SECTION VII
I f
12. Hopkins, G., J. Neel and F. Nelson. 1956. E v a l u a t i o n of b r o a d field disposal of sugarbeet w a s t e s . W a t e r P o l l u t i o n C o n t r o l F e d . 28:1466.
13. Hungerford, E. H. 1954. Factory w a s t e s s t a b i l i z a t i o n by a e r a t i o n on l a r g e fields. Am. Soc. Sugar Beet T e c h n o l . P r o c . 8(2):258.
14. Ichikawa, G., G. G. Goluek and W. J. O s w a l d . 1968. B i o - t r e a t - ment of Steffens House waste. J. A m . S o c . S u g a r B e e t T e c h n o l . 15(2):125.
15. Keller, A. and H. Huckabay. 1960. P o l l u t i o n a b a t e m e n t in t h e sugar industry of Louisiana. Water P o l l u t i o n C o n t r o l F e d . 32:755.
16. Lindrooth, J. E. 1954. Wastewater t r e a t m e n t a n d w a s t e d i s p o s a l in the e a s t e r n a r e a . J. Am. Soc. S u g a r B e e t T e c h n o l . 8(2):248.
17. Mayeux, J. V. and A. R. Colmer. 1 9 6 1 . S e l e c t i v e m e d i u m for Leuconostoc detection. J . B a c t e r i d . 8 1 : 1 0 0 9 - 1 0 1 1 .
18. McCleskey, C . S . , L. W. Faville, and R . O . B a r n e t t . 1947.
C h a r a c t e r i s t i c s of Leuconostoc m e s e n t e r o i d e s f r o m c a n e j u i c e . J. Bacteriol. 54:697-708.
19. McDill, B. M. 1947. Symposium on i n d u s t r i a l w a s t e s . B e e t Sugar Industry. Ind. Eng. Chem. 3 9 : 6 5 7 .
20. McGinnis, R. A. 1951. Beet-Sugar T e c h n o l o g y . R e i n h o l d Publishing Corporation, New York, N . Y . p. 5 7 4 . -
2 1 . Pfefler, John T. 1968. Increased l o a d i n g s on d i g e s t e r s w i t h recycle of digested solids. J. Fed. W a t e r P o l l u t i o n C o n t r o l F e d . Nov. 1968 P a r t I pp. 1920-1933.
22. Pfefler, John T . , Martin L e s t e r and J o h n R. W o r l u n d . 1967.
Population dynamics in anaerobic d i g e s t i o n . J. W a t e r P o l l u t i o n Control Fed. August 1967. pp. 1305-1322.
2 3 . Tsugita, Ronald A . , William J. Oswald, R o b e r t C. C o o p e r a n d Clarence G. Golueke. 1969. T r e a t m e n t of s u g a r b e e t f l u m e w a s t e water by lagooning, a pilot study. J. A m . S o c . S u g a r B e e t T e c h n o l .
15(4):282-297.
24. Millipore Corp. 1969. Microbiological e x a m i n a t i o n of w a t e r .
2 5 . Nesbitt, J. B. 1969. P h o s p h o r u s r e m o v a l - t h e s t a t e of the a r t . J . W a t e r Pollution C o n t r o l F e d . P a r t 1:701-713.
2 6 . N o l l e r , C. R. 1951. Textbook of organic c h e m i s t r y . 2nd ed.
W . B . S a u n d e r s & C o . , P h i l a d e l p h i a , P a . and London, England.
2 7 . N o r m a n , Lloyd W . , J a m e s E . Laughlin and L . O . M i l l s . 1965.
W a s t e w a t e r t r e a t m e n t studies a t T r a c y , C a l i f o r n i a . J . A m . Soc.
Sugar Beet T e c h n o l . 13(5):415.
2 8 . P a r k e r , C. D. and G. P. S k e r r y . 1968. Function of solids in a n a e r o b i c lagoon t r e a t m e n t of w a s t e w a t e r . J. W a t e r Pollution C o n t r o l F e d . P a r t I p p . 192-204.
2 9 . Riehl, M . L . , H. H. W e i s e r and B. T. R h e i n s . 1952. Effect of l i m e t r e a t e d w a t e r upon s u r v i v a l of b a c t e r i a . J. A m . Water Works A s s n . 4 4 : 4 6 6 - 4 7 0 .
3 0 . Rose, R„ E. and W. L i t s k y . 1965. E n r i c h m e n t p r o c e d u r e for u s e with the m e m b r a n e f i l t e r for t h e i s o l a t i o n and e n u m e r a t i o n of fecal
s t r e p t o c o c c i in w a t e r . Appl. M i c r o b i o l . 13: 106-108.
3 1 . Schaffer, R . B . , C . E . Van Hall, G . N . M c D e r m o t t , D . B a r t h , V. A. S t e n g e r , S. J. S e b e s t a and S. H. G r i g g s . 1965. Applica- tion of a c a r b o n a n a l y z e r in w a s t e t r e a t m e n t . J. F e d . Water Pollution C o n t r o l F e d . F e b r u a r y 1967. p p . 1545, 1560.
3 2 . S n e d e c o r , G. W. 1946. S t a t i s t i c a l m e t h o d s . 4th ed. Iowa State College P r e s s .
3 3 . S p r e e c e , R . E . and P . L . M c C a r t h . 1962. Nutrient r e q u i r e m e n t s and b i o l o g i c a l solids a c c u m u l a t i o n in a n a e r o b i c d i g e s t i o n . P e r g a m o n P r e s s , Oxford, London, New York a n d P a r i s .
3 4 . U . S . D e p a r t m e n t o f A g r i c u l t u r e . 1969. S u g a r s t a t i s t i c s and r e - lated d a t a . S t a t i s t i c a l Bulletin N o . 244. Volume II (Revised).
Washington, D. C.
3 5 . U . S . D e p a r t m e n t o f I n t e r i o r . F e d . W a t e r Pollution Control A d m . South P l a t t e R i v e r B a s i n P r o j e c t . 1967. The beet s u g a r industry - the w a t e r pollution p r o b l e m and the s t a t u s of w a s t e a b a t e m e n t and t r e a t m e n t , p . 144.
3 6 . Walters, C. F . , R. S. Engelbrect and R. E. S p r e e c e . 1948.
Microbiol, substrate storage in activated s l u d g e . J. S a n i t a r y E n g . Div. Proceedings Am. Soc. Civil Eng. 9 4 ( S A 2 ) .
37. Williams, R. T. and R. A. Taft. 1966. T h e c a r b o n a c e o u s a n a l y z e r as water pollution r e s e a r c h tool. Instrument S o c i e t y of A m e r i c a . Reprint No. 5.2-4-66.
3 8. P e r s o n a l Communication, Amalgated Sugar C o m p a n y .
SECTION VIII A P P E N D I X I
T A B L E S
No. P a g e 12. F i r s t Pond Influent C o r r e l a t i o n Coefficients,
1967-68 Campaign 54 13. Second Pond Effluent C o r r e l a t i o n Coefficients,
1967-68 Campaign 55 14. C o r r e l a t i o n Coefficients, R e c i r c u l a t e d F l u m e W a t e r
S y s t e m , Longmont F a c t o r y , 1968-69 56 15. C o r r e l a t i o n Coefficients, A n a e r o b i c Pond during
Campaign, Longmont F a c t o r y , 1968-69 58 16. C o r r e l a t i o n Coefficients f r o m A n a e r o b i c Pond,
1967-68 Campaign 59 17. C o r r e l a t i o n Coefficients, Second Pond Influent S a m p l e s
t a k e n for Biological and C h e m i c a l A n a l y s i s ,
1968-69 Campaign 62 18. C o r r e l a t i o n Coefficients, Second Pond Effluent S a m p l e s
t a k e n for Biological and C h e m i c a l A n a l y s i s ,
1968-69 Campaign 63 19. C o r r e l a t i o n Coefficients, A n a e r o b i c Pond S a m p l e s
t a k e n for Biological and C h e m i c a l A n a l y s i s ,
1968-69 Campaign 64
ANALYSIS OF DATA C h e m i c a l A n a l y s i s
A l l of t h e a c q u i r e d data w e r e punched for c o m p u t e r e v a l u a t i o n . The c o m - p u t e r p r o g r a m was developed to c o m p a r e s e p a r a t e v a r i a b l e s with e a c h of t h e other v a r i a b l e s o n a s t r a i g h t m a t h e m a t i c a l b a s i s . B a c t e r i a n u m b e r s , h o w e v e r , w e r e plotted using the log10 n u m b e r s b e c a u s e of e x t r e m e
v a r i a t i o n s .
C o r r e l a t i o n s above . 7 0 w e r e c o n s i d e r e d to be valid, but s o m e coeffir c i e n t s below t h i s l e v e l a p p e a r in the t a b l e s b e c a u s e of the p o s s i b i l i t y of m u l t i p l e factor i n f l u e n c e s . C o r r e l a t i o n s e s t a b l i s h e d for t h e F P I , S P I a n d S P E a r e shown in T a b l e s 12, 13 and 14.
T h e c o r r e l a t i o n of the v a r i a b l e s with " D a t e " i n d i c a t e s the d e g r e e of p r e - d i c t a b i l i t y of the c o n c e n t r a t i o n b u i l d - u p with r e s p e c t to t i m e . T h e r e w e r e no valid date c o r r e l a t i o n s d u r i n g t h e 1967-68 c a m p a i g n s i n c e the s y s t e m was not in h y d r a u l i c b a l a n c e .
T o t a l s u g a r s did not c o r r e l a t e well with any of the o t h e r e l e m e n t s during t h e 1968-69 c a m p a i g n , and only slightly with t o t a l CaO, soluble CaO and pH. During the 1967-68 c a m p a i g n t o t a l s u g a r c o r r e l a t e d well with a l k a l i n - ity (Table 13) and when combined with soluble C a O - a l k a l i n i t y (a m e a s u r e of o r g a n i c a c i d s ) c o r r e l a t e d well with B O D5, COD and T O C . This would i n d i c a t e that a l a r g e p e r c e n t a g e of the o r g a n i c oxygen d e m a n d c o m e s f r o m the s u g a r .
T o t a l CaO and soluble CaO c o r r e l a t e d well with each o t h e r d u r i n g 1968- 69, and a l s o with BOD, COD, TOC and pH. During 1 9 6 7 - 6 8 t o t a l and soluble CaO c o r r e l a t e d with e a c h o t h e r and with B O D5. This is an i n d i c a - tion that the amount of insoluble CaO (total C a O - s o l u b l e CaO) in the
s y s t e m is p r e d i c t a b l e ; that a n e u t r a l i z a t i o n r e a c t i o n o c c u r s between t h e l i m e added and the o r g a n i c a c i d s p r o d u c e d ; t h e r e is no explanation for t h e n e g a t i v e c o r r e l a t i o n between CaO and pH.
B O D5, COD and TOC c o r r e l a t e d with e a c h o t h e r well d u r i n g the 1967-68 c a m p a i g n , and t h e s e c o r r e l a t i o n s w e r e again well e s t a b l i s h e d d u r i n g the 1968-69 c a m p a i g n . It is n o t e w o r t h y that during both y e a r s t h e BOD5-TOC c o r r e l a t i o n b e c a m e b e t t e r as the flow p r o g r e s s e d from f i r s t pond influent to second pond effluent. It is t h e o r i z e d that t h i s phenomenon is due to the fact that t h e fine o r g a n i c solids which p r o b a b l y have an oxygen d e m a n d different f r o m an equivalent c o n c e n t r a t i o n of d i s s o l v e d o r g a n i c c o m -
pounds s e t t l e d as the flow p r o g r e s s e d through the ponds, and t h i s s e t t l i n g
T A B L E 1 2 . - - F I R S T POND I N F L U E N T C O R R E L A T I O N C O E F F I C I E N T S ; 1 9 6 7 - 6 8 C A M P A I G N .
TABLE 14. - - C O R R E L A T I O N C O E F F I C I E N T S , RECIRCULATED F L U M E W A T E R S Y S T E M , LONGMONT F A C T O R Y , 1968-69.
T A B L E 1 4 . - - ( c o n t i n u e d )
Volatile s o l i d s c o r r e l a t e d well with the t o t a l solids during 1968-69 and with BOD, COD, and T O C . T h i s is due to the carbonaceous n a t u r e of a l a r g e p e r c e n t a g e of the volatile s o l i d s .
T a b l e s 15 a n d 16 r e l a t e to the a n a e r o b i c pond during campaign. During the 1967-68 c a m p a i g n the a n a e r o b i c pond produced v e r y few valid c o r r e l a - t i o n s , but d u r i n g the 1968-69 campaign many significant c o r r e l a t i o n s w e r e
obtained. It is i n t e r e s t i n g to note that m o s t of the c o r r e l a t i o n s established
T A B L E 15. --CORRELATION C O E F F I C I E N T S ; ANAEROBIC POND DURING CAMPAIGN;
LONGMONT FACTORY; 1968-69.
Sol. Tot Tot Tot Org Date pH BODc; COD Cao CaO Sug TS SS PS Acids Acids T e m p
T A B L E 1 6 . C O R R E L A T I O N C O E F F I C I E N T S F R O M A N A E R O B I C P O N D ; 1 9 6 7 - 6 8 C A M P A I G N .
i n t h e f i r s t a n d s e c o n d p o n d s c a r r i e d t h r o u g h t o t h e a n a e r o b i c p o n d w h e r e a s e m i - s t a g n a n t c o n c e n t r a t i o n o f o r g a n i c a c i d s c o r r e l a t e d w i t h B O D 5 . H o w e v e r , a v a l i d B O D 5 t o o r g a n i c a c i d r a t i o w a s not e s t a b l i s h e d i n t h e s e t t l i n g p o n d s y s t e m . T h i s i s p o s s i b l y d u e t o s e t t l i n g o f t h e i n s o l u b l e o r g a n i c a c i d s a l t s i n t h e s t a t i c e n v i r o n m e n t o f t h e a n a e r o b i c pond a n d i n c o m p l e t e s e t t l i n g o f t h e s e s a l t s i n t h e t u r b u l a n t e n v i r o n m e n t o f t h e r e - c i r c u l a t e d w a t e r .
B i o l o g i c a l A n a l y s i s
D u r i n g c a m p a i g n , g r a b s a m p l e s w e r e t a k e n o f t h e s e c o n d p o n d i n f l u e n t , s e c o n d p o n d e f f l u e n t a n d a n a e r o b i c p o n d a n d a n a l y z e d b i o l o g i c a l l y . T h e d a t a s h o w t h a t b o t h c o l i f o r m a n d f e c a l s t r e p t o c o c c i i n c r e a s e d a s c a m p a i g n p r o g r e s s e d a t b o t h t h e s e c o n d a r y p o n d i n f l u e n t a n d effluent ( T a b l e 17). a n d T a b l e 18).
T h i s w a s p r o b a b l y d u e t o a c o n s t a n t i n p u t o f t h e s e o r g a n i s m s f r o m b e e t w a s h i n g a n d f r o m r e c y c l i n g o f s e c o n d p o n d w a t e r . T h i s w o u l d offset d e a t h o f t h e o r g a n i s m s t h a t c o u l d b e e x p e c t e d f r o m t h e l i m e t r e a t m e n t . T h e t o t a l a e r o b i c a n d a n a e r o b i c c o u n t s a l s o i n c r e a s e d but s l o w e r t h a n t h e i n d i c a t o r o r g a n i s m s a s c a m p a i g n p r o g r e s s e d . T h i s w o u l d b e due t o o n e o f s e v e r a l f a c t o r s : d e a t h o f t h e o r g a n i s m s a n d p r e c i p i t a t i o n i n t h e l i m e - t r e a t e d p r i m a r y s y s t e m a r e r e m o v i n g m o r e o f t h e s e g e n e r a l m i c r o b i a l f o r m s ; a l s o m a n y o f t h e s e o r g a n i s m s c o u l d b e f o r m i n g c l u m p s w h i c h d o not g i v e a t r u e p l a t e c o u n t i n t h e l a b o r a t o r y .
The increase for b o t h t h e t o t a l c o u n t s a n d t h e i n d i c a t o r o r g a n i s m s a r e g r e a t e r at the influent t h a n at the effluent. T h i s would i n d i c a t e that some of these o r g a n i s m s a r e being r e m o v e d in the second pond. T h e removal o f total a n a e r o b i c b a c t e r i a a n d c o l i f o r m a r e m o r e effective than the removal of t o t a l a e r o b i c b a c t e r i a a n d f e c a l s t r e p t o c o c c i .
At the second pond influent the v e r y h i g h n e g a t i v e c o r r e l a t i o n s e e n b e t - ween the date line and N O3- N O2 n i t r o g e n ( T a b l e 17) i n d i c a t e s that even in the short e x p o s u r e t i m e of the p r i m a r y s y s t e m , m i c r o b i a l breakdown of these nitrogenous s u b s t r a t e s is i n i t i a t e d . T h i s is s u p p o r t e d by the slight i n c r e a s e i n N O2- N s e e n a s t i m e p r o g r e s s e d .
With only five o b s e r v a t i o n s at t h e s e c o n d pond influent s t r e p t o c o c c i and coliforms c o r r e l a t e d a t 7 8 p e r c e n t . C o l i f o r m s a n d t o t a l a e r o b i c and anaerobic counts only c o r r e l a t e d at a b o u t 60 a n d 54 p e r c e n t , r e s p e c t i v e - ly, while fecal s t r e p t o c o c c i and t o t a l c o u n t s c o r r e l a t e d at 72 and 71 p e r - cent with 17 o b s e r v a t i o n s . As w a s t e l o a d i n c r e a s e d , as shown by COD and BOD r e a d i n g s , t h e c o l i f o r m c o u n t s i n c r e a s e d with a fair c o r r e l a - tion. Similar c o r r e l a t i o n b e t w e e n s t r e p t o c o c c i a n d COD and BOD o c c u r -
red. (Poorer (50-60 p e r c e n t ) c o r r e l a t i o n b e t w e e n t o t a l a e r o b i c and anaerobic counts and w a s t e was o b s e r v e d . )
The coliform c o r r e l a t i o n s s e e m to be due to t h e d i r e c t r e l a t i o n s h i p of the organisms t o t o t a l a c i d s and o r g a n i c a c i d s which w e r e i n c r e a s e d and to NO3-NO2N w h i c h d e c r e a s e d ; b u t n o t r e l a t e d to NH3-N. S i m i - larly, total organic c a r b o n r o s e p a r a l l e l t o the c o l i f o r m s . A l s o , fecal streptococci c o r r e l a t e d i n a s i m i l a r m a n n e r with t o t a l a c i d s and organic acids and with d e c r e a s i n g N O3- N O2N . E x c e l l e n t c o r r e l a t i o n to TOC was seen. The t o t a l a e r o b i c b a c t e r i a c o r r e l a t i o n s t o t h e s e s a m e factors were poor, as w e r e t h e a n a e r o b i c count c o r r e l a t i o n s . T h i s is due to the very diverse m e t a b o l i c a c t i v i t i e s of t h e s e o r g a n i s m s . It should be noted that the c o r r e l a t i o n b e t w e e n t o t a l a e r o b i c a n d a n a e r o b i c b a c t e r i a i s ex-
cellent, probably due to t h e fact t h a t in b o t h g r o u p s we a r e r e a l l y chief- ly measuring the n u m b e r of f a c u l t a t i v e o r g a n i s m s .
The BOD and COD l e v e l s c o r r e l a t e a l m o s t p e r f e c t l y , and w i t h t h e indica- tion that BOD c o r r e l a t e s w i t h t o t a l a c i d s , o r g a n i c a c i d s , N O3 and N 02N and even with a m m o n i a - N , t h e r e is e v i d e n c e the w a s t e load is a l m o s t exclusively organic m a t e r i a l r a t h e r t h a n i n o r g a n i c s a l t s . T h i s i s also seen in the TOC v s . BOD c o r r e l a t i o n a n d a l s o with the COD c o r r e l a t i o n s with the same f a c t o r s .
In the observations of e a c h o r g a n i s m s g r o u p counted t h e r e is f u r t h e r evi- dence that counts d r o p as pH r i s e s . Only t h e s t r e p t o c o c c i s e e m to show
a c o r r e l a t i o n of significance (77 p e r c e n t ) .
The pH v s . TOC c o r r e l a t i o n of -74 p e r c e n t further e m p h a s i z e s the c r i t - i c a l n a t u r e of the pH of the s y s t e m for the control of m i c r o - o r g a n i s m s by i n c r e a s i n g pH.
Coliforms and fecal s t r e p t o c o c c i r o s e in a p a r a l l e l m a n n e r but again did not c o r r e l a t e a s well with the t o t a l c o u n t s . T h e a e r o b i c and a n a e r o b i c t o t a l counts r o s e with a good d e g r e e of c o r r e l a t i o n , again pointing to the facultative n a t u r e of the s y s t e m . The c o l i f o r m s i n c r e a s e d s i m i l a r l y as the BOD and TOC while the s t r e p t o c o c c i c o r r e l a t e d to a l e s s e r d e - g r e e , and t o t a l a e r o b i c and a n a e r o b i c b a c t e r i a c o r r e l a t e d p o o r l y . The c o l i f o r m s a g r e e well with total a c i d s but to a m a r g i n a l d e g r e e with o r g a n - ic a c i d s . F e c a l s t r e p t o c o c c i s e e m to be b e t t e r r e l a t e d to t h e s e acid m e a s u r e m e n t s , but total counts s e e m completely u n r e l a t e d even though they a r e p r e s e n t i n far g r e a t e r n u m b e r s than the indicator o r g a n i s m s . Coliforms do r e l a t e well with t o t a l organic carbon and l e s s with
N O3- N . Both coliforms and fecal s t r e p t o c o c c i show the expected drop as pH r i s e s , but the t o t a l counts show no r e l a t i o n s h i p to pH.
In the second pond no other d i s c e r n a b l e biological r e l a t i o n s a r e d e t e c t - a b l e . T h i s probably is due to the t e m p e r a t u r e , pH and s h o r t retention t i m e . Some biological activity is evident; however, this portion of the s y s t e m s e e m s to be an a c c l i m a t i z a t i o n zone for the o r g a n i s m s . A l s o , the r e c y c l i n g of w a t e r back to the flumes h a s a continuing input of new m a t e r i a l s , both biological and c h e m i c a l .
In the a n a e r o b i c pond, r e l a t i v e l y few c o l i f o r m s w e r e found, and the n u m - b e r s did not v a r y g r e a t l y during c a m p a i g n - - r a n g i n g from about 10 to
1, 0 0 0 / m l in 1968-69 and l e s s than 100 in 1967-68. F e c a l s t r e p t o c o c c i w e r e about 10 t i m e s as n u m e r o u s as c o l i f o r m s and did i n c r e a s e as the campaign p r o g r e s s e d . Again, t h i s i n d i c a t e s the g r e a t e r s u r v i v a l power that fecal s t r e p t o c o c c i have over c o l i f o r m . Aerobic and a n a e r o b i c counts w e r e quite a bit m o r e n u m e r o u s , as expected, but did not v a r y in r e l a t i o n to t i m e with any c o r r e l a t i o n . Mean n u m b e r s w e r e over
106 o r g a n i s m s / m l .
As at the o t h e r sampling p o i n t s , COD and BOD c o r r e l a t e d with t i m e and with each o t h e r (Table 19). As in the p r i m a r y - s e c o n d a r y pond s y s t e m , t h e r e is good indication that the BOD as well as COD c o n s i s t s of b i o - d e g r a d a b l e m a t e r i a l s . In this biologically active unit, a m m o n i a - N does c o r r e l a t e f a i r l y well with t i m e while the N O3- N O2N s c a t t e r s r a n - domly. A l s o , the T O C - d a t e c o r r e l a t i o n is a l m o s t perfect, indicating
TABLE 17. CORRELATION C O E F F I C I E N T S ; SECOND POND INFLUENT SAMPLES TAKEN F O R BIOLOGICAL AND CHEMICAL ANALYSIS; 1968-69 CAMPAIGN
T A B L E 1 8 . - - C O R R E L A T I O N C O E F F I C I E N T S : SECOND POND E F F L U E N T SAMPLES TAKEN F O R BIOLOGICAL AND CHEMICAL ANALYSIS;1968-69 CAMPAIGN.
1
T A B L E 19. --CORRELATION C O E F F I C I E N T S ; ANAEROBIC POND SAMPLES TAKEN FOR BIOLOGICAL AND CHEMICAL ANALYSIS; 1968-69 CAMPAIGN.
t h e d e g r a d a b i l i t y of the waste and the low c o n c e n t r a t i o n s of C O D - p r o - ducing s a l t s of m i n e r a l s .
A 5 - 6 ° d e c r e a s e in w a t e r t e m p e r a t u r e during campaign had little effect on the biological a c t i o n .
While c o l i f o r m s did not c o r r e l a t e with any of the physical and c h e m i c a l v a r i a b l e s , the fecal s t r e p t o c o c c i did show 70-80 p e r c e n t c o r r e l a t i o n with BOD, COD, TOC organic a c i d s , PO4 and total a c i d s , but not a g a i n s t t h e n i t r o g e n o u s m a t e r i a l s . It s e e m s that in this pond, as o b s e r v e d
p r e v i o u s l y a l s o , fecal s t r e p t o c o c c u s is a b e t t e r index than coliforms if one of the s t a n d a r d pollution indices m u s t be u s e d .
T o t a l a e r o b i c and a n a e r o b i c counts c o r r e l a t e v e r y well with each o t h e r but with no other p a r a m e t e r except pH and, to some d e g r e e , with t e m p e r - a t u r e . Again, we a r e m e a s u r i n g facultative types of c e l l s .
P h o s p h a t e a n a l y s e s showed low levels in the pond (mean l e s s than 1 m g / l i t e r ) with c o n s i d e r a b l e s c a t t e r of r e s u l t s . As expected, as the o r g a n i c and t o t a l a c i d s and TOC levels r o s e , the PO4 r o s e also but n e v e r to l e v e l s over 1. 1 m g / l i t e r . This may indicate the limiting effect of the l a c k of P 04 on m i c r o b i a l activity allowing build-up of w a s t e s . In this w a s t e the organic a c i d s and total a c i d s s e e m to be the same and a l s o about the s a m e m a t e r i a l s a s m e a s u r e d t o T O C .
APPENDIX II