan energi dalam cahaya) dari sumber cahaya diserap, hal tersebut membangkitkan suatu elektron dan menghasilkan sepasang pembawa muatan tunggal, sebuah elektron dan sebuah hole, di mana suatu hole adalah bagian dari kisi-kisi semikonduktor yang kehilangan elektron. Arah Arus yang melalui sebuah semikonduktor adalah kebalikan dengan gerak muatan pembawa.cara tersebut didalam sebuah photodiode digunakan untuk mengumpulkan photon – menyebabkan pembawa muatan (seperti arus atau tegangan) mengalir/terbentuk di bagian-bagian elektroda.

Prinsip kerja photodioda :

Cahaya yang diserap oleh photodioda Terjadinya pergeseran foton

Menghasilkan pasangan electron-hole dikedua sisi Electron menuju [+] sumber & hole menuju [-] sumber

Sehingga arus akan mengalir di dalam rangkaian. Saat photodiode terkena cahaya, maka akan bersifat sebagai sumber tegangan dan nilai resistansinya akan menjadi kecil. Saat photodiode tidak terkena cahaya, maka nilai resistansinya akan besar atau dapat diasumsikan tak hingga.

Photodioda digunakan sebagai penangkap gelombang cahaya yang dipancarkan oleh Infrared. Besarnya tegangan atau arus listrik yang dihasilkan oleh photodioda tergantung besar kecilnya radiasi yang dipancarkan oleh infrared.

Karakteristik photo dioda

Photodioda mempunyai respon 100 kali lebih cepat daripada phototransistor. Dikemas dengan plastik transparan yang juga berfungsi sebagai lensa. Lensa tsb lebih dikenal sebagai „lensa fresnel‟ dan „optical filter‟. Penerima infra merah juga dipengaruhi oleh „active area‟ dan „respond time‟. AplikasiDiode sebagai kondisi open circuit jika dianalogikan seperi sakelarPhotodiode sebagai close circuit jika dianalogikan seperti sakelar (Irma Tri Anjaswati. 2013) 2.2 LCD (Liquid Crystal Display)

Display LCD sebuah liquid crystal atau perangkat elektronik yang dapat digunakan untuk menampilkan angka atau teks. Ada dua jenis utama layar LCD yang dapat menampilkan numerik (digunakan dalam jam tangan, kalkulator dll) dan menampilkan teks alfanumerik (sering digunakan pada mesin foto kopi dan telepon genggam). Dalam menampilkan numerik ini kristal yang dibentuk menjadi bar, dan dalam menampilkan alfanumerik kristal hanya diatur kedalam pola titik. Setiap kristal memiliki sambungan listrik individu sehingga dapat dikontrol secara independen. Ketika kristal off' (yakni tidak ada arus yang melalui kristal) cahaya kristal terlihat sama dengan bahan latar belakangnya, sehingga kristal tidak dapat terlihat. Namun ketika arus listrik melewati kristal, itu akan merubah bentuk dan menyerap lebih banyak cahaya.

Hal ini membuat kristal terlihat lebih gelap dari penglihatan mata manusia sehingga bentuk titik atau bar dapat dilihat dari perbedaan latar belakang. Sangat penting untuk menyadari perbedaan antara layar LCD dan layar LED. Sebuah LED display (sering digunakan dalam radio jam) terdiri dari sejumlah LED yang benar-benar mengeluarkan cahaya (dan dapat dilihat dalam gelap). Sebuah layar LCD hanya mencerminkan cahaya, sehingga tidak dapat dilihat dalam gelap. LMB162A adalah modul LCD matrix dengan konfigurasi 16 karakter dan 2 baris dengan setiap karakternya dibentuk oleh 8 baris pixel dan 5 kolom pixel (1 baris terakhir adalah kursor).

Memori LCD terdiri dari 9.920 bir CGROM, 64 byte CGRAM dan 80x8 bit DDRAM yang diatur pengalamatannya oleh Address Counter dan akses datanya (pembacaan maupun penulisan datanya) dilakukan melalui register data. Pada LMB162A terdapat register data dan register perintah. Proses akses data ke atau dari register data akan mengakses ke CGRAM, DDRAM atau CGROM bergantung pada kondisi Address Counter, sedangkan proses akses data ke atau dari Register perintah akan mengakses Instruction Decoder (dekoder instruksi) yang akan menentukan perintah–perintah yang akan dilakukan oleh LCD.

Gambar 2.2 LCD 16 x 2 Character 2.2.1 Deskripsi Pin LCD

Untuk keperluan antar muka suatu komponen elektronika dengan mikrokontroler, perlu diketahui fungsi dari setiap kaki yang ada pada komponen tersebut. a. Kaki 1 (GND) : Kaki ini berhubungan dengan tegangan +5 Volt yang merupakan tegangan untuk sumber daya. b. Kaki 2 (VCC) : Kaki ini berhubungan dengan tegangan 0 volt (Ground). c. Kaki 3 (VEE/VLCD) : Tegangan pengatur

kontras LCD, kaki ini terhubung pada cermet. Kontras mencapai nilai maksimum pada saat kondisi kaki ini pada tegangan 0 volt. d. Kaki 4 (RS) : Register Select, kaki pemilih register yang akan diakses. Untuk akses ke Register Data, logika dari kaki ini adalah 1 dan untuk akses ke Register Perintah, logika dari kaki ini adalah 0. e. Kaki 5 (R/W) : Logika 1 pada kaki ini menunjukan bahwa modul LCD sedang pada mode pembacaan dan logika 0 menunjukan bahwa modul LCD sedang pada mode penulisan. Untuk aplikasi yang tidak memerlukan pembacaan data pada modul LCD, kaki ini dapat dihubungkan langsung ke Ground. f. Kaki 6 (E) : Enable Clock LCD, kaki mengaktifkan clock LCD. Logika 1 pada kaki ini diberikan pada saat penulisan atau membacaan data. g. Kaki 7 – 14 (D0 – D7) : Data bus, kedelapan kaki LCD ini adalah bagian di mana aliran data sebanyak 4 bit ataupun 8 bit mengalir saat proses penulisan maupun pembacaan data. h. Kaki 15 (Anoda) : Berfungsi untuk tegangan positif dari backlight LCD sekitar 4,5 volt (hanya terdapat untuk LCD yang memiliki backlight) i. Kaki 16 (Katoda) : Tegangan negatif backlight LCD sebesar 0 volt (hanya terdapat pada LCD yang memiliki backlight).

Tabel 2.1 Blok Pin LCD Komponen yang Dirancang

2.3 Relay

Relay merupakan komponen elektronika yang berfungsi untuk memutuskan atau menghubungkan suatu rangkaian elektronik yang satu dengan rangkaian elektronik lainnya. Pada dasarnya relay adalah saklar elektromagnetik yang akan bekerja apabila arus mengalir melalui kumparan, inti besi akan menjadi magnet dan akan menarik kontak yang ada di dalam relay. Kontak dapat ditarik apabila garis magnet dapat mengalahkan gaya pegas yang melawannya. Besarnya gaya magnet ditetapkan oleh medan yang ada pada celah udara, jangkar, inti magnet, banyaknya lilitan kumparan, kuat arus yang mengalir (imperal lilitan) dan pelawan magnet yang berada pada sirkuit magnet. Untuk memperbesar kuat medan magnet dibentuk suatu sirkuit.

Kontak atau kutub relay pada umumnya memiliki tiga jenis konstruksi dasar yaitu : 1. Bila kumparan dialiri arus listrik maka kontaknya akan menutup dan disebut sebagai kontak Normally Open ( NO ). 2. Bila kumparan dialiri arus listrik maka kontaknya akan membuka dan disebut dengan kontak Normally Close ( NC ). 3. Tukar-sambung (Change Over/CO), relay jenis ini mempunyai kontak tengah yang normalnya tertutup tetapi melepaskan diri dari posisi ini dan membuat kontak dengan yang lain bila relay dialiri listrik. Gambar 2.3 berikut ini memperlihatkan beberapa bentuk kontak dari sebuah relay :

Gambar 2.3 Jenis Konstruksi Relay

II-20 Sifat – sifat relay : a. Impedansi kumparan, biasanya impedansi ditentukan oleh tebal kawat yang digunakan serta banyaknya lilitan. b. Kuat arus yang digunakan untuk menggerakkan relay, biasanya arus ini diberikan oleh pabrik.

Relay dengan perlawanan kecil memerlukan arus besar sedangkan relay dengan perlawanan besar memerlukan arus yang kecil. c. Membutuhkan tegangan untuk menggerakkan relay. d. Daya yang diperlukan untuk mengoperasikan relay besarnya sama dengan nilai tegangan dikalikan arus. e. Banyaknya kontak-kontak jangkar dapat membuka dan menutup lebih dari satu kontak sekaligus tergantung pada kontak dan jenis relay-nya. Jarak antara kontak-kontak menentukan besarnya tegangan maksimum yang diizinkan antara kontak tersebut. (Bishop, 2004). Perancangan alat ini dibagi menjadi dua bagian yaitu perancangan perangkat keras yang terdiri dari beberapa modul yaitu modul sensor Photodioda, modul konveyor, modul catudaya, modul motor DC, modul pengisian, modul tampilan dari LCD dan modul dari mikrokontroler ATMega 8535. Sedangkan bagian kedua adalah perancangan perangkat lunak untuk mengolah input dari perangkat keras.

2.4Mikrokontroller

Mikrokontroler, sesuai namanya adalah suatu alat atau komponen pengontrol atau pengendali yang berukuran mikro atau kecil.Sebelum ada mikrokontroler, telah

ada terlebih dahulu muncul mikroprosesor. Bila dibandingkan dengan mikroprosesor, mikrokontroler jauh lebih unggul karena terdapat berbagai alasan, diantaranya: 1. Tersedianya I/O I/O dalam mikrokontroler sudah tersedia sementara pada mikroprosesor dibutuhkan IC tambahan untuk menangani I/O tersebut. 2. Memori Internal Memori merupakan media untuk menyimpan program dan data sehingga mutlak harus ada.

Mikroprosesor belum memiliki memori internal sehingga memerlukan IC memori eksternal. Dengan kelebihan-kelebihan di atas, ditambah dengan harganya yang relatif murah sehingga banyak penggemar elektronika yang kemudian beralih ke mikrokontroler. Namun demikian, meskipun terdapat berbagai kelemahan, mikroprosesor tetap digunakan sebagai dasar dalam mempelajari mikrokontroler. Inti kerja dari keduanya adalah sama, yakni sebagai pengendali suatu sistem. Mikrokontroler merupakan komputer di dalam chip yang digunakan untuk mengontrol peralatan elektronik, yang menekankan efisiensi dan efektifitas biaya.

Secara harfiahnya bisa disebut „pengendali kecil‟ dimana sebuah sistem elektronik yang sebelumnya banyak memerlukan komponen-komponen pendukung seperti IC TTL dan CMOS dapat direduksi/diperkecil dan akhirnya terpusat serta dikendalikan oleh mikrokontroler ini.

Menggunakan mikrokontroler ini maka : a. Sistem elektronik akan menjadi lebih ringkas. b. Rancang bangun sistem elektronik akan lebih cepat karena sebagian besar dari sistem adalah perangkat lunak yang mudah dimodifikasi. c. Pencarian gangguan lebih mudah ditelusuri, namun demikian tidak sepenuhnya mikrokontroler bisa mereduksi komponen IC TTL dan CMOS yang seringkali masih diperlukan untuk aplikasi kecepatan tinggi atau sekedar menambah jumlah saluran input dan output (I/O).

Berarti, mikrokontroler adalah versi mini atau mikro dari sebuah komputer karena mikrokontroler sudah mengandung beberapa bagian yang langsung bisa dimanfaatkan, misalnya port paralel, port serial, komparator, konversi digital ke analog (DAC), konversi analog ke digital (ADC), dan sebagainya hanya menggunakan Minimum System yang tidak rumit. Mikrokontroller dapat dikatakan sebuah sistem komputer yang seluruh atau sebagian besar elemennya dikemas dalam satu chip sehingga sering disebut 9 ssebagai single chip mikrokomputer. Tidak seperti

sistem komputer yang mampu menangani berbagai macam program aplikasi, mikrokontroller hanya dapat digunakan untuk suatu aplikasi saja. Perbedaan lainya yaitu pada perbandingan RAM (Rendom Acces Memory) dan ROM (Read Only Memory). Pada Mikrokontroller perbandingan antara RAM dan ROM-nya besar, sedangkan pada sistem komputer juga besar.

(Budiharto, Widodo2005) Hampir semua instruksi prosesor RISC adalah instruksi dasar (belum tentu sederhana), sehingga instruksi-instruksi ini umumnya hanya memerlukan 1 siklus mesin untuk menjalankannya. Kecuali instruksi percabangan yang membutuhkan 2 siklus mesin. RISC biasanya dibuat dengan arsitektur Harvard, karena arsitektur ini yang memungkinkan untuk membuat eksekusi instruksi selesai dikerjakan dalam satu atau dua siklus mesin, sehingga akan semakin cepat dan handal. Proses downloading programnya relatif lebih mudah karena dapat dilakukan langsung pada sistemnya.

(Syahrul, 2012). 2.5Mikrokontroller ATMega8535

Mikrokontroller adalah IC yang dapat diprogram berulang kali, baik ditulis atau dihapus (Agus Bejo, 2007).Biasanya digunakan untuk pengontrolan otomatis dan manual pada perangkat elektronika. Beberapa tahun terakhir, mikrokontroler sangat banyak digunakan terutama dalam pengontrolan robot.Seiring perkembangan elektronika, mikrokontroler dibuat semakin kompak dengan bahasa pemrograman yang juga ikut berubah.

Salah satunya adalah mikrokontroler AVR (Alf and Vegard‟s Risc processor) ATmega8535 yang menggunakan teknologi RISC (Reduce Instruction Set Computing) dimana program berjalan lebih cepat karena hanya membutuhkan satu siklus clock untuk mengeksekusi satu instruksi program. Secara umum, AVR dapat dikelompokkan menjadi 4 kelas, yaitu kelas ATtiny, keluarga AT90Sxx, keluarga ATmega, dan AT86RFxx.Pada dasarnya yang membedakan masing-masing kelas adalah memori, peripheral, dan fungsinya. Dari segi arsitektur dan instruksi yang digunakan, mereka bisa dikatakan hampir sama.

Mikrokontroler AVR ATmega8535 memiliki fitur yang cukup lengkap. Mikrokontroler AVR ATmega8535 telah dilengkapi dengan ADC internal, EEPROM internal, Timer/Counter, PWM, analog comparator, dll (M.Ary Heryanto, 2008).

Sehingga dengan fasilitas yang lengkap ini memungkinkan kita belajar mikrokontroler keluarga AVR dengan lebih mudah dan efisien, serta dapat mengembangkan kreativitas penggunaan mikrokontroler ATmega8535. Fitur-fitur yang dimiliki oleh mikrokontroler ATmega8535 adalah sebagai berikut:

1. Saluran I/O sebanyak 32 buah, yaitu port A, port B, port C, dan port D. 2. ADC internal sebanyak 8 saluran.

3. Tiga buah Timer/Counter dengan kemampuan pembandingan. 4. CPU yang terdiri atas 32 buah register.

5. SRAM sebesar 512 byte.

6. Memori Flash sebesar 8 kb dengan kemampuan Read While Write. 7. Port antarmuka SPI

8. EEPROM sebesar 512 byte yang dapat diprogram saat operasi. 9. Antarmuka komparator analog.

10. Port USART untuk komunikasi serial.

11. Sistem mikroprosesor 8 bit berbasis RISC dengan kecepatan maksimal 16 MHz. 12. Dan lain-lainnya.

2.5.1 Kontruksi ATmega 8535

Mikrokontroller ATmega8535 memiliki 3 jenis memori, yaitu memori program, memori data dan memori EEPROM.Ketiganya memiliki ruang sendiri dan terpisah.

a. Memori program

Amega8535 memiliki kapasitas memori progam sebesar 8 Kbyte yang terpetakan dari alamat 0000h – 0FFFh dimana masing-masing alamat memiliki lebar data 16 bit. Memori program ini terbagi menjadi 2 bagian yaitu bagian program boot dan bagian program aplikasi.

b. Memori data

ATmega8535 memiliki kapasitas memori data sebesar 608 byte yang terbagi menjadi 3 bagian yaitu register serba guna, register I/O dan SRAM. ATmega8535 memiliki 32 byte register serba guna, 64 byte register I/O yang dapat diakses sebagai bagian dari memori RAM (menggunakan instuksi LD atau ST) atau dapat juga diakses sebagai I/O (menggunakan instruksi IN atau OUT), dan 512 byte digunakan untuk memori data SRAM.

ATmega8535 memiliki memori EEPROM sebesar 512 byte yang terpisah dari memori program maupun memori data. Memori EEPROM ini hanya dapat diakses dengan menggunakan register-register I/O yaitu register EEPROM Address, register EEPROM Data, dan register EEPROM Control. Untuk mengakses memori EEPROM ini diperlakukan seperti mengakses data eksternal, sehingga waktu eksekusinya relatif lebih lama bila dibandingkan dengan mengakses data dari SRAM.

ATmega8535 merupakan tipe AVR yang telah dilengkapi dengan 8 saluran ADC internal dengan fidelitas 10 bit. Dalam mode operasinya, ADC ATmega8535 dapat dikonfigurasi, baik secara single ended input maupun differential input. Selain itu, ADC ATmega8535 memiliki konfigurasi pewaktuan, tegangan referensi, mode operasi, dan kemampuan filter derau yang amat fleksibel, sehingga dengan mudah disesuaikan dengan kebutuhan ADC itu sendiri.ATmega8535 memiliki 3 modul timer yang terdiri dari 2 buah timer/counter 8 bit dan 1 buah timer/counter 16 bit.

Ketiga modul timer/counter ini dapat diatur dalam mode yang berbeda secara individu dan tidak saling mempengaruhi satu sama lain. Selain itu, semua timer/counter juga dapat difungsikan sebagai sumber interupsi. Masing-masing timer/counter ini memiliki register tertentu yang digunakan untuk mengatur mode dan cara kerjanya. Serial Peripheral Interface (SPI) merupakan salah satu mode komunikasi serial syncrhronous kecepatan tinggi yang dimiliki oleh ATmega8535.

Universal Syncrhronous and Asyncrhronous Serial Receiver and Transmitter (USART) juga merupakan salah satu mode komunikasi serial yang dimiliki oleh ATmega8535.USART merupakan komunikasi yang memiliki fleksibilitas tinggi, yang dapat digunakan untuk melakukan transfer data baik antar mikrokontroler maupun dengan modul-modul eksternal termasuk PC yang memiliki fitur UART.

USART memungkinkan transmisi data baik secara syncrhronous maupun asyncrhronous, sehingga dengan memiliki USART pasti kompatibel dengan UART. Pada ATmega8535, secara umum pengaturan mode syncrhronous maupun asyncrhronous adalah sama.

Perbedaannya hanyalah terletak pada sumber clock saja.Jika pada mode asyncrhronous masing-masing peripheral memiliki sumberclock sendiri, maka pada mode syncrhronous hanya ada satu sumber clock yang digunakan secara bersama-sama. Dengan demikian, secara hardware untuk mode asyncrhronous hanya

Dokumen terkait