• Tidak ada hasil yang ditemukan

Pengeringan merupakan proses pengurangan kadar air bahan sampai mencapai kadar air tertentu sehingga menghambat laju kerusakan bahan akibat aktivitas biologis dan kimia (Brooker,1982). Menurut Fellow (2000), pengeringan didefinisikan sebagai penerapan panas dalam kondisi terkontrol untuk menghilangkan sejumlah air yang terkandung dalam bahan, sedangkan Henderson dan Perry (1976) menyatakan bahwa pengeringan adalah proses pengeluaran air dari suatu bahan pertanian menuju kadar air keseimbangan dengan udara sekeliling atau pada tingkat kadar air dimana mutu bahan pertanian dapat dijaga dari serangan jamur, aktivitas serangga dan enzim.

Dasar proses pengeringan adalah terjadinya penguapan air bahan ke udara karena perbedaan kandungan air antara udara dengan bahan yang dikeringkan. Agar suatu bahan menjadi kering, maka udara harus memiliki kandungan uap air atau kelembaban nisbi yang relatif rendah dari bahan yang dikeringkan.

Pada saat suatu bahan dikeringkan, maka akan terjadi dua proses secara bersamaan yaitu : (1) perpindahan energi panas dari lingkungan untuk menguapkan air pada permukaan bahan, dan (2) perpindahan massa (air) di dalam bahan akibat penguapan pada proses pertama. Air yang diuapkan terdiri dari air bebas dan air terikat. Air bebas berada di permukaan dan yang pertama kali mengalami penguapan (Mujumdar dan Devahastin, 2001).

Henderson dan Perry (1976) dan Brooker (1982), menyatakan bahwa proses pengeringan dapat dibagi dua periode, yaitu : periode laju pengeringan tetap dan laju pengeringan menurun. Selama laju pengeringan tetap, bahan mengandung air cukup banyak dimana pada permukaan bahan berlangsung penguapan yang lajunya dapat disamakan dengan laju penguapan pada permukaan air bebas. Keadaan lingkungan sangat berpengaruh terhadap laju penguapan. Laju pengeringan tetap berakhir pada saat laju difusi air dari bahan telah turun sehingga lebih lambat dari laju penguapan. Periode ini berlangsung sangat singkat pada proses pengeringan produk pertanian.

5

Mekanisme pengeringan pada laju pengeringan menurun meliputi dua proses yaitu pergerakan air dari dalam bahan ke permukaan bahan dan pengeluaran air dari permukaan bahan ke udara sekitarnya. Laju pengeringan menurun terjadi setelah laju pengeringan konstan dimana kadar air bahan lebih kecil dari pada kadar air kritis (Henderson dan Perry, 1976). Sedangkan menurut Helmand dan Singh (1980), menyatakan bahwa selama periode laju pengeringan konstan, laju kadar air berpindah dari bahan dibatasi oleh laju evaporasi dari permukaan air pada bahan. Laju pengeringan ini kontinyu sepanjang migrasi kadar air ke permukaan dimana evaporasinya lebih cepat dari pada evaporasi di permukaan dan laju evaporasinya dinyatakan dalam persamaan berikut :

) ( ) ( a w m w a k A H H L T T hA dt dw== ... (1) Pengeringan periode laju menurun terjadi setelah kadar air mencapai titik kritis, proses pengeringan berlangsung pada laju yang menurun secara linear.

Menurut Brooker, (1974), beberapa parameter yang mempengaruhi waktu yang dibutuhkan dalam proses pengeringan, antara lain :

1. Suhu udara pengering

Laju penguapan air bahan dalam pengering sangat ditentukan oleh kenaikan suhu. Bila suhu pengering dinaikkan maka panas yang dibutuhkan untuk penguapan air bahan menjadi berkurang. Suhu udara pengering berpengaruh terhadap lama pengeringan dan kualitas bahan hasil pengeringan. Makin tinggi suhu udara pengering, maka proses pengeringan makin singkat.

2. Kelembaban relatif udara pengering

Kelembaban udara relatif berpengaruh terhadap pemindahan cairan dari dalam ke permukaan bahan. Kelembaban relatif juga menentukan besarnya tingkat kemampuan udara pengering dalam menampung uap air di permukaan bahan. Semakin rendah udara pengering, makin cepat pula proses pengeringan, karena mampu menyerap dan menampung air lebih banyak dari pada udara dengan kelembaban relatif yang lebih tinggi.

Laju penguapan air dapat ditentukan berdasarkan perbedaan tekanan uap air pada udara yang mengalir dengan tekanan uap air pada permukaan bahan yang dikeringkan. Tekanan uap jenuh ini ditentukan oleh besarnya suhu dan

6

kelembaban relatif udara. Semakin tinggi suhu, maka kelembaban relatif udara makin turun sehingga tekanan uap jenuhnya akan naik.

3. Kecepatan udara pengering

Pada proses pengeringan, udara berfungsi sebagai pembawa panas untuk menguapkan kandungan air pada bahan serta mengeluarkan uap air tersebut. Air yang dikeluarkan dari bahan dalam bentuk uap dan harus secepatnya keluar dari bahan. Bila tidak segera dipindahkan, maka akan membuat kondisi jenuh pada permukaan bahan, sehingga akan memperlambat pengeluaran air selanjutnya. Aliran udara yang ceat akan membawa uap air dari permukaan bahan dan mencegah uap air tersebut menjadi jenuh di permukaan bahan. Semakin besar volume udara yang mengalir, maka semakin besar pula kemampuan udara untuk membawa uap air yang ada di permukaan bahan.

2.2. Pengering berenergi surya

Tujuan utama suatu sistem berenergi surya adalah mengumpulkan energi radiasi surya menjadi panas. Dalam aplikasi pengeringan komoditi pertanian

terdapat tiga cara pengumpulan dan pengubahan energi surya yaitu : (1) Penjemuran. Komoditi pertanian dihamparkan di atas tanah sehingga terkena

sinar matahari langsung. Hal ini menyebabkan jumlah panas yang hilang ke tanah sangat banyak dan bahan yang dikeringkan akan menyerap uap air dari tanah selama pengeringan; (2) Glanzing material yaitu menempatkan bahan pertanian di bawah bahan kaca. Bahan kaca tertembus gelombang pendek sinar matahari tetapi tidak tembus gelombang panjang inframerah (radiasi surya) sehingga menimbulkan efek ruamah kaca. Bahan kaca penangkap energi surya berfungsi sebagai : bahan penutup yang tak tembus radiasi panas yang dipantulkan oleh bahan yang dikeringkan, sehingga panas terperangkap oleh penutup dan berfungsi sebagai pembungkus untuk mengurangi kehilangan panas secara konveksi; (3) meletakkan bahan pertanian dalam wadah (container) yang berfungsi penyerap panas (absorber). Cara ketiga ini merupakan cara yang paling efektif dalam pengumpulan energi surya dengan kehilangan panas yang rendah dan investasi awal yang relatif lebih murah.

7

Panas yang terjadi di dalam pengering ERK sebagai akibat dari energi gelombang pendek yang dipancarkan oleh matahari, diserap benda yang ada di dalamnya, sebagian energi ini diserap dan dipantulkan dalam bentuk gelombang panjang yang tak tembus penutup transparan. Lapisan penutup transparan memungkinkan radiasi gelombang pendek dari matahari masuk dan menyekat radiasi gelombang panjang (Abdullah et al., 1990).

Pengering efek rumah kaca (Abdullah et al., 1996) adalah sistem pengering bertenaga surya dan struktur bangunan tembus cahaya yang memanfaatkan efek rumah kaca. Sistem ini dapat digunakan pada pengeringan berbagai komoditas pertanian, murah dibanding dengan sistem yang sudah ada, dan menghasilkan kualitas yang memadai.

Jika matahari mengenai bahan tembus cahaya, maka sebagian sinar itu diteruskan selain diserap dan dipantulkan kembali. Oleh karena itu penutup transparan memerlukan bahan yang memiliki daya tembus (trasmissivity) yang tinggi dengan daya serap (absortivity) dan daya pantul (reflektivity) yang rendah agar memerangkap gelombang pendek sebanyak mungkin.

Suhu udara di dalam ruang pengering ERK berfluktuatif karena sangat dipengaruhi oleh keberadaan surya. Iradiasi surya sifatnya selalu berubah dan besar iradiasinya sangat dipengaruhi oleh waktu, lokasi dan musim. Oleh karena itu pada sistem pengering ini masih diperlukan energi tambahan lainnya seperti energi hasil pembakaran biomassa.

Faktor-faktor yang mempengaruhi proses pengeringan (Hall, 1957) yaitu : faktor yang berhubungan dengan udara pengeringan dan faktor yang berhubungan dengan sifat bahan yang dikeringkan. Faktor yang berhubungan dengan udara pengeringan adalah suhu udara, debit aliran dan kelembaban udara pengering, sedangkan faktor yang berhubungan dengan sifat bahan adalah bentuk, ukuran, ketebalan bahan yang dikeringkan serta tekanan parsialnya. Menurut Suharto (1991), faktor yang berpengaruh terhadap pengeringan diantaranya adalah suhu dan kelembaban lingkungan, kecepatan aliran udara pengering, kadar air bahan, energi pengeringan, efisiensi alat pengering serta kapasitas pengeringan.

8

2.3. Hasil-hasil pengering ERK pada berbagai produk pertanian

Pengeringan cengkeh dengan menggunakan rak pada pengering efek rumah kaca telah menghasilkan penurunan kadar air, suhu dan lama waltu pengeringan yang tidak seragam antara rak atas, tengah dan bawah. Hasil penelitian pengering efek rumah kaca untuk pengeringan cengkeh ditunjukkan pada Tabel 1. sebagai berikut :

Tabel 1. Laju pengeringan rata-rata pada masing-masing rak

Parameter Satuan Rak 1 Rak 2 Rak3

Suhu rak oC 46.9 39.6 38.5

Kadar air awal % bb 70.8 70.8 70.8

Kadar air akhir %bb 13.8 13.5 13.7

Laju pengeringan %bk/jam 5.5 3.4 3.1

Lama oengeringan Jam 40 65 70

(Sumber : Ratnawati.T, 2003)

Perbedaan hasil ini diperoleh karena perbedaan posisi rak dalam ruang pengering sehingga distribusi suhu dalam ruang pengering pada masing-masing rak tidak seragam, pada rak 1 mendapat panas yang tinggi sedangkan pada rak 3 panas yang diterima paling kecil, begitu pula dengan laju dan lama waktu pengeringan.

Wulandani, (2005) melaporkan bahwa terjadi perbedaan yang cukup besar antara suhu rak atas, tengah dan bawah dengan keragaman rata-rata 3.5oC dan nilai ragam maksimum 4.5oC terjadi pada siang hari dengan tingkat radiasi surya rata-rata 538 W/m2 yang sangat berpengaruh pada rak bagian atas. Perubahan suhu pada rak atas mempunyai pola dan nilai yang hampir sama dengan penjemuran. Suhu udara di rak tengah dan bawah lebih rendah dibandingkan dengan suhu udara di rak atas, karena posisinya terhalang oleh sinar matahari oleh rak-rak diatasnya. Namun demikian suhu udara di rak tengah memiliki kecenderungan dan nilai yang sama dengan suhu udara di rak bawah.

Sebaran suhu udara pengering pada suhu lingkungan 32-34oC sebagai suhu inlet dan suhu radiator 53-56oC dan iradiasi surya rata-rata 800.6 W/m2 diperoleh sebaran suhu di dalam ruang pengering antara 37-46oC dan pada kecepatan aliran udara inlet 1 dengan kecepatan 0.66 m/dt dan pada inlet 2 mengalir kecepatan udara 1.35 m/dt sehingga sebaran kecepatan udara di dalam ruang pengering 0.01-0.7 m/dt (Nugraha, 2005).

9

BAB III

Dokumen terkait