• Tidak ada hasil yang ditemukan

Tanggal Lulus :

DAFTAR LAMPIRAN

2. TINJAUAN PUSTAKA

2.2. Sistem Konsentrasi Solar

Sistem konsentrasi solar menggunakan lensa atau kaca untuk mengkonsentrasi atau mengumpulkan energi dari matahari, menghasilkan temperatur yang cukup tinggi untuk menggerakkan turbin atau mesin uap untuk menghasilkan energi listrik. Menurut Seia (2009) sekarang ini, lebih dari 400 MW dihasilkan dari sistem ini yang beroperasi di Amerika Serikat, dan proyek- proyek dengan total lebih dari 8000 MW yang saat ini sedang dikembangkan.

Ada tiga teknologi sistem konsentrasi solar (Nrel, 2001), yaitu: (1) Dish engine, (2) Parabolic trough dan (3) Central receiver.

(1) Dish Engine

Sistem dish engine mentransfer energi matahari yang terkonsentrasi dengan efisiensi tinggi menjadi energi listrik. Bagian yang penting dari sistem dish engine terdiri dari (Cleanenergy, 2009): konsentrator berbentuk parabolik, sistem tracking, receiver, dan mesin (stirling dan generator).

Konsentrator berbentuk parabolik memantulkan dan mengkonsentrasi sinar matahari ke receiver yang terletak di titik fokus konsentrator. Sinar matahari diserap oleh receiver dan meneruskannya ke mesin. Mesin akan mengubah energi matahari menjadi energi mekanik dan generator akan

mengkonversi energi mekanik menjadi energi listrik. Menjaga agar pantulan sinar matahari ke titik fokus tetap terjaga, dish engine menggunakan dual-axis collector untuk men-tracking matahari. Setiap dish akan menghasilkan 5 sampai 30

5

kilowatt listrik tergantung pada sistem (Seia, 2009). Gambar 1 adalah Stirling Energy System 25 kW milik SunCatcherTM memiliki tinggi 38 kaki dan lebar 40 kaki.

Sistem dish engine memiliki karakteristik efisiensi tinggi, modularitas, operasi autonomous, dan hibrida yang melekat. Menurut (Solarpaces, 2001) dibandingkan dengan teknologi surya yang lainya, solar dish engine menunjukkan konversi energi matahari ke energi listrik dengan efisiensi tertinggi (29,4%). Oleh karena itu, dish engine memiliki potensi untuk menjadi salah satu sumber paling murah untuk energi terbarukan.

Gambar 1. Pembangkit listrik tenaga surya 25 kW dengan sistem dish engine milik SunCatcherTM (Seia, 2009)

(2) Parabolic Trough

Sistem parabolic trough menggunakan cermin yang berbentuk U atau melengkung yang memanjang untuk memusatkan energi matahari. Cermin tersebut memfokuskan energi matahari ke receiver yang berbentuk pipa berisi cairan (misalnya, minyak sintetis) yang memanjang di tengah-tengah titik pusat parabolik tersebut. Cairan panas tersebut digunakan untuk mendidihkan air di

generator uap konvensional dan menghasilkan listrik. Seia (2009) mengatakan cairan panas tersebut dapat mencapai temperatur 700° F. Gambar 2 adalah pengumpul Luz LS-3 digunakan pada pembangkit 80 MW SEGS IX di California yang memiliki panjang 325 kaki dan lebar 11 kaki dengan efisiensi konversi energi sekitar 24%.

Gambar 2. Pembangkit listrik tenaga surya dengan sistem parabolic trough SEGS IX di California, Amerika Serikat (Seia, 2009)

(3) Central Receiver

Sistem central receiver ini menggunakan menara pembangkit yang dikelilingi oleh cermin-cermin yang ditempatkan di suatu area yang luas untuk mengumpulkan energi matahari dan memusatkannya ke bagian atas menara pembangkit dimana terdapat receiver yang ditempatkan di sana. Panas yang dihasilkan mencairkan garam yang kemudian dialirkan untuk memanaskan air. Uap yang dihasilkan dari air panas digunakan untuk memutar generator

konvensional dan menghasilkan energi listrik. Menurut (Seia, 2009) energi matahari yang terfokus digunakan untuk perpindahan cairan (800° F sampai

7

1000° F) untuk menghasilkan uap dan menjalankan generator pusat. Gambar 3 adalah PS20 milik Abengoa, pembangkit listrik 20 MW di Seville, Spanyol 1255 heliostat mengelilingi menara dengan tinggi 531 kaki.

Gambar 3. Pembangkit listrik tenaga surya dengan sistem central receiver milik Abengoa di Seville, Spanyol (Seia, 2009)

Semakin banyak output sebuah sistem dapat menyediakan input solar yang diberikan. Sistem dish engine menunjukkan karakteristik yang paling baik, karena konsentrator dan kinerja mesinnya yang tinggi serta inersia panasnya rendah yang memungkinkan untuk lebih cepat melakukan start-up dibandingkan dengan sistem konsentrasi solar skala besar seperti central receiver atau parabolic trough (Pitz-Paal, 2007). Pada Gambar 4 menunjukkan energi listrik harian yang dihasilkan berdasarkan masukan matahari harian untuk setiap sistem konsentrator yang berbeda.

Gambar 4. Kinerja dari setiap sistem konsentrator (Pitz-Paal, 2007)

2.3. Sensor

Sensor adalah perangkat yang mengubah fenomena fisik menjadi sinyal elektronik (Kenny, 2005). Sensor menerima rangsangan dan meresponnya

dengan perubahan sinyal listrik dan merupakan jembatan antara dunia sebenarnya dengan perangkat elektronik.

Sensor tidak dapat berdiri sendiri. Biasanya sensor merupakan bagian dari suatu sistem yang lebih besar yang memiliki rangkaian pengkondisi sinyal dan bermacam-macam pemrosesan sinyal analog atau digital. Berdasarkan rangkaian pengkondisi sinyal, sensor dapat dibagi menjadi dua, yaitu pasif dan aktif. Sensor aktif memerlukan pemicu eksternal yang berupa rangkaian penyangga sensor, sehingga selalu ada arus yang melewati sensor. Contoh sensor aktif adalah termistor, Resistance Temperature Detector (RTD), dan strain gauges. Sensor pasif menghasilkan sinyal keluaran sendiri tanpa memerlukan rangkaian dan arus tambahan. Contohnya adalah thermocouple yang menghasilkan thermoelectric dan fotodioda yang menghasilkan photocurrent.

9

Setiap sensor memiliki karakteristik tertentu. Karakter ini menentukan baik buruknya sebuah sensor pada aplikasi tertentu. Karakter ini pula menentukan rangkaian yang digunakan sebagai penyangga sensor. Beberapa karakter penting diantaranya (Carr,1993):

(1) Transfer Function

Transfer Function merupakan hubungan fungsi antara sinyal masukan fisik dan sinyal keluaran elektris. Biasanya, hubungan ini digambarkan sebagai grafik antara sinyal masukan dan keluaran.

(2) Sensitivitas

Sensitivitas merupakan rasio antara perubahan kecil dalam sinyal elektris terhadap perubahan kecil pada sinyal fisik dan dapat diekspresikan sebagai fungsi turunan Transfer Function terhadap sinyal fisik. Satuan yang biasa digunakan adalah volt/Kelvin, milivolt/kilopascal, dsb. Contoh, sebuah termometer akan memiliki sensitivitas tinggi apabila perubahan suhu kecil di lingkungan akan mengakibatkan perubahan tegangan yang tinggi; perubahan tegangan yang signifikan memudahkan pengamatan terhadap sinyal elektris.

(3) Span atau Dynamic Range

Rentang masukan sinyal fisik yang bisa dikonversi ke dalam bentuk sinyal elektris. Sinyal fisik diluar rentang ini diperkirakan memiliki akurasi yang sangat rendah. Satuan yang digunakan antara lain kelvin, pascal, newton. (4) Accuracy atau Uncertainty

Merupakan perkiraan kesalahan terbesar antara sinyal keluaran sebenarnya dan sinyal keluaran ideal. Accuracy merupakan istilah kualitatif, berbeda

dengan uncertainty yang bersifat kuantitatif. Contoh, sebuah sensor memiliki akurasi yang lebih tinggi ketika uncertainty sebesar 1% dibandingkan dengan uncertainty 3%.

(5) Hysteresis

Beberapa sensor tidak kembali ke nilai semula ketika terjadi rangsangan naik atau turun. Besarnya kesalahan yang diperkirakan dalam kuantitas yang diukur merupakan Hysteresis

(6) Nonlinearity

Terkadang juga disebut linearity, merupakan penyimpangan maksimum dari Transfer Function linear terhadap Dynamic Range.

(7) Noise

Beberapa sensor menghasilkan noise bersamaan dengan sinyal keluaran. Beberapa kasus menunjukkan noise pada sensor lebih kecil dibandingkan dengan noise pada rangkaian elektronik selanjutnya.

Dokumen terkait