• Tidak ada hasil yang ditemukan

KAJIAN KEPUSTAKAAN

2.4 SIMULASI PROSES

Kajian simulasi proses menyediakan kaedah yang mudah untuk menentukan pencirian proses dan pergantungan terhadap pemboleh ubah reka bentuk dan operasi (Myint & El-Halwagi 2009). Proses simulasi bermula dengan penentuan komponen kimia, dan pemilihan model termodinamik yang sesuai. Setelah itu, unit operasi, keadaan suapan dan kapasiti loji perlu ditetapkan. Kebanyakan data komponen boleh diperolehi di dalam simpanan perisian. Namun, jika data komponen tertentu tiada dalam simpanan perisian, pendaftaran komponen boleh dilakukan dengan memperkenalkan komponen tersebut sebagai komponen kimia yang baru.

23

García et al. (2010) menjalankan kajian simulasi bagi menganggar sifat biodiesel ternormal menggunakan pelbagai bahan mentah dengan menggunakan perisian Aspen HYSYS. Mereka membandingkan keputusan yang diperolehi dengan ujikaji yang lepas dari segi pakej termodinamik yang digunakan. Pakej termodinamik yang digunakan adalah seperti pakej dua cecair tidak rawak (NRTL), pakej Redlich-Kwong-Soave, (SRK), pakej kimia separa universal (UNIQUAC), pakej pekali aktiviti kumpulan fungsi UNIQUAC (UNIFAC) dan kombinasi pakej yang tersebut. Mereka mendapati bahawa model ramalan hampir menyamai data eksperimen. Berbeza dengan García et al. (2010), Zhang et al. (2003) melakukan simulasi loji biodiesel daripada sisa minyak masak dengan menggunakan pelbagai jenis mangkin. Rajah 2.6 menunjukkan gambar rajah aliran proses simulasi pengeluaran bahan api biodiesel yang dijalankan oleh Zhang et al. (2003) menggunakan perisian HYSYS.Plant NetVers 2.1.3. Mereka menjalankan transesterifikasi bermangkin alkali dan asid. Dalam kajian mereka, reka bentuk loji biodiesel dijalankan, dan kemudian disimulasikan menggunakan model termodinamik sedia ada. Simulasi menunjukkan bahawa untuk proses transesterifikasi bermangkinkan alkali menggunakan minyak masak tulen untuk menghasilkan biodiesel, jumlah air yang betul boleh membawa kepada pemisahan FAME dan fasa gliserol yang hampir lengkap. Tindak balas transesterifikasi bermangkinkan asid yang dijalankan oleh Zhang et al. (2003) menggunakan suhu tindak balas 80 °C, tekanan 400 kPa, nisbah molar metanol kepada minyak 50:1 yang lebih tinggi daripada transesterifikasi bermangkinkan alkali. Di samping itu, proses penyingkiran asid juga digunakan.

Sama seperti kajian simulasi yang dijalankan oleh Zhang et al. (2003), simulasi proses juga telah dijalankan oleh Sotoft et al. (2010) untuk pengeluaran biodiesel menggunakan enzim sebagai mangkin. Rajah 2.7 menunjukkan gambar rajah aliran proses simulasi pengeluaran bahan api biodiesel yang dijalankan oleh Sotoft et al. (2010). Perbandingan telah dibuat antara proses dengan kewujudan atau ketiadaan bersama pelarut. Dalam kajian mereka, Sotoft et al. menggunakan 3 reaktor tangki teraduk selanjar (RTTS) dengan sesiri dan simulasi dibuat menggunakan perisian komputer Aspen Plus 2006.5 dan Aspen Icarus Process Evaluator 2006.5. Hasil kajian menunjukkan pengeluaran biodiesel yang menggalakkan untuk operasi melibatkan enzim bebas pelarut. Sebaliknya, Kaewcharoensombat et al. (2011) melakukan

simulasi proses biodiesel daripada pelbagai bahan mentah. Mereka menggunakan sisa minyak masak, minyak biji sesawi dan minyak Jatropha sebagai bahan mentah dalam tindak balas transesterifikasi bermangkin alkali. Mereka memperoleh biodiesel berketulenan tinggi iaitu 99.9% apabila proses ini disimulasi menggunakan pensimulasi proses Aspen Plus.

Rajah 2.8 menunjukkan gambar rajah aliran proses simulasi pengeluaran bahan api biodiesel yang dijalankan oleh West et al. (2008). Mereka melakukan simulasi proses biodiesel menggunakan pelbagai jenis mangkin seperti sodium hidroksida, asid sulfurik, dan timah (II) oksida (SnO) yang juga termasuk simulasi proses supergenting. Mereka menggunakan perisian HYSYS Plant NetVer 3.2, dan mendapati bahawa semua proses simulasi mampu mencapai gred biodiesel ASTM D 6751.

200

RUJUKAN

AbsoluteAstronomy.com. 2012. Biodiesel production.

www.absoluteastronomy.com/topics/Biodiesel_production

Al-Hamamre, Z. & J. Yamin 2014. Parametric study of the alkali catalyzed transesterification of waste frying oil for Biodiesel production. Energy

Conversion and Management 79: 246-254.

Alexandre, C. D. & C. S. Bildea. 2008. Chemical Process Design-Computer-Aided

Case Studies Ed. ke-1. Jerman: Wiley VCH.

Alhassan, F. H., U. Rashid & Y. H. Taufiq-Yap 2015. Synthesis of waste cooking oil-based biodiesel via effectual recyclable bi-functional Fe2O3MnOSO4 2-/ZrO2 nanoparticle solid catalyst. Fuel 142: 38-45.

Antoine, C. 1888. Vapor Pressure: a new relationship between presure and temperature. Comptes Rendus des Séances de l'Académie des Sciences 107: 681–684, 778–780, 836–837.

Antolín, G., F. V. Tinaut, Y. Briceño, V. Castaño, C. Pérez & A. I. Ramírez 2002. Optimisation of biodiesel production by sunflower oil transesterification.

Bioresource Technology 83(2): 111-114.

Araujo, V. K. W. S., S. Hamacher & L. F. Scavarda 2010. Economic assessment of biodiesel production from waste frying oils. Bioresource Technology 101(12): 4415-4422.

Avellaneda, F. & J. Salvadó 2010. Continuous transesterification of biodiesel in a helicoidal reactor using recycled oil. Fuel Processing Technology 92(1): 83-91.

Barnicki, S. D. & J. J. Siirola 2004. Process synthesis prospective. Computers &

Chemical Engineering 28(4): 441-446.

Bedenik, N. I., M. Ropotar & Z. Kravanja 2007. MINLP synthesis of reactor networks in overall process schemes based on a concept of time-dependent economic regions. Computers and Chemical Engineering 31(5-6): 657-676.

Bedenik, N. I., M. Ropotar & Z. Kravanja 2007. MINLP synthesis of reactor networks in overall process schemes based on a concept of time-dependent economic regions. Computers & Chemical Engineering 31(5-6): 657-676.

Behzadi, S. & M. M. Farid 2009. Production of biodiesel using a continuous gas-liquid reactor. Bioresource Technology 100(2): 683-689.

Bender, M. 1999. Economic feasibility review for community-scale farmer cooperatives for biodiesel. Bioresource Technology 70(1): 81-87.

Betiku, E., S. S. Okunsolawo, S. O. Ajala & O. S. Odedele 2015. Performance evaluation of artificial neural network coupled with generic algorithm and response surface methodology in modeling and optimization of biodiesel production process parameters from shea tree (Vitellaria paradoxa) nut butter.

Renewable Energy 76(0): 408-417.

Biegler, L. T., I. E. Grossmann & A. W. Westerberg. 1997. Systematic methods of

chemical process design Ed. ke-1. New Jersey: Prentice Hall PTR.

Birla, A., B. Singh, S. N. Upadhyay & Y. C. Sharma 2012. Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Bioresource Technology 106(0): 95-100.

Boz, N., N. Degirmenbasi & D. M. Kalyon 2015. Esterification and transesterification of waste cooking oil over Amberlyst 15 and modified Amberlyst 15 catalysts.

Applied Catalysis B: Environmental 165: 723-730.

Burri, J. F., S. D. Wilson & V. I. Manousiouthakis 2002. Infinite DimEnsionAl State-space approach to reactor network synthesis: application to attainable region construction. Computers & Chemical Engineering 26(6): 849-862.

Canakci, M. & H. Sanli 2008. Biodiesel production from various feedstocks and their effects on the fuel properties. Journal of Industrial Microbiology &

Biotechnology 35(5): 431-441.

Canakci, M. & J. Van Gerpen 1999. Biodiesel production via acid catalysis.

Transactions of the American Society of Agricultural Engineers 42(5):

1203-1210.

Canakci, M. & J. Van Gerpen 2001. Biodiesel production from oils and fats with high free fatty acids. Transactions of the American Society of Agricultural

Engineers 44(6): 1429-1436.

Cazarolli, J. C., R. Guzatto, D. Samios, M. D. C. R. Peralba, E. H. D. S. Cavalcanti & F. M. Bento 2014. Susceptibility of linseed, soybean, and olive biodiesel to growth of the deteriogenic fungus Pseudallescheria boydii. International

Biodeterioration and Biodegradation 95(PB): 364-372.

Cenciani, K., M. C. Bittencourt-Oliveira, B. J. Feigl & C. C. Cerri 2011. Sustainable production of biodiesel by microalgae and its application in agriculture.

202

Chang, A. F. & Y. A. Liu 2010. Integrated process modeling and product design of biodiesel manufacturing. Industrial and Engineering Chemistry Research 49(3): 1197-1213.

Cheng, L.-H., S.-Y. Yen, L.-S. Su & J. Chen 2010. Study on membrane reactors for biodiesel production by phase behaviors of canola oil methanolysis in batch reactors. Bioresource Technology 101(17): 6663-6668.

Chin, L. H., B. H. Hameed & A. L. Ahmad 2009. Process Optimization for Biodiesel Production from Waste Cooking Palm Oil (Elaeis guineensis) Using Response Surface Methodology. Energy and Fuels 23(2): 1040-1044.

Choo, Y. M., H. Muhamad, Z. Hashim, V. Subramaniam, C. W. Puah & Y. Tan 2011. Determination of GHG contributions by subsystems in the oil palm supply chain using the LCA approach. International Journal of Life Cycle Assessment 16(7): 669-681.

Coker, A. K. 2001. Modeling of Chemical Kinetics and Reactor Design Ed. ke-1. Houston, Texas: Gulf Publishing Company.

Colombo, T. S., M. A. Mazutti, M. Di Luccio, D. De Oliveira & J. V. Oliveira 2015. Enzymatic synthesis of soybean biodiesel using supercritical carbon dioxide as solvent in a continuous expanded-bed reactor. Journal of Supercritical Fluids 97: 16-21.

Crymble, S. D. 2010. Optimization and Reaction Kinetics of the Production of Biodiesel from Castor Oil via Sodium Methoxide-Catalyzed Methanolysis.Tesis Master of Science Mississippi State University, Mississippi.

Dan Anderson, D. M., Bill McDonald and Larry Sullivan 2003. Industrial Biodiesel Plant Design and Engineering: Practical Experience. Anjuran Putrajaya Marriot Hotel, Putrajaya, MALAYSIA, 24-28 August 2003.

Darnoko, D. & M. Cheryan 2000. Continuous production of palm methyl esters.

Journal of the American Oil Chemists' Society 77(12): 1269-1272.

Darnoko, D. & M. Cheryan 2000. Kinetics of palm oil transesterification in a batch reactor. JAOCS, Journal of the American Oil Chemists' Society 77(12): 1263-1267.

Daud, W. R. W. 2002. Prinsip Reka Bentuk Proses Kimia Ed. ke-1. Bangi Malaysia: UKM.

Davis, B. J., L. A. Taylor & V. I. Manousiouthakis 2008. Identification of the Attainable Region for Batch Reactor Networks. Industrial & Engineering

Chemistry Research 47(10): 3388-3400.

De Lima Da Silva, N., C. M. G. Santander, C. B. Batistella, R. M. Filho & M. R. W. MacIel 2010. Biodiesel production from integration between reaction and separation system: Reactive distillation process. Applied Biochemistry and

Biotechnology 161(1-8): 245-254.

Demirbas, A. 2006. Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics. Energy Conversion and Management 47(15-16): 2271-2282.

Demirbas, A. 2008. Biodiesel : a realistic fuel alternative for diesel engines Ed. ke-1. Michigan: Springer

Demirbas, A. 2008. Biodiesel from Triglycerides via Transesterification. Dlm. (pnyt.). Ed. Biodiesel hlm. 121-140. Springer London.

Deshpande, A., G. Anitescu, P. A. Rice & L. L. Tavlarides 2010. Supercritical biodiesel production and power cogeneration: Technical and economic feasibilities. Bioresource Technology 101(6): 1834-1843.

Di Nicola, G., M. Moglie, M. Pacetti & G. Santori 2010. Bioenergy II: Modeling and multi-objective optimization of different biodiesel production processes.

International Journal of Chemical Reactor Engineering 8: 16.

Diasakou, M., A. Louloudi & N. Papayannakos 1998. Kinetics of the non-catalytic transesterification of soybean oil. Fuel 77(12): 1297-1302.

Douglas, J. M. 1988. Conceptual Design of Chemical Processes Ed.: McGraw-Hill Book Company.

Du, H., M. Fang, L. Song, Z. Tan, Y. He & X. Han 2015. Effect of different reaction parameters on the synthesis of biodiesel from soybean oil using acid ionic liquid as catalyst. Asian Journal of Chemistry 26(22): 7575-7580.

Dubé, M. A., A. Y. Tremblay & J. Liu 2007. Biodiesel production using a membrane reactor. Bioresource Technology 98(3): 639-647.

Edgar, T. F., D. M. Himmelblau & L. S. Lasdon. 2001. Optimization of Chemical

Processes Ed. ke-2. Michigan: McGraw-Hill.

EIA. 2011. U.S Energy Information Administration. http://www.eia.gov [16 March 2011].

204

EIA. 2011. U.S. Energy Information Administration. www.eia.gov/mer [March 16 2011].

El Arroussi, H., R. Benhima, I. Bennis, N. El Mernissi & I. Wahby 2015. Improvement of the potential of Dunaliella tertiolecta as a source of biodiesel by auxin treatment coupled to salt stress. Renewable Energy 77(0): 15-19. Elms, R. D. & M. M. El-Halwagi 2010. The effect of greenhouse gas policy on the

design and scheduling of biodiesel plants with multiple feedstocks. Clean

Technologies and Environmental Policy 12(5): 547-560.

Endalew, A. K., Y. Kiros & R. Zanzi 2011. Heterogeneous catalysis for biodiesel production from Jatropha curcas oil (JCO). Energy In Press, Corrected Proof. Fair, J. R. 1961. How to predict sieve tray entrainment and flooding. Petro/Chemical

Engineering 33: 45.

Felizardo, P., J. MacHado, D. Vergueiro, M. J. N. Correia, J. P. Gomes & J. M. Bordado 2011. Study on the glycerolysis reaction of high free fatty acid oils for use as biodiesel feedstock. Fuel Processing Technology 92(6): 1225-1229. Fenske, M. R. 1932. Fractionation of Straight-Run Pennsylvania Gasoline. Industrial

& Engineering Chemistry 24(5): 482-485.

Floudas, C. A. 1995. Nonlinear and Mixed-Integer Optimization Fundamentals and

Applications Ed. New York: Oxford Universiti Press.

Floudas, C. A., A. Aggarwal & A. R. Ciric 1989. Global optimum search for nonconvex NLP and MINLP problems. Computers & Chemical Engineering 13(10): 1117-1132.

Fogler, H. S. 1999. Elemants of Chemical Reaction Engineering Ed. ke-3. Prentice Hall International Inc.

Fore, S. R., W. Lazarus, P. Porter & N. Jordan 2011. Economics of small-scale on-farm use of canola and soybean for biodiesel and straight vegetable oil biofuels. Biomass and Bioenergy 35(1): 193-202.

Freedman, B., R. Butterfield & E. Pryde 1986. Transesterification kinetics of soybean oil 1. Journal of the American Oil Chemists' Society 63(10): 1375-1380.

Freedman, B., R. O. Butterfield & E. H. Pryde 1986. Transesterification kinetics of soybean oil 1. Journal of the American Oil Chemists' Society 63(10): 1375-1380.

Freedman, B., E. H. Pryde & T. L. Mounts 1984. Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil

Chemists Society 61(10): 1638-1643.

Friesenhagen, L. & H. Lepper 1986. Process for the production of fatty acid esters of short-chain aliphatic alcohols from fats and/or oils containing free fatty acids. US Patent.

Furuta, S., H. Matsuhashi & K. Arata 2006. Biodiesel fuel production with solid amorphous-zirconia catalysis in fixed bed reactor. Biomass and Bioenergy 30(10): 870-873.

García, M., A. Gonzalo, J. L. Sánchez, J. Arauzo & J. A. Peña 2010. Prediction of normalized biodiesel properties by simulation of multiple feedstock blends.

Bioresource Technology 101(12): 4431-4439.

Gilliland, E. R. 1940. Multicomponent Rectification Estimation of the Number of Theoretical Plates as a Function of the Reflux Ratio. Industrial & Engineering

Chemistry 32(9): 1220-1223.

Glasser, D. & D. Hildebrandt 1997. Reactor and process synthesis. Computers and

Chemical Engineering 21(SUPPL.1): S775-S783.

Grossmann, I. E. & Z. Kravanja 1995. Mixed-integer nonlinear programming techniques for process systems engineering. Computers & Chemical

Engineering 19, Supplement 1(0): 189-204.

Gumus, R. H., I. Wouton & H. Osaro 2013. Simulation Model for Biodiesel Production using Plug Flow Reactor: Non Isothermal Operation. International

Journal of Engineering Research and Development 6(9): 59-66.

Haas, M. J., A. J. McAloon, W. C. Yee & T. A. Foglia 2006. A process model to estimate biodiesel production costs. Bioresource Technology 97(4): 671-678. Halim, I., A. Carvalho, R. Srinivasan, H. A. Matos & R. Gani 2011. A combined

heuristic and indicator-based methodology for design of sustainable chemical process plants. Computers and Chemical Engineering 35(8): 1343–1358. Halim, I. & R. Srinivasan 2011. A knowledge-based simulation-optimization

framework and system for sustainable process operations. Computers and

Chemical Engineering 35(1): 92-105.

Hama, S., H. Yamaji, T. Fukumizu, T. Numata, S. Tamalampudi, A. Kondo, H. Noda & H. Fukuda 2007. Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochemical Engineering Journal 34(3): 273-278.

206

Harvey, A. P., M. R. Mackley & T. Seliger 2003. Process intensification of biodiesel production using a continuous oscillatory flow reactor. Journal of Chemical

Technology and Biotechnology 78(2-3): 338-341.

Haslenda, H. & M. Z. Jamaludin 2011. Industry to Industry By-products Exchange Network towards zero waste in palm oil refining processes. Resources,

Conservation and Recycling 55(7): 713-718.

He, H., T. Wang & S. Zhu 2007. Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process. Fuel 86: 442–447.

Helwani, Z., M. R. Othman, N. Aziz, W. J. N. Fernando & J. Kim 2009. Technologies for production of biodiesel focusing on green catalytic techniques: A review.

Fuel Processing Technology 90(12): 1502-1514.

Hildebrandt, D. & L. T. Biegler 1995. Synthesis of chemical reactor networks. Anjuran American Institute of Chemical Engineers.

Holland, C. D. & R. G. Anthony. 1979. Fundamentals of chemical reaction

engineering Ed.: Prentice-Hall.

Hong, I. K., J. W. Park, H. Kim & S. B. Lee 2014. Alcoholysis of canola oil using a short-chain (C1-C3) alcohols. Journal of Industrial and Engineering

Chemistry 20(5): 3689-3694.

Horn, F. J. M. 1964. Attainable and non-attainable regions in chemical reaction

technique Ed. London. U.K: Pergamon Press.

Horn, F. J. M. 1964. Attainable Regions in Chemical Reaction Technique. Third

European Symposium of Chemical Reaction Engineering.

Hsieh, L.-S., U. Kumar & J. C. S. Wu 2010. Continuous production of biodiesel in a packed-bed reactor using shell-core structural Ca(C3H7O3)2/CaCO3 catalyst.

Chemical Engineering Journal 158(2): 250-256.

Ignacio, E. G. & G. Gonzalo 2010. Scope for the application of mathematical programming techniques in the synthesis and planning of sustainable processes. Computers and Chemical Engineering 34: 1365-1376.

Iršič Bedenik, N. & Z. Kravanja 2005. MINLP synthesis of reactor networks based on a concept of time dependent economic regions. Computer Aided Chemical

Engineering 20: 943-948.

Jain, S. & M. P. Sharma 2010. Kinetics of acid base catalyzed transesterification of Jatropha curcas oil. Bioresource Technology 101(20): 7701-7706.

Jegannathan, K. R., C. Eng-Seng & P. Ravindra 2011. Economic assessment of biodiesel production: Comparison of alkali and biocatalyst processes.

Renewable and Sustainable Energy Reviews 15(1): 745-751.

Joelianingsih, H. Maeda, S. Hagiwara, H. Nabetani, Y. Sagara, T. H. Soerawidjaya, A. H. Tambunan & K. Abdullah 2008. Biodiesel fuels from palm oil via the non-catalytic transesterification in a bubble column reactor at atmospheric pressure: A kinetic study. Renewable Energy 33(7): 1629-1636.

Kaewcharoensombat, U., K. Prommetta & T. Srinophakun 2011. Life cycle assessment of biodiesel production from jatropha. Journal of the Taiwan

Institute of Chemical Engineers 42: 454-462.

Keera, S. T., S. M. El Sabagh & A. R. Taman 2011. Transesterification of vegetable oil to biodiesel fuel using alkaline catalyst. Fuel 90(1): 42-47.

Klofutar, B., J. Golob, B. Likozar, C. Klofutar, E. Zagar & I. Poljansek 2010. The transesterification of rapeseed and waste sunflower oils: Mass-transfer and kinetics in a laboratory batch reactor and in an industrial-scale reactor/separator setup. Bioresource Technology 101(10): 3333-3344.

Knothe, G. 2013. Avocado and olive oil methyl esters. Biomass and Bioenergy 58(0): 143-148.

Kocis, G. R. & I. E. Grossmann 1988. Global optimization of nonconvex Mixed-Integer Nonlinear Programming (MINLP) problems in process synthesis.

Industrial and Engineering Chemistry Research 27(8): 1407-1421.

Kokossis, A. C. & C. A. Floudas 1991. Synthesis of isothermal reactor—separator— recycle systems. Chemical Engineering Science 46(5–6): 1361-1383.

Komers, K., F. Skopal & A. Čegan 2010. Continuous biodiesel production in a cascade of flow ideally stirred reactors. Bioresource Technology 101(10): 3772-3775.

Komers, K., F. Skopal, R. Stloukal & J. Machek 2002. Kinetics and mechanism of the KOH — catalyzed methanolysis of rapeseed oil for biodiesel production.

European Journal of Lipid Science and Technology 104(11): 728-737.

Kumar, D. & A. Ali 2012. Nanocrystalline K–CaO for the transesterification of a variety of feedstocks: Structure, kinetics and catalytic properties. Biomass and

Bioenergy 46(0): 459-468.

Kusdiana, D. & S. Saka 2001. Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel 80(5): 693-698.

208

Kusdiana, D. & S. Saka 2004. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technology 91(3): 289-295. Kwiecien, J., M. Hájek & F. Skopal 2009. The effect of the acidity of rapeseed oil on

its transesterification. Bioresource Technology 100(23): 5555-5559.

Kwon, K., N. Vahdat & J. Mbah 2015. Fatty acid methyl ester biofuels produced from canola oil with honeycomb monolithic catalysts. Fuel 145: 116-126.

Lakshmanan, A. & L. T. Biegler 1996. Synthesis of Optimal Chemical Reactor Networks. Industrial & Engineering Chemistry Research 35(4): 1344-1353. Leão, R. R. D. C. C., S. Hamacher & F. Oliveira 2011. Optimization of biodiesel

supply chains based on small farmers: A case study in Brazil. Bioresource

Technology 102(19): 8958-8963.

Leduc, S., K. Natarajan, E. Dotzauer, I. McCallum & M. Obersteiner 2009. Optimizing biodiesel production in India. Applied Energy 86(SUPPL. 1): S125-S131.

Lee, J. H., S. B. Kim, S. W. Kang, Y. S. Song, C. Park, S. O. Han & S. W. Kim 2011. Biodiesel production by a mixture of Candida rugosa and Rhizopus oryzae lipases using a supercritical carbon dioxide process. Bioresource Technology 102(2): 2105-2108.

Leevijit, T., C. Tongurai, G. Prateepchaikul & W. Wisutmethangoon 2008. Performance test of a 6-stage continuous reactor for palm methyl ester production. Bioresource Technology 99(1): 214-221.

Leevijit, T., W. Wisutmethangoon, G. Prateepehaikul, C. Tongurai & M. Allen 2004. A second order kinetics of palm oil transesterification in a batch reactor. The

Joint International Conference on "Sustainable Energy and Environment (SEE)" 3-025(O): 277-281.

Levenspiel, O. 1999. Chemical Reaction Engineering Ed. ke-3. USA: John Wiley & Sons.

Liang, X. 2014. A novel solid acid with both sulfonic and carbonyl acid groups for biodiesel synthesis. International Journal of Green Energy 11(9): 954-961. Liang, X., S. Gao, H. Wu & J. Yang 2009. Highly efficient procedure for the synthesis

of biodiesel from soybean oil. Fuel Processing Technology 90(5): 701-704. Lu, P., L. Li, W. Liu & Z. Yuan 2007. Biodiesel production from high acidified oil

through solid acid catalyst and plug flow reactor. ISES Solar World Congress

Lu, P., Z. Yuan, L. Li, Z. Wang & W. Luo 2010. Biodiesel from different oil using fixed-bed and plug-flow reactors. Renewable Energy 35(1): 283-287.

Mahesh, S. E., A. Ramanathan, K. M. M. S. Begum & A. Narayanan 2015. Biodiesel production from waste cooking oil using KBr impregnated CaO as catalyst.

Energy Conversion and Management 91: 442-450.

Marchetti, J. M. & A. F. Errazu 2008. Technoeconomic study of supercritical biodiesel production plant. Energy Conversion and Management 49(8): 2160-2164.

Marchetti, J. M., V. U. Miguel & A. F. Errazu 2008. Techno-economic study of different alternatives for biodiesel production. Fuel Processing Technology 89(8): 740-748.

MathWorks. 2014. MathWorks Documentation Center 2014a.

Mierczynski, P., K. A. Chalupka, W. Maniukiewicz, J. Kubicki, M. I. Szynkowska & T. P. Maniecki 2014. SrAl2O4 spinel phase as active phase of transesterification of rapeseed oil. Applied Catalysis B: Environmental 164: 176-183.

Minami, E. & S. Saka 2006. Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process. Fuel 85(17-18): 2479-2483.

Ming, D., D. Glasser & D. Hildebrandt 2013. Application of attainable region theory to batch reactors. Chemical Engineering Science 99: 203-214.

Moghaddam, N. A., K. Tahvildari & S. Taghvaie 2010. Trans-Esterification for Production of Biodiesel from Waste Frying Oil (WFO). World Academy of

Science, Engineering and Technology 71: 615-619.

Myint, L. & M. El-Halwagi 2009. Process analysis and optimization of biodiesel production from soybean oil. Clean Technologies and Environmental Policy 11(3): 263-276.

Narvàez, P. C., S. M. Rincόn & F. J. Sánchez 2007. Kinetics of palm oil methanolysis. JAOCS, Journal of the American Oil Chemists' Society 84(10): 971-977.

Nelson, D. M., M. A. Vonderembse & S. S. Rao 2011. Life cycle evaluation strategies of biodiesel fuel along the supply chain in public transport. International

210

Nelson, R. G., S. A. Howell & J. A. Weber 1994. Potential feedstock supply and costs for biodiesel production. Sixth National Bioenergy Conference, hlm. 59-66. Nocedal, J. & S. J. Wright. 2006. Numerical Optimization Ed. ke-2. Springer Verlag. Noordam, M. & R. Whithers. 1996. Producing biodiesel from canola in the inland

northwest: an economic feasibility study. Idaho Agricultural Experiment Station Bulletin No. 785. 12.

Noureddini, H. & D. Zhu 1997. Kinetics of transesterification of soybean oil. JAOCS,

Journal of the American Oil Chemists' Society 74(11): 1457-1463.

O’Connell, H. E. 1946. Plate efficiency of fractionating columns and absorbers.

Transactions of the American Institute of Chemical Engineers 42: 741.

Øien, M. 2012. Modelling of Biodiesel Production with SIMULINK: Conventional Plug Flow Reactor Followed by Separation and Purification. Specialization Project Report.Tesis Fakultet for naturvitenskap og teknologi, Institutt for kjemisk prosessteknologi, Norges teknisk-naturvitenskapelige universitet (NTNU)

Oliveira, M. B., A. J. Queimada & J. A. P. Coutinho 2010. Modeling of Biodiesel Multicomponent Systems with the Cubic-Plus-Association (CPA) Equation of State. Industrial and Engineering Chemistry Research 49: 1419-1427.

Olutoye, M. A. & B. H. Hameed 2011. Synthesis of fatty acid methyl ester from used vegetable cooking oil by solid reusable Mg1-x Zn1+xO2 catalyst. Bioresource

Technology 102(4): 3819-3826.

Orifici, L. I., C. D. Bahl, A. Bandoni & A. M. Pagano 2013. Modeling and Simulation of The Biodiesel Production in a Pilot Continuous Reactor. Mecánica

Computacional 32: 1451-1461.

Pahor, B., Z. Kravanja & N. Iršič Bedenik 2001. Synthesis of reactor networks in overall process flowsheets within the multilevel MINLP approach. Computers

& Chemical Engineering 25(4–6): 765-774.

Patil, P. D. & S. Deng 2009. Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel 88(7): 1302-1306.

Pinto, A. C., L. L. N. Guarieiro, M. J. C. Rezende, N. M. Ribeiro, E. A. Torres, W. A. Lopes, P. A. P. De Pereira & J. B. De Andrade 2005. Biodiesel: An overview.

Dokumen terkait