• Tidak ada hasil yang ditemukan

TINJAUAN PUSTAKA

2.8 Ukuran Pemanasan Dari Pemanas Induksi

Salah satu yang penting dari desain pemanas induksi ini adalah hasil pengukuran pemanasan yang berupa panas (kalor ). Dengan mengetahui ukuran pemanasan yang dihasilkan, maka kita dapat memperkirakan apakah alat ini dapat diterapkan pada dunia industri sekarang ini.

Hal ini bergantung pada beberapa factor antara lain desain pemanas induksi tersebut dan kapasitas dari sumber AC yang digunakan pada pemanas induksi. Apabila suhu pada inti besi yang telah terhubung pada sumber AC terjadi kenaikan, maka pemanas induksi ini dapat dikatakan sudah dapat berfungsi dengan baik. Kenaikan suhu yang terjadi pada inti besi tersebut disebabkan oleh rugi-rugi arus eddy. Rugi arus eddy ini merupakan factor utama dalam menentukan hasil ukuran pemanas yaitu berupa kalor yang sesuai dengan ke inginan. Ukuran pemanasan pada pemanas induksi ini akan dapat kita ketahui dengan mengukur kalor pada inti besi.

Kemudian kita dapat membandingkan hasil ukuran pemanasan yaitu apabila kita menggunakan inti besi yang berbeda ukurannya. Sebelum kita mengetahui berapa kalor yang dihasilkan oleh pemanas induksi tersebut terlebih dahulu kita harus mengetahui defenisi kalor. Kalor adalah sesuatu yang dipindahkan diantara suatu system dan linkungannya sebagai akibat perbedaan temperature (suhu).

Berikut ini adalah persamaan untuk mendapatkan besar kalor pada pemanas induksi :

Q = m.c. ∆T……….( 2.14 ) Keterangan : Q = Kalor (kalori)

∆T = kenaikan suhu (0c)

m = massa inti besi (gr)

c = kalor jenis besi (0,11 kal/g 0c)

Satuan dari kalor adalah kalor memiliki hubungan dengan energy mekanik, dimana satuan energy mekanik adalah joule sehingga telah ditetapkan dari hukum kekekalan energy bahwa : 1 kalori = 4,186 joule. Setelah kita mengetahui kalor yang dihasilkan, maka kita dapat mengetahui kapasitas dari kalor yang dihasilkan tersebut dengan persamaan sebagai berikut :

C =

………...(2.15)

Keterangan : C = kapasitas kalor (kal/0c)

Q = kalor (kalori)

∆T = kenaikan suhu (0c)

Harga kalor yang telah diketahui akan penulis ubah ke energy mekanik dengan joule, yaitu untuk mengetahui perbandingan watt yang dihasilkan dari rugi-rugi arus eddy dengan watt yang dihasilkan dari kalor maka satuan joule tersebut kita bagi dengan waktu yang digunakan untuk pemanasan. Maka digunakan persamaan :

P =

,sehingga Q = P. ………......(2.16) Keterangan : P = Daya (watt)

Q = kalor yang dihasilkan (joule)

= waktu (detik)

Demikian persamaan yang digunakan dimana kalor yang dihasilkan berbanding selisih waktu yang diperoleh. (Rencono wati,2000).

2.9 MOSFET

Rangkaian driver ini terdiri dari MOSFET. Mosfet yang digunakan pada rangkaian ini adalah Mosfet 16BT, FIB 16 AJ_FGA25N12. Struktur dari Sebuah transistor efek-medan semikonduktor–logam–oksida (MOSFET) adalah berdasarkan pada modulasi konsentrasi muatan oleh kapasitansi MOS di antara elektrode badan dan elektrode gerbang yang terletak di atas badan dan diisolasikan dari semua daerah peranti dengan sebuah lapisan dielektrik gerbang yang dalam MOSFET adalah sebuah oksida, seperti silikon dioksida. Jika dielektriknya bukan merupakan oksida, peranti mungkin disebut sebagai FET semikonduktor–logam–terisolasi (MISFET) atau FET gerbang–terisolasi (IGFET).

Pada rangkaian driver berfungsi sebagai pengendali arus agar positif diarahkan kepositif dan negatif diarahkan kenegatif. Pada rangkaian ini Mosfet digunakan sebanyak 2 . MOSFET bekerja sebagai switching untuk menghasilkan tegangan tinggi pada beban. Ada dua jenis MOSFET, yang pertama jenis

depletion-mode dan yang kedua jenis enhancement-mode. Jenis MOSFET yang kedua adalah komponen utama dari gerbang logika dalam bentuk IC (integrated circuit), uC (micro controller) dan uP (micro processor) yang tidak lain adalah komponen utama dari komputer modern saat ini. Namun jenis mosfet yang digunakan pada alat ini adalah MOSFET Depletion-mode .

Gambar berikut menunjukkan struktur dari transistor jenis ini. Pada sebuah kanal semikonduktor tipe n terdapat semikonduktor tipe p dengan menyisakan sedikit celah. Dengan demikian diharapkan elektron akan mengalir dari source menuju drain

melalui celah sempit ini. Gate terbuat dari metal (seperti aluminium) dan terisolasi oleh bahan oksida tipis SiO2 yang tidak lain adalah kaca.

Gambar 2.9. struktur MOSFET depletion-mode

Semikonduktor tipe p di sini disebut subtrat p dan biasanya dihubung singkat dengan source. Ingat seperti pada transistor JFET lapisan deplesi mulai membuka jika VGS = 0.Dengan menghubung singkat subtrat p dengan source diharapkan ketebalan lapisan deplesi yang terbentuk antara subtrat dengan kanal adalah maksimum. Sehingga ketebalan lapisan deplesi selanjutnya hanya akan ditentukan oleh tegangan gate terhadap source. Pada gambar, lapisan deplesi yang dimaksud ditunjukkan pada daerah yang berwarna kuning.

Semakin negatif tegangan gate terhadap source, akan semakin kecil arus drain yang bisa lewat atau bahkan menjadi 0 pada tegangan negatif tertentu. Karena lapisan deplesi telah menutup kanal. Selanjutnya jika tegangan gate dinaikkan sama dengan tegangan source, arus akan mengalir. Karena lapisan deplesi muali membuka. Sampai di sini prinsip kerja transistor MOSFET depletion-mode tidak berbeda dengan transistor JFET.

Karena gate yang terisolasi, tegangan kerja VGS boleh positif. Jika VGS semakin positif, arus elektron yang mengalir dapat semakin besar. Di sini letak perbedaannya dengan JFET, transistor MOSFET depletion-mode bisa bekerja sampai tegangan gate positif.

Gambar2.10 : Penampang D-MOSFET (depletion-mode)

Struktur ini adalah penampang MOSFET depletion-mode yang dibuat di atas sebuah lempengan semikonduktor tipe p. Implant semikonduktor tipe n dibuat sedemikian rupa sehingga terdapat celah kanal tipe n. Kanal ini menghubungkan drain dengan source dan tepat berada di bawah gate. Gate terbuat dari metal aluminium yang diisolasi dengan lapisan SiO2.

2.10 TERMOKOPEL

Termokopel (Thermocouple) adalah jenis sensor suhu yang digunakan untuk mendeteksi atau mengukur suhu melalui dua jenis logam konduktor berbeda yang digabung pada ujungnya sehingga menimbulkan efek “ Thermo-electric”. Efek Thermo-electric pada Termokopel ini ditemukan oleh seorang fisikawan Estonia bernama Thomas Johann Seebeck pada Tahun 1821, dimana sebuah logam konduktor yang diberi perbedaan panas secara gradient akan menghasilkan tegangan listrik. Termokopel merupakan salah satu jenis sensor suhu yang paling populer dan sering digunakan dalam berbagai rangkaian ataupun peralatan listrik dan Elektronika yang berkaitan dengan Suhu (Temperature).

Beberapa kelebihan Termokopel yang membuatnya menjadi populer adalah responnya yang cepat terhadap perubahaan suhu dan juga rentang suhu operasionalnya yang luas yaitu berkisar diantara -200˚C hingga 2000˚C. Selain

respon yang cepat dan rentang suhu yang luas, Termokopel juga tahan terhadap goncangan/getaran dan mudah digunakan.

2.10.1 Termokopel Tipe N

Tipe termokopel yang digunakan . Stabilitas tinggi dan ketahanannya terhadap oksidasi suhu tinggi membuat tipe N cocok untuk pengukuran suhu tinggi tanpa platinum. Dapat mengukur suhu di atas 1200 °C. Sensitifitasnya sekitar 39 µV/°C pada 900 °C, sedikit di bawah tipe K. Tipe N merupakan perbaikan dari tipe K Termokopel tipe B, R dan S adalah termokopel 'logam mulia'. Semuanya (tipe B,R,S) adalah yang paling stabil dari semua termokopel yang ada, namun karena sensitivitasnya yang rendah (kira-kira 10 v / ° C), mereka biasanya hanya digunakan untuk pengukuran suhu tinggi (> 300 ° C).

Termokopel tersedia dalam berbagai ragam rentang suhu dan jenis bahan. Pada dasarnya, gabungan jenis-jenis logam konduktor yang berbeda akan menghasilkan rentang suhu operasional yang berbeda pula. Berikut ini adalah Jenis-jenis atau tipe Termokopel yang umum digunakan berdasarkan Standar Internasional.

Gambar2.11 : Jenis termokopel yang digunakan

Bahan logam konduktor positif : Nicrosil

2.10.2 Prinsip Kerja Termokopel

Prinsip kerja Termokopel cukup mudah dan sederhana. Pada dasarnya Termokopel hanya terdiri dari dua kawat logam konduktor yang berbeda jenis dan digabungkan ujungnya. Satu jenis logam konduktor yang terdapat pada Termokopel akan berfungsi sebagai referensi dengan suhu konstan (tetap) sedangkan yang satunya lagi sebagai logam konduktor yang mendeteksi suhu panas. Untuk lebih jelas mengenai Prinsip Kerja Termokopel, gambar dibawah ini

Gambar2.12 : Prinsif kerja termokopel

Berdasarkan Gambar diatas, ketika kedua persimpangan atau Junction memiliki suhu yang sama, maka beda potensial atau tegangan listrik yang melalui dua persimpangan tersebut adalah “NOL” atau V1 = V2. Akan tetapi, ketika persimpangan yang terhubung dalam rangkaian diberikan suhu panas atau dihubungkan ke obyek pengukuran, maka akan terjadi perbedaan suhu diantara dua persimpangan tersebut yang kemudian menghasilkan tegangan listrik yang nilainya sebanding dengan suhu panas yang diterimanya atau V1 – V2. Tegangan Listrik yang ditimbulkan ini pada umumnya sekitar 1 µV – 70µV pada tiap derajat Celcius. Tegangan tersebut kemudian dikonversikan sesuai dengan Tabel referensi yang telah ditetapkan sehingga menghasilkan pengukuran yang dapat dimengerti.

BAB III

Dokumen terkait