Wireless Channel Characterization for the 5 GHz Band Airport Surface Area ∗
3.6 Summary
In this chapter, we began with a discussion of the importance of channel modeling, some channel definitions, and a description of the airport surface area channel. This was followed by an overview of statistical channel characterization, in which we described the channel impulse response and transfer function, which completely characterize the chan-nel. This led to a discussion on statistical channel characteristics, includ-ing path loss variation and the correlation functions of the channel impulse response and transfer function, which are quantified using
7 For all MPCs other than thefirst, phase was well modeled as uniform on [0,2π).
Table 3.6 Channel parameters for 5 MHz channels: large airport [2].
Tap index k Energy Weibull shape factor (βk)
P1,k P00,k P11,k
NLOS
1 0.6496 2.28 1.0000 NA 1.0000
2 0.0789 1.65 0.9172 0.1748 0.9255
3 0.0579 2.0 0.8699 0.2003 0.8804
4 0.0516 1.63 0.8445 0.2543 0.8626
5 0.0440 2.0 0.8213 0.2678 0.8407
6 0.0437 1.67 0.8093 0.2571 0.8249
7 0.0390 2.0 0.7926 0.2737 0.8098
8 0.0352 2.0 0.7657 0.2957 0.7847
NLOS-S
1 0.9503 3.5 1.0000 NA 1.0000
2 0.0356 1.47 0.6941 0.5312 0.7935
3 0.0142 1.58 0.5196 0.6942 0.7173
Table 3.7 Channel parameters for 5 MHz channels: medium airport [2].
Tap index k Energy Weibull shape factor (βk)
P1,k P00,k P11,k
NLOS
1 0.8309 1.64 1.0000 NA 1.0000
2 0.0683 1.32 0.8086 0.3018 0.8356
3 0.0444 1.34 0.7379 0.3454 0.7684
4 0.0297 1.40 0.6974 0.3989 0.7389
5 0.0267 1.36 0.6578 0.4710 0.7257
NLOS-S
1 0.9728 4.04 1.0000 NA 1.0000
2 0.0272 1.55 0.6011 0.5532 0.7028
LOS-O
1 0.9893 5.83 1.0000 NA 1.0000
2 0.0107 1.59 0.4458 0.6667 0.5830
metrics in the delay, frequency, time, and Doppler domains. Some dis-cussion of these metrics – RMS delay spread, coherence bandwidth, coherence time, and Doppler spread– was presented, and these metrics were connected to transmission signaling parameters along with a brief discussion on fading. An extensive airport surface area channel measure-ment campaign was summarized. Example measuremeasure-ment results for RMS delay spread, coherence bandwidth, and small-scale fading Rician K-factors were provided. Detailed airport surface area channel models, in the form of tapped-delay lines, were also presented.
Table 3.9 Channel parameters for 5 MHz channels: small airport [3].
Tap index k Energy Weibull shape factor (βk)
P1,k P00,k P11,k
NLOS
1 0.730 2.12 1.0000 NA 1.0000
2 0.098 1.57 0.9162 0.2426 0.9306
3 0.064 1.49 0.8704 0.2824 0.8935
4 0.040 1.67 0.8004 0.3168 0.8300
5 0.037 1.68 0.7935 0.2608 0.8081
6 0.029 2 0.7639 0.3515 0.8000
NLOS-S
1 0.959 4.22 1.0000 NA 1.0000
2 0.041 1.41 0.6028 0.6996 0.8016
LOS-O
1 0.986 5.15 1.0000 NA 1.0000
2 0.014 1.58 0.5092 0.7744 0.7810
Table 3.8 Summary of measured RMS-DS values for three airports [3].
Airport RMS-DS (ns) [min; mean; max]
NLOS NLOS-S LOS-O
bl — [126; 429; 2,427] [5; 44; 124]
OU — [14; 293; 2,416] —
ta [502; 1,390; 2,404] [15; 256; 499] —
References
1 D. W. Matolak,“Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas,”
Final Project Report for NASA ACAST Project, Grant Number NNC04GB45G, May 2006.
2 D. W. Matolak, I. Sen, and W. Xiong,“The 5 GHz Airport Surface Area Channel: Part I, Measurement and Modeling Results for Large Airports,”
IEEE Transactions on Vehicular Technology, 57(4), 2014–2026, 2008.
3 I. Sen and D. W. Matolak,“The 5 GHz Airport Surface Area Channel:
Part II, Measurement and Modeling Results for Small Airports,” IEEE Transaction on Vehicular Technology, 57(4), 2027–2035, 2008.
4 J. G. Proakis, Digital Communications, 2nd edn, McGraw-Hill, New York, NY, 1989.
5 W. Stallings, Data and Computer Communications, 7th edn, Prentice Hall, Upper Saddle River, NJ, 2004.
6 G. Stuber, Principles of Mobile Communications, Kluwer Academic Publishers, Norwell, MA, 1996.
7 S. G. Wilson, Digital Modulation and Coding, Prentice Hall, Upper Saddle River, NJ, 1996.
8 H. V. Poor, G. W. Wornell, (eds.), Wireless Communications: Signal Processing Perspectives, Prentice Hall, Upper Saddle River, NJ, 1998.
9 A. F. Molisch (ed.), Wideband Wireless Digital Communications, Prentice Hall, Upper Saddle River, NJ, 2001.
10 L.-L. Yang and L. Hanzo,“Multicarrier DS-CDMA: A Multiple Access Scheme for Ubiquitous Broadband Wireless Communications,” IEEE Communications Magazine, 41(10), 116–124, 2003.
11 J. D. Parsons, The Mobile Radio Propagation Channel, 2nd edn, John Wiley & Sons, Inc., New York, NY, 2000.
12 D. J. Torrieri, Principles of Secure Communication Systems, 2nd edn, Artech House, Boston, MA, 1992.
13 M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communication Systems: Modeling, Methodology, and Techniques, 2nd edn, Kluwer Academic Press, Boston, MA, 2000.
14 W. H. Tranter, K. S. Shanmugan, T. S. Rappaport, and K. L. Kosbar, Principles of Communication System Simulation with Wireless Applications, Prentice Hall, Upper Saddle River, NJ, 2004.
15 S. Weinberg, The First Three Minutes: A Modern View of the Origin of the Universe, Basic Books, New York, NY, 1993.
16 C. A. Levis, J. T. Johnson, and F. L. Teixeira, Radiowave Propagation:
Physics and Applications, John Wiley & Sons, Inc., Hoboken, NJ, 2010.
17 H. L. Bertoni, Radio Propagation for Modern Wireless Systems, Prentice Hall, Upper Saddle River, NJ, 2000.
18 A. Saakian, Radio Wave Propagation Fundamentals, Artech House, Norwood, MA, 2011.
19 F. Perez Fontan and P. Marino Espineira, Modeling the Wireless Propagation Channel, John Wiley & Sons, Inc., Hoboken, NJ, 2008.
20 M. Patzold, Mobile Fading Channels, John Wiley & Sons, Inc., Hoboken, NJ, 2002.
21 S. Salous, Radio Propagation Measurements and Channel Modeling, John Wiley & Sons, Inc., Hoboken, NJ, 2013.
22 F. Hlawatsch and G. Matz (eds.), Wireless Communications Over Rapidly Time-Varying Channels, Academic Press, Oxford, UK, 2011.
23 W. Jakes (ed.), Microwave Mobile Communications, IEEE Press, New York, NY, 1994.
24 A. G. Kanatas and A. D. Panagopoulos, Radio Wave Propagation and Channel Modeling for Earth–Space Systems, CRC Press, London, UK, 2016.
25 International Telecommunications Union, Radio Communications Sector, 2016. Available athttp://www.itu.int/pub/R-REC.
26 Federal Aviation Administration, Benchmark Report, October 2004.
Available athttp://www.faa.gov/events/benchmarks/.
27 A. F. Molisch, H. Asplund, R. Heddergott, M. Steinbauer, and T. Zwick,
“The COST259 Directional Channel Model – Part I: Overview and Methodology,” IEEE Transactions on Wireless Communications, 5(12), 3421–3433, 2006.
28 R. C. Qiu,“A Study of the Ultra-Wideband Wireless Propagation Channel and Optimum UWB Receiver Design,” IEEE Journal on Selected Areas Communications, 20(9), 1628–1637, 2002.
29 D. Gesbert, H. Bolcskei, D. A. Gore, and A. J. Paulraj,“Outdoor MIMO Wireless Channels: Models and Performance Prediction,” IEEE Transactions on Communications, 50(12), 1926–1934, 2002.
30 B. Clerkxx and C. Oestges, MIMO Wireless Networks, 2nd edn, Academic Press, Oxford, UK, 2013.
31 International Telecommunications Union,“Multipath Propagation and Parameterization of Its Characteristics,” Recommendation ITU-R P.1407-5, September 2013.
32 A. F. Molisch and M. Steinbauer,“Condensed Parameters for Characterizing Wideband Mobile Radio Channels,” International Journal on Wireless Information Networks, 6(3), 133–154, 1999.
33 P. A. Bello,“Characterization of randomly time-variant linear channels,”
IEEE Trans. Commun. Syst., CS-11(4), 360–393, 1963.
34 B. H. Fleury,“An Uncertainty Relation for WSS Processes and Its Application to WSSUS Systems,” IEEE Transactions on
Communications, 44(12), 1632–1634, 1996.
35 J. Jarvelainen, S. L. H. Nguyen, K. Haneda, R. Naderpour, and U. T. Virk,
“Evaluation of Millimeter-Wave Line-of-Sight Probability With Point Cloud Data,” IEEE Wireless Communications Letters, 5(3), 228–231, 2016.
36 D. W. Matolak and R. Sun,“Air-Ground Channel Characterization for Unmanned Aircraft Systems—Part I: Methods, Measurements, and Results for Over-water Settings,” IEEE Transactions on Vehicular Technology, 66(1), 24–44, 2016.
37 M. K. Simon and M. S. Aloini, Digital Communication over Fading Channels, John Wiley & Sons, Inc., New York, NY, 2000.