• Tidak ada hasil yang ditemukan

Tapioka atau pati singkong adalah pati yang diperoleh dari akar yang menggelembung (umbi) dari tanaman singkong. Terdapat dua jenis singkong yang umum dibudidayakan yaitu: varietas yang pahit, Jatropha manihot atau Maniot utilisima dan varietas yang manis, Jatropha dulcis atau Manihot palmata. Umbi singkong biasanya mengandung sedikit asam sianida (HCN) yang akan hilang selama proses ekstraksi pati. Varietas yang pahit biasanya menghasilkan pati yang lebih tinggi dan inilah yang umumnya ditanam untuk diambil patinya, hanya saja memiliki kandungan HCN yang lebih tinggi dari varietas manis (Jackson, 1976).

Asam sianida yang ada pada singkong diproduksi akibat adanya aktifitas enzim terhadap glikosida, phaseolunatin. Jumlah HCN pada singkong terdapat pada kisaran yang lebar, yaitu 0.01-0.035% didalam umbi singkong pahit. Dan

Viscosities of unmodified starches

A B

C

D

15 pada bagian korteks varietas manis dengan persentase yang sama. Pada umbi hanya mengandung 0.004-0.015% HCN. Selama pengeringan di bawah sinar matahari kandungan HCN dapat turun mencapai 0.0006%-0.0017%. Didalam proses pembuatan tapioka asam sianida ini sedapat mungkin harus dikendalikan, karena ketika dibebaskan, HCN akan membentuk ferrosianida yang berwarna biru (Jackson, 1976).

Secara umum, umbi singkong mengandung 60-75% air dan 20-30% pati, tetapi variasinya mulai dari yang terendah 12% hingga yang tertinggi 33%. Singkong pahit kemungkinan memiliki lebih banyak pati dari singkong manis. Secara komersial, perusahaan membeli singkong dari petani berdasarkan kandungan pati yang dapat ditentukan dengan metode Specific Gravity Methode. Metode ini telah digunakan di eropa sebagai dasar pembelian kentang selama lebih dari 100 tahun. Setelah specific gravity dari sampel sebanyak 3-4 kg diperoleh, dibandingkan dengan monogram yang menunjukkan persentase dari pati (Jackson, 1976).

Spesific Gravity (SG) adalah unit dimensionless yang didefinisikan sebagai rasio dari densitas material terhadap densitas dari air pada suhu yang spesifik. Spesific Gravity dirumuskan sebagai :

SG = ρ/ ρH2O

dimana : SG = specific gravity, ρ = densitas fluida atau substansi (kg/m3), ρH2O = densitas air (kg/m3). Densitas air yang umumnya digunakan sebagai referensi adalah pada 4oC (39oF), pada titik ini densitas air berada pana nilai tertinggi (1000 kg/m3 atau 62.4 lb/ft3) (Anonim, 2009b)

Sejumlah metode percobaan untuk menentukan spesific gravity dari padatan, larutan, dan gas telah dibuat. Padatan ditimbang terlebih dahulu di udara, kemudian ditimbang kembali dengan merendam padatan tersebut didalam air. Perbedaan bobot diantara penimbangan di udara dengan penimbangan di dalam air, berdasarkan prinsip archimedes, adalah bobot air yang digamtikan oleh volume padatan. Apabila padatan memiliki densitas lebih rendah dari air, beberapa metode harus ditambahkan untuk membuat singkong benar-benar terendam, seperti dengan menambahkan sistem kerekan (pulley) atau sinker yang diketahui massa dan volumenya. Spesific gravity dari

16 padatan adalah rasio dari bobot di udara dengan selisih antara bobot di udara dengan bobot di dalam air (Anonim, 2009c). Contoh alat dapat dilihat pada Gambar 4.

Gambar 4. Timbangan kadar pati dengan metode Specific Grafity Methode (Sungzicaw, 2007)

Spesific gravity metode ini dapat digunakan untuk mengukur kadar pati singkong dengan melihat hubungan spesific gravity dengan kadar pati. Hubungan spesific gravity pada singkong dengan kadar pati dapat dilihat pada Tabel 1 (Sungzikaw,2007).

Tabel 1. Hubungan Spesific Grafity dengan kadar pati singkong (Sungzikaw, 2007) Wu (gram) Wa (gram) Wu-Wa (gram) Spesific Gravity Kadar Pati (%) 5000 440 4560 1.0965 18.2 5000 460 4540 1.1013 19.2 5000 480 4520 1.1062 20.3 5000 500 4500 1.1111 21.3 5000 520 4480 1.1161 22.3 5000 540 4460 1.1211 23.3 5000 560 4440 1.1261 24.4 5000 580 4420 1.1312 25.4 5000 600 4400 1.1364 26.4 5000 620 4380 1.1416 27.4 5000 640 4360 1.1468 28.5 5000 660 4340 1.1621 29.5

Keterangan : Wu=bobot di udara, Wa=bobot di dalam air

Keranjang untuk menimbang singkong di udara Keranjang untuk menimbang singkong di dalam air Penampung air Skala timbangan

17 Pabrik pengolahan tapioka biasanya berlokasi dekat dengan area penanaman singkong untuk meminimalkan biaya transportasi, dan yang lebih penting lagi, untuk memungkinkan pemprosesan singkong dengan waktu yang paling singkat (Corbishley dan Miller, 1984).

Singkong dihantarkan ke pabrik dan disimpan di tempat penyimpanan (bunker) dari kayu atau beton. Proses bongkar-isi bunker harus selalu diawasi untuk memastikan singkong yang dipanen lebih awal diproses lebih awal. Singkong biasanya dipindahkan ke mesin pencuci dengan menggunakan konveyor. Setelah pencucian, kulit terluar dihilangkan. Bagian lebih dalam dari kupasan, atau korteks, tidak dibuang karena memiliki pati yang dapat di-recovery melalui proses yang modern. Mesin pencuci biasanya berupa mesin berbentuk-U dengan pedal yang menggerakkan singkong yang telah dicuci ke mesin pengupas. Mesin pengupas dapat terintegrasi pada mesin pencuci ataupun terpisah. Singkong dikupas dengan abrasi antar singkong atau antara singkong dengan dinding dan pedal dari mesin pencuci dan pengupas (Corbishley dan Miller, 1984).

Proses selanjutnya adalah ekstraksi pati. Untuk mendapatkan pati, semua dinding sel singkong harus dihancurkan. Untuk memperoleh pati dengan kualitas yang tinggi, singkong yang telah dikupas di potong-potong (chopped) dulu menjadi berukuran 30-50 mm dan di lanjutkan ke mesin pemarutan (rasping device). Variasi kecepatan konveyor digunakan untuk mengkontrol kecepatan pemasukan bahan. Penghancuran yang efisien dibutuhkan untuk mendapatkan hasil ekstraksi yang tinggi. Fungsi ini dapat dilakukan dalam satu atau dua tahap, tergantung efisiensi dari mesin. Mesin pemarut adalah mesin penghancur dengan kecepatan perputaran yang tinggi. Setelah pemarutan, HCN di singkong akan bebas dan terlarut dalam air pencuci. Reaksi HCN dengan besi dapat menghasilkan ferrosianida yang berwarna kebiruan, oleh karena itu mesin pemarut dan mesin-mesin yang lain serta pipa yang berinteraksi dengan pati dibuat dari stainless steel atau bahan lain yang resisten (Corbishley dan Miller, 1984).

18 Setelah penghancuran, pulp dicuci dengan menggunakan saringan (screens) sehingga serat tertahan sedangkan bagian patinya lolos dari saringan. Saringan ini biasanya berbentuk kerucut berputar, menyudut, atau bak. Pada setiap kondisi, penyaringan counter current tetap dibutuhkan (Corbishley dan Miller, 1984).

Larutan pati kasar (crude starch milk) yang telah melewati tahap pencucian dan penyaringan pada konsentrasi 30Be (54 kg pati/m3), dilewatkan pada degritting screen, dimana apabila ada benda asing yang kecil akan dihilangkan, setelah itu masuk ke continous centrifuges dimana pati akan dipisahkan dari serat yang masih ada dan bahan terlarut. Partikel pati kemudian disemprotkan melalui nozel-nozel didalam mangkuk bulat, sedangkan fraksi yang mengandung serat halus dan bahan terlarut dikeluarkan melalui conical disc dengan bantuan pompa sentrifugal. Air bersih dimasukkan melalui nozel dekat pati yang dikumpulkan. Air bersih inipun menggantikan air yang kotor yang dialirkan ke bagian pencuci serat dan pencuci singkong (Corbishley dan Miller, 1984).

Pada setiap operasi sentrifugasi, pati dicuci dengan air yang mengandung sulfur dioksida (SO2) 0.05% secara counter current. Penggunaan SO2 penting untuk mengkontrol aktivitas mikroba pada proses pemisahan pati dengan air. Larutan yang mengandung pati akan keluar dari proses purifikasi berupa slurry dengan total solid 38-42%, sedangkan total solid larutan pati yang telah melewati penyaring vakum adalah 40-45% dan yang telah melewati basket centrifuge memiliki total solid 32-37%. Larutan pati yang telah dihilangkan sebagian airnya digerakkan ke pengering, baik itu tipe drum, belt, tunnel, atau flash. Jenis pengering yang paling umum adalah tipe pengering flash (pneumatic), yang udara panasnya dihasilkan dari heater (coil uap, gas, atau burner berbahan bakar minyak) dengan suhu mencapai 1500C. Pati yang telah kering (k.a. 12-14%) dipisahkan dari udara lembab didalam siklon-siklon, kemudian digiling dan disaring (Corbishley dan Miller, 1984).

19 Menurut DSN (1994), SNI 01-3451-1994 menyatakan tapioka sebagai pati (amylum) yang diperoleh dari umbi ubi kayu segar (Manihot utilisima Pohl atau Manihot usculenta Crantz) setelah melalui proses pengolahan tertentu, dibersihkan dan dikeringkan. Tapioka digolongkan menjadi tiga jenis mutu, yaitu mutu I, mutu II, dan mutu III. Syarat mutu tapioka dapat dilihat dari dua sisi yaitu syarat mutu organoleptik (sehat, tidak berbau apek atau masam, murni, dan tidak kelihatan ampas dan/atau bahan asing) dan syarat teknis. Syarat teknis mutu tapioka ini dapat dilihat pada Lampiran 3.

Dokumen terkait