• Tidak ada hasil yang ditemukan

Simpulan

Penelitian adaptasi bibit tanaman Eucalyptus pellita dari 10 kelompok

sumber benih terhadap cekaman kekeringan, dapat diambil beberapa simpulan. Adapun simpulan yang dapat disimpulkan dari penelitian ini adalah :

1. Secara umum bibit tanaman E. pellita kurang tahan terhadap kondisi

cekaman kekeringan yang terlihat dari penurunan pertumbuhan lebih dari 50% pada semua kondisi cekaman kekeringan, namun kelompok sumber benih KBS Site II dan KBK Perawang dan APB Bupul-Muting menunjukkan pertumbuhan lebih baik dibandingkan kelompok sumber benih lainnya pada kondisi cekaman kekeringan 50% dan 25%.

2. Mikoriza arbuskula membantu meningkatan ketahanan bibit E. pellita

terhadap cekaman kekeringan sampai pada taraf cekaman kekeringan 75% denga n meningkatkan penyerapan air tanah, kelompok sumber benih yang peningkatan ketahanannya tinggi dengan adanya mikoriza arbuskula berasal dari KBK Perawang dan KBS Site I.

3. Mekanisme adaptasi bibit tanaman E. pellita terhadap cekaman kekeringan

dengan meningkatkan kadar prolina daun dan juga menjaga status air jaringan yaitu dengan perbaikan sistem perakaran tanaman dan penebalan helaian daun.

Saran

Dalam pengembangan tanaman E. pellita sebagai jenis tanaman dalam

rehabilitasi lahan dan atau hutan tanaman pada lahan kering, sebaiknya menggunakan benih yang berasal dari KBS Site II, KBK Perawang dan APB Bupul-Muting, namun bila menggunakan aplikasi mikoriza arbuskula, rekomendasi benih yang dapat digunakan berasal dari KBK Perawang dan KBS Site I.

Auge RM. 2001. Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3–42.

Al-Karaki GN, Al-Raddad A. 1997. Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza 7 : 83-88.

Al Karaki GN. 1998. Benefit, cost and water use efficiency of arbuscula mycorrhizal durum wheat grown under drought stress. Mycorrhiza 8 : 41 -45.

Allen MF. 2001. Modeling arbuscular mycorrhizal infection : is % infection an appropriate variable. Mycorrhiza 10 : 255-258

Bates LS, Waldren RP, Teare LD. 1973. Rapid determination of free proline for water stress studies. Plant and Soil 39 : 24 – 34

Bolgiano NC, Safir GR, Warnacke DD. 1983. Mycorrhizal infection and growth of onion in the field in relation to phosphorus and water availability. J Am Soc Hortic Sci 108:819–825

Borges R. 2003. How soybeans respons to drought stress. Issues in Agriculture. www.uwex.edu/ces/ag/issues/drought2003/soybeansrespondstress.html. [Kamis, 23 Oktober 2008].

Blum A. 1996. Crop responses to drought and the interpretation of adaptation. Plant Growth Reg. 20 : 135 – 148.

Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N. 1996. Working with mycorrhizas in forestry and agriculture. CSIRO Forestry and Forest Product & CSIRO Center for Mediterranean Agricultural Research.

Cruz C, Green JJ, Watson CA, Wilson F, Lucao MAM. 2004. Funcional aspects of root architecture and mycorrhizal inoculation with respect to nutrient uptake capacity. Mycorrhiza 14 : 177-184.

Farida E. 2000. Endomikoriza : pengaruhnya terhadap pertumbuhan dan tingkat ketahanan terhadap kekeringan pada semai jati. Di dalam : Hardiyanto, E.B., editor. Prosiding seminar nasional status silvikultur 1999 : Peluang dan tantangan menuju produktivitas dan kelestarian sumberdaya hutan jangka, Wanagama I, 1-2 Desember 1999. Yogyakarta : Fakultas Kehutanan UGM.

Fakuara Y. 1988. Mikoriza, teori dan kegunaannya dalam praktek. Departemen Pendidikan dan Kebudayaan. Bogor : Pusat Antar Universitas IPB.

Fukai S, Cooper M. 1995. Development of drought resistant cultivars using physio-morphological traits in rice. Field Crops Res. 40 : 67-86.

George E, Haussler K, Kothari SK, Li XL, Marschner. 1992. Contribution of mycorrhizal hyphae to nutrient and water uptake of plant, pp. 42-47. Didalam Read D.J, D.H. Lewis, A.H. Fitter and I.J.J. Alexander, editor. Mycorrhizas in ecosystems. Cambridge : CAB International.

Harman DZ, Izuno FT. 1993. Soil plant water relationships. Florida cooperative extension service. IFAS. Univ. Of Florida.

Hapsoh. 2003. Kompatibilitas mva dan beberapa genotipe kedelai pada berbagai tingkat cekama n kekeringan tanah ultisol : tanggap morfofisiologi dan hasil. [Disertasi]. Bogor : Program Pascasarjana, Institut Pertanian Bogor.

Haines M, Harwood C. 1992. Good early growth Eucalyptus pellita on Melville

Island, Northern Territory, Australia. Forestry Newsletter 14. Canbera, Australia.

Hall N, Brooker I. 1974. Large- fruited red mahagony – Eucalyptus pellita F.

Muell. Forest Tree Series No. 146. Canbera, Australia.

Kartika E. 2006. Tanggap pertumbuhan, serapan hara dan karakter morfofisiologi terhadap cekaman kekeringan pada bibit kelapa sawit yang bersimbiosis dengan CMA. [Disertasi]. Bogor : Program Pascasarjana, Institut Pertanian Bogor.

Kaya C, Higgs D, Kirnak H, Tas I. 2003. Mycorrhizal colonization improves fruit

yield and water use efficiency in watermelon (Citrullus lanatus Thunb)

grown under well- watered and water-stressed conditions. Plant Soil 253:287–292

Killham K. 1999. Soil ecology. Melbourne, Australia : Cambridge University Press.

Kirkham MB. 1990. Plant responses to water deficits. Didalam : B.A. Stewart. editor. Irrigation of agricultural crops. Madison. Wisconsin USA. p : 323-342

Leksono B. 2003. Eucalyptus pellita, jenis tanaman potensial sebagai bahan baku

industri kayu. Jaringan Kerja Pemuliaan Pohon Hutan : Newsletter Vol. 2 No.1, Yogyakarta : Puslitbang Bioteknologi dan Pemuliaan Tanaman Hutan.

Levitt J. 1980. Responses of plant to enviromental stress. Vol. 2. New York : Academic Press. p : 606.

[NAS] National Academy of Science. 1983. Fuel wood crops – schrub and tree Academy Press.

Muller JE, Whitsitt MS. 1996. Plant cellular responses to water deficit. Plant Growth Reg. 20 : 119-124.

Mitra J. 2001. Genetics and genetic improvement of drought resistance in crops plants. Current Sci, 80 : 758-762.

Njurumana GND, Susila IWW. 2006. Rehabilitasi lahan kritis melalui

pengembangan hutan rakyat berbasis sistem Kaliwu di Pulau Sumba. J.

Pen Htn. & KA. Vol III No. 1 : 19-30

O’Connor PJ, Smith SE, Smith FA. 2001. Arbuscular mycorrhizal associations in the southern simpson desert. Aust. J. Bot. 49 : 493-499

Prochazkova D, Sairam RK, Srivastava GC, Singh DV. 2001. Oxidative stress and antioxidant activity as the basis of senescence in maize leave. Plant Science 161 : 765 – 771.

[RLPS] Rehabilitasi Lahan dan Perhutanan Sosial. 2007. Resume data dan informasi rehabilitasi hutan dan lahan tahun 2007. Jakarta : Departemen Kehutanan.

Repellin A, Laffray D, Daniel C, Braconnier S, Zully-Fordil Y. 1997. Water

relations and gas exchange in young coconut palm (Cocos nucifera L.) as

influenced by water deficit. Can. J. bot. 75 : 18 -27.

Stahl PD, Schuman GE, Frost SM, Williams SE. 1998. Arbuscular mycorrhizae and water stress tolerance of wyoming big sagebrush seedling. Soil Sci. Soc. Am. J. 62 : 453-457

Setiadi Y. 2000. Status penelitian dan pemanfaatan cendawan mikoriza arbuskula untuk rehabilitasi lahan terdegradasi. Prosiding Seminar Nasional Mikoriza I. Puslitbanghut dan Konservasi Alam, Balitbanghutbun. Dephutbun.

Sukarno N. 2003. Mikoriza dan peranannya. Makalah pelatihan mikrobiologi dosen perguruan tinggi negeri se-sumatera, 28 juli – 7 Agustus di Bogor. Surata IK. 2007. Pemafaatan irigasi tetes untuk penanaman cendana di lahan kritis

Banamblaat, Pulau Timor, Propinsi NTT. J. Pen. Htn & KA Vol. IV No.2 : 129 – 138

Yang CW, Kao CH. 1999. Importance of ornithine-δ-transferase to prolin

accumulation caused by water stress in detached rice leaves. Plant growth Reg. 27 : 189-192

Walton EF, Podivinsky E, Wu RM, Reynolds PHS, Young LW. 1998. Regulation of proline biosynthesis on kiwi fruit buds with and without hydrogen cyanamide treatment. Physiol. Plant. 102 : 171-178

Wijana G. 2001. Analisis fisiologi, biokimia, dan molekuler sifat toleran tanaman

kelapa sawit (Elaeis guineensis Jacq.) terhadap cekaman kekeringan.

[Disertasi]. Bo gor : Program Pascasarjana, Institut Pertanian Bogor.

Wu QS, Xia RX. 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology 163 : 417—425.

53

Lampiran 1 Tabel hasil analisis anova pada variable pertumbuhan tinggi dan diameter.

Tests of Between-Subjects Effects

Dependent Variable: Pertumbuhan tinggi

Source

Type III Sum of

Squares df Mean Square F Significance Model 485327,234(a) 80 6066,590 187,936 ,000 MRIZA 303,979 1 303,979 9,417 ,002 AIR 105138,799 3 35046,266 1085,692 ,000 ASAL 1185,773 9 131,753 4,082 ,000 MRIZA * AIR 698,334 3 232,778 7,211 ,000 MRIZA * ASAL 1183,071 9 131,452 4,072 ,000 AIR * ASAL 1992,745 27 73,805 2,286 ,000 MRIZA * AIR * ASAL 2181,436 27 80,794 2,503 ,000

Error 10329,636 320 32,280

Total 495656,870 400

a R Squared = ,979 (Adjusted R Squared = ,974)

Tests of Between-Subjects Effects

Dependent Variable: Pertumbuhan diameter

Source

Type III Sum of

Squares df Mean Square F Significance Model 469,612(a) 80 5,870 138,724 ,000 MRIZA ,266 1 ,266 6,292 ,013 AIR 86,528 3 28,843 681,617 ,000 ASAL 1,606 9 ,178 4,217 ,000 MRIZA * AIR ,872 3 ,291 6,866 ,000 MRIZA * ASAL 1,028 9 ,114 2,698 ,005 AIR * ASAL 1,253 27 ,046 1,097 ,341

MRIZA * AIR * ASAL 1,427 27 ,053 1,249 ,187

Error 13,541 320 ,042

Total 483,152 400

Lampiran 2 Tabel hasil analisis anova pada variable biomasa total dan nisbah tajuk akar.

Tests of Between-Subjects Effects

Dependent Variable: Biomassa total

Source

Type III Sum of

Squares df Mean Square F Significance Model 950,285(a) 80 11,879 60,918 ,000 MRIZA 3,082 1 3,082 15,805 ,000 AIR 383,190 3 127,730 655,054 ,000 ASAL 4,525 9 ,503 2,578 ,007 MRIZA * AIR 4,260 3 1,420 7,283 ,000 MRIZA * ASAL 5,075 9 ,564 2,892 ,003 AIR * ASAL 8,880 27 ,329 1,687 ,020

MRIZA * AIR * ASAL 9,402 27 ,348 1,786 ,011

Error 62,397 320 ,195

Total 1012,682 400

a R Squared = ,938 (Adjusted R Squared = ,923)

Tests of Between-Subjects Effects

Dependent Variable: Top-root ratio

Source

Type III Sum

of Squares df Mean Square F Significance Model 3266,135(a) 80 40,827 41,291 ,000 MRIZA 11,139 1 11,139 11,265 ,001 AIR 9,540 3 3,180 3,216 ,023 ASAL 21,722 9 2,414 2,441 ,011 MRIZA * AIR 9,110 3 3,037 3,071 ,028 MRIZA * ASAL 14,856 9 1,651 1,669 ,095 AIR * ASAL 40,422 27 1,497 1,514 ,052 MRIZA * AIR * ASAL 27,881 27 1,033 1,044 ,408

Error 316,405 320 ,989

Total 3582,541 400

55

Lampiran 3 Tabel hasil analisis anova pada variable kadar air relatif daun dan berat daun spesifik.

Tests of Between-Subjects Effects

Dependent Variable: Kadar Air Relatif Daun

Source

Type III Sum of

Squares df Mean Square F Significance Model 3110452,096(a) 80 38880,651 3867,355 ,000 MRIZA 38,069 1 38,069 3,787 ,053 AIR 4615,897 3 1538,632 153,044 ,000 ASAL 1145,374 9 127,264 12,659 ,000 MRIZA * AIR 1097,713 3 365,904 36,396 ,000 MRIZA * ASAL 431,585 9 47,954 4,770 ,000 AIR * ASAL 2051,059 27 75,965 7,556 ,000 MRIZA * AIR * ASAL 1793,132 27 66,412 6,606 ,000

Error 3217,137 320 10,054

Total 3113669,233 400

a R Squared = ,999 (Adjusted R Squared = ,999)

Tests of Between-Subjects Effects

Dependent Variable: Berat Daun Spesifik

Source

Type III Sum

of Squares df Mean Square F Significance Model 3339,528(a) 80 41,744 278,557 ,000 MRIZA 5,966 1 15,966 9,810 ,053 AIR 42,537 3 14,179 94,616 ,000 ASAL 10,805 9 11,201 8,011 ,051 MRIZA * AIR 6,070 3 2,023 13,501 ,000 MRIZA * ASAL 9,047 9 1,005 6,708 ,000 AIR * ASAL 18,194 27 ,674 4,497 ,000

MRIZA * AIR * ASAL 10,836 27 ,401 2,678 ,000

Error 47,955 320 ,150

Total 3387,482 400

Lampiran 4 Tabel hasil analisis anova pada variable kadar prolina daun dan derajat infeksi akar.

Tests of Between-Subjects Effects

Dependent Variable: Kadar prolina daun

Source

Type III Sum

of Squares df Mean Square F Significance Model 549,370(a) 80 6,867 2955,719 ,000 MIKO 8,081 1 8,081 3478,339 ,000 AIR 34,560 3 11,520 4958,426 ,000 ASAL 2,393 9 ,266 114,442 ,000 MIKO * AIR ,224 3 ,075 32,120 ,000 MIKO * ASAL 3,511 9 ,390 167,913 ,000 AIR * ASAL 4,097 27 ,152 65,304 ,000

MIKO * AIR * ASAL 7,385 27 ,274 117,728 ,000

Error ,372 160 ,002

Total 549,741 240

a R Squared = ,999 (Adjusted R Squared = ,999)

Tests of Between-Subjects Effects

Dependent Variable: derajat infeksi akar

Source

Type III Sum

of Squares df Mean Square F Significance Model 29700,000(a) 80 371,250 9,281 ,000 MIKO 7593,750 1 7593,750 189,844 ,000 AIR 2921,250 3 973,750 24,344 ,000 ASAL 783,750 9 87,083 2,177 ,026 MIKO * AIR 641,250 3 213,750 5,344 ,002 MIKO * ASAL 543,750 9 60,417 1,510 ,148 AIR * ASAL 1391,250 27 51,528 1,288 ,170 MIKO * AIR * ASAL 1871,250 27 69,306 1,733 ,020

Error 6400,000 160 40,000

Total 36100,000 240

57

Lampiran 5 Hasil analisis sifat fisika dan kimia media tanam

Jenis analisis Nilai Keterangan

Tekstur Pasir (%) 6.10 Liat Debu (%) 20.79 Liat (%) 73.11 Kadar air pF 2.54 (%) 44.21 Kapasitas lapang

pF 4.20 (%) 27.46 Titik layu permanent

pH (1 : 1)

pH H2O 4.50 Asam

pH HCl 3.70 Asam

C-organik (Walkley & Black) % 2.64 Tinggi

N-total (Kjeldhal) % 0.24 Sedang

C/N ratio 11 Sedang

P (Bray I) ppm 8.6 Sangat rendah

P (HCl 25%) ppm 206.6 Sangat tinggi Basa-basa Ca (me/100 gram) 0.47 Mg (me/100 gram) 0.28 K (me/100 gram) 0.17 Na (me/100 gram) 0.13 KTK (me/100 gram) 23.38 KB (%) 4.49

Al-dd (me/100 gram) 1132.00

H-dd (me/100 gram) 0.51

Fe (me/100 gram) 4.08

Cu (me/100 gram) 0.08

Zn (me/100 gram) 0.68

Mn (me/100 gram) 7.56

Lampiran 6 Hasil perhitungan berat tanah yang harus dipertahankan pada masing- masing perlakuan cekaman kekeringan.

Kadar air kapasitas lapang (pF 2.54) = 44,21%

Kadar air layu permanen (pF 4.20) = 27,46%

Air tersedia tanaman ( pF 2.54 – pF 4.20 ) = 16,75%

Berat tanah kering mutlak (1000 gr) = 745,63 gr

Perhitungan kadar air perlakuan dan berat tanah yang dipertahankan adalah

Tingkat cekaman air

Kadar air tana h

Berat tanah perlakuan

100% air tersedia 44,21% 1075,27 gr ≈ 1075 gr

75% air tersedia 40,02% 1044,03 gr ≈ 1045 gr

50% air tersedia 35,83% 1012,79 gr ≈ 1015 gr

Dokumen terkait