• Tidak ada hasil yang ditemukan

Simpulan

Gen spmoB berhasil diklon dan diekpresikan secara berlebih di E. coli BL21 (DE3) tanpa menyebabkan toksisitas. Ekspresi ini dapat dilakukan pada suhu 27

oC dan 37 oC dengan konsentrasi IPTG 0.1 mM, 0.5 mM, dan 1.0 mM yang ditambahkan ke dalam kultur. Protein spmoB rekombinan yang dihasilkan berukuran 38.9 kDa. Aktivitas oksidasi metan bakteri rekombinan adalah sebesar 0.114 mmol/mL kultur/jam.

Saran

Perlu dilakukan penelitian untuk pemurnian protein dan pelipatan ulang secara in vitro protein rekombinan spmoB, serta optimasi kondisi kultur untuk mendapatkan aktivitas oksidasi metan protein spmoB yang lebih tinggi.

19

DAFTAR PUSTAKA

Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC. 2010. Oxidation of methane by a biological dicopper. Nat 465: 115-121.

Benstead J, King GM, Williams HG. 1998. Methanol promotes atmospheric methane oxidation by methanotrophic cultures and soils. Appl Environ Microbiol 64: 1091-1098.

Bowman JP, Sly LI, Nichols PD, Hayward AC. 1993. Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43: 735–753.

Chistoserdova L, Vorholt JA, Lidstrom ME. 2005. A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol 6: 208-214.

Culpepper MA, Rosenzweig AC. 2012. Architecture and active site of particulate methane monooxygenase. Critical Rev Bioch Mol Biol 47 (6): 483-492. Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD,

Bares AM, Panikov NS, Tiedje JM. 2000. Methylocella palustris gen. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine pathway methanotrophs. Int J Syst Evol Micr 50: 955–969.

Dedysh SN, Knief C, Dunfield PF. 2005. Methylocella species are facultatively methanotrophic. J Bacteriol 187: 4665-4670.

Dumont MG, Radajewski SM, Miguez CB, McDonald R, Murrel JC. 2006. Identification of a complete methane monooxygenase operon from soil by combining stable isotope probing and metagenomic analysis. Environ Microbiol 8 (7): 1240-1250.

Gilbert B, McDonald IR, Finch R, Stafford GP, Nielsen AK, Murrell JC. 2000. Molecular analysis of the pmo (particulate methane monooxygenase) operons from two type II methanotrophs. App Environ Microb 66 (3): 966-975.

Gopal GJ, Kumar A. 2013. Strategies for the Production of recombinant protein in Escherichia coli. Prot J 32: 419-425.

Gou X, Xing HH, Luo M, jiang H, Han B, Wu H, Wang L, Zhang F. 2006. Functional expression of the particulate methane monooxygenase gene in recombinant Rhodococcus erythropolis. FEMS Microbiol 263: 136-141. Hakemian AS, Kondapalli KC, Telser J, Hoffman BM, Stemmler TL, Rosenzweig

AC. 2008. The metal centers of particulate methane monooxygenase from Methylosinus trichosporium OB3b. Biochem 47 (26): 6793-6801. Hakemian AS, Rosenzweig A. C. 2007. The biochemistry of methane oxidation.

Ann Rev Biochem 76: 223–241.

Han B et al. 2009. Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine. FEMS Microbiol Ecol 70: 40-51.

Hanson RS, Hanson TE. 1996. Methanotrophic bacteria. Microbiol Rev 60: 439-471.

20

Jonasson P, Liljeqvist S, Nygren PA, Stahl S. 2002. Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnol App Biochem 35: 91 – 105.

Khlebnikov A, Keasling JD. 2002. Effect of lacY expression on homogeneity of induction from the P(tac) and P(trc) promoters by natural and synthetic inducers. Biotechnol Prog 18: 672-674.

Lee SY. 1996. High cell-density culture of Escherichia coli. Trend Biotechnol 14: 98-105.

Lelieveld J, Crutzem PJ, Bruhl C. 1993. Climate effects of atmospheric methane. Chemosphere 26:739–768.

Lieberman RL, Rosenzweig AC. 2004. Biological methane oxidation: regulation, biochemistry, and active site structure of particulare methane monooxygenase. Chritical Rev Biochem Mol Biol 39: 149-164.

Lieberman RL, Rosenzweig AC. 2005a. Crystal structure of membrane-bound mettaloenzyme that catalyses the biological oxidation of methane. Nat 434: 177-182.

Lieberman RL, Rosenzweig AC. 2005b. The quest for the particulate methane monooxygenase active site. Dalton Tran 2005: 3390–3396.

Matheson LJ, Jahnke LL, Oremland RS. 1997. Inhibition of methane oxidation by Methylococcus capsulatus with hydrochlorofluorocarbons and fluorinated methanes. Appl Environ Microbiol 63: 2952-2956.

Mcdonald IR, Murrell JC. 1997. The particulate methane monooxygenase gene pmoA and its use as functional gene probe for methanotrophs. FEMS Microbiol Lett 156: 205-210.

Moroux B, Walker JE. 1996. Over-production of protein in Escherichia coli: mutant host that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260: 289-298.

Murrel JC. 1994. Molecular genetics of methane oxidation. Biodegradation 5: 145-159.

Murrell JC, Gilbert B, and McDonald IR. 2000. Molecular biology and regulation of methane monooxygenase. Arch Microbiol 173:325–332.

Ngunyen HH, Ellieott SJ, Yip JHK, Chan SI. 1997. The particulate methan monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme. J Biol Chem 273 (14): 7957-7966.

Nielsen AK, Gerdes K, Murrell JC. 1997. Copper-dependent reciprocal transcriptional regulation of methane monooxygenase genes in Methylococcus capsulatus and Methylosinus trichosporium. Mol Microbiol 25: 399–409.

Palomares LA, Mondaca SE, Raminez OT. 2004. Production of recombinant proteins, challenges and solutions. Method Mol Biol 267: 15 – 51.

Patel RN, Hoare DS. 1971. Physiological studies of methane and methanol oxidizing bacteria: oxidation of C-1 compound by Methylococcus capsulatus. J Bacteriol 107 (1): 187-192.

Prior SD, Dalton H. 1985. Acetylene as a suicide substrate and active site probe for methane monooxygenase from Methylococcus capsulatus (Bath). FEMS Microbiol Lett 29: 105–109.

21 Ricke P, Erkel C, Kube M, Reinhardt R, Liesack W. 2004. Comparative analysis of the conventional and novel pmo (particulate monooxygenase) operon from Methylocystic strain SC2. Appl Environ Microbiol 70: 3055-3063. Rosano GL, Ceccarelli EA. 2014. Recombinant protein expression in Escherichia

coli: advance and challenges. Front Microbiol 5: 1–17. Rosenzweig AC. 2015. Breaking methane. Nat 518 (7539): 309-310.

Rusmana I, Akhdiya A. 2009. Isolation and characterization of methanorophic bacteria from rice fields. Biotropia 16 (2): 71-78.

Semrau JD, Chistoserdov A, Lebron J, Costello A, Davagnino J, Kenna JE, Holmes AJ, Finch R, Murrell JC. 1995. Particulate methane monooxygenase genes in methanotrophs. J Bacteriol 177: 3071–3079. Sambrook J, Russell DW. 2001. Molecular Cloning, a Laboratory Manual. Cold

spring Harbor laboratory press, cold spring Harbor, New York.

Semrau JD, Dispirito AA, Yoon S. 2010. Methanotrophs and copper. FEMS Microbiol Rev 34: 496-531.

Shiloach J, Fass R. 2005. Growing E. coli to high cell density - a historical perspective on method development. Biotechnol Adv 23: 345-357.

Smith SM, Rawat S, Telser J, Hoffman BM, Stemmler TL, Rosenzweig AC. 2011a. Chrystal structure and characterization of particulate methane monooxygenase from Methylocystis species strain M. Biochem 50 (47): 10231-10240.

Smith SM, Balasubramanian R, Rosenzweig AC. 2011b. Metal reconstitution of particulate methane monooxygenase and heterologous expression of the pmoB subunit. Methods Enzymol 495: 195-210.

Stolyar S, Costello AM, Peeples TL, Lidstorm ME. 1999. Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus (Bath). Microbiol 145: 1235-1244.

Stolyar S, Franke M, Lidstrom ME. 2001. Expression of individual copies of Methylococcus capsulatus (Bath) particulate methane monooxygenase genes. J Bacteriol 183 (5): 1810-1812.

Tol RSJ, Heintz RJ, Lammers PEM. 2003.Methane emission reduction: an application of FUND. Climatic Change 57:71–98.

Ward N, Larsen O, Sakwa J, Bruseth L, Khouri H, Durkin S, Dimitrov G, Jiang L, Scanlan D, Kang KH, Lewis M, Nelson KE, Methe B, Wu M, Heidelberg JF, Paulsen IT, Fouts D, Ravel J, Tettelin H, Ren Q, Read T, DeBoy RT, Seshadri R, Salzberg SL, jensen HB, Birkeland NK, Nelson WC, Dodson RJ, Grindhaug SH, Holt I, Eidhammer I, Jonase I, Vanaken S, Utterback T, Feldblyum TV, Fraser CM, Lillehaug JR, Eisen JA. 2004. Genomic insights into Methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). Plos Biology 2: 1616-1628.

Yu SSF, Chen KHC, Tseng MYH, Wang YS, Tseng CF, Chen YJ, Huang DS & Chan SI. 2003. Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor. J Bacteriol 185: 5915–5924. Zahn JA, DiSpirito AA. 1996. Membrane-associated methane monooxygenase

22

LAMPIRAN

Lampiran 1 Pembuatan sel kompeten dengan perlakuan CaCl2 (Sambrook & Russel 2001)

Sebanyak 2 mL biakan E.coli DH5α umur 12 jam dikulturkan ke dalam 40 mL media LB. Kultur diinkubasi selama 2-3 jam pada suhu 37 °C sampai nilai Optical Density (OD600) mencapai 0.45-0.5. Selanjutnya kultur diambil sebanyak 1,5 mL dan disentrifugasi pada kecepatan 5000 rpm selama 15 menit. Pelet diresuspensi dengan 1 mL bufer transformasi. Sampel diinkubasi di dalam es selama 15 sampai 30 menit, kemudian disentrifugasi pada 5000 rpm selama 5 menit pada suhu 4 °C. Pelet diresuspensi kembali dengan 250 µL bufer transformasi dan disimpan dalam es.

Lampiran 2 Komposisi gel poliakrilamida

Bahan pemisah (mL) 12.5% gel penahan (mL) 4% gel

30% (29%:1%) akrilamida/bis 4.17 0.67

1.5 bufer Tris-HCl pH 8.8 2.5 -

0.5 M Bufer Tris-HCl pH 6.8 - 1.25

Akuades 3.33 3

10% SDS 0.10

10% amonium persulfat (APS) 0.20 0.05

Tetrametil-etilendiamin

(TEMED) 0.01 0.005

Lampiran 3 Perhitungan nilai Rf marker

Pita ke- Jarak migrasi pita (cm) Rf marker Bobot molekul (kDa)

1 0.5 0.074627 200 2 1.5 0.223881 116 3 1.8 0.268657 97 4 2.6 0.388060 66 5 4.2 0.626866 45 6 5.7 0.850746 29 Jarak CBB: 6.7 cm

Lampiran 4 Kurva standar marker

y = -1,0337x + 2,3004 R² = 0,9659 0 0,5 1 1,5 2 2,5 0 0,2 0,4 0,6 0,8 1 Lo g B M Rf Marker

Dokumen terkait