APPENDIX II
T A B L E S ( c o n t i n u e d )
No. Page 32. Analyzed S u b s t a n c e s E n t e r i n g and L e a v i n g t h e F i r s t
and Second P o n d s in S e r i e s , Showing P e r c e n t a g e Removed by t h e P o n d s p e r T o n of B e e t s Sliced,
1968-69 C a m p a i g n A v e r a g e 83 33. P r i m a r y P o n d Influent, 1967-68 C a m p a i g n , C o m p o s i t e
Sample A n a l y s i s for BOD, COD, TOC, F i l t e r e d T O C ,
Organic A c i d s , T o t a l C a O , Soluble CaO, Alkalinity, pH 84 34. Dilution Effect on pH in P r i m a r y Pond of F r e s h Make-
up Water Added to S y s t e m , 1967-68 C a m p a i g n 85
T A B L E 2 0 . --ABBREVIATIONS USED IN THIS R E P O R T , A L P H A - BETICAL ORDER.
TABLE 2 1 . - - D E S C R I P T I O N OF ANALYTICAL P R O C E D U R E S .
Analysis D e s c r i p t i o n 1. Total sugars This d e t e r m i n a t i o n involves mixing 5 ml
anthrone method a n t h r o n e H2S O4 solution with 1 ml of filtered s a m p l e and h e a t i n g in a boiling w a t e r bath for 10 m i n u t e s . A color is developed which is p r o p o r t i o n a l to the amount of s u g a r p r e s - ent. T h e a b s o r b a n c y of t h i s c o l o r is read on a c o l o r i m e t e r , and by c o m p a r i s o n with the g r a p h of the a b s o r b a n c y s t a n d a r d , s u c r o s e can be d e t e r m i n e d .
2. Total CaO The m e t h o d employed for t h i s determination involves mixing a m e a s u r e d v o l u m e of sample with enough c o n c e n t r a t e d HC1 to dissolve all of the i n s o l u b l e c a l c i u m and diluting to a known v o l u m e . An alequot is then titrated with s t a n d a r d v e r s e n a t e solution to the Univer I end point.
3. Soluble CaO In t h i s d e t e r m i n a t i o n a s a m p l e was filtered, and an alequot was t i t r a t e d to the Univer I end point with s t a n d a r d v e r s e n a t e solution.
4 . Biochemical The p r o c e d u r e d e s c r i b e d i n " S t a n d a r d oxygen demand Methods for the T r e a t m e n t of W a t e r and
Waste W a t e r , " 12th edition, was utilized.
5. Chemical oxygen The p r o c e d u r e utilized in t h i s determination demand is d e s c r i b e d in "Standard Methods of the
T r e a t m e n t of W a t e r and W a s t e W a t e r , " 12th edition, except that the end p r o d u c t was read c o l o r i m e t r i c a l l y in a Hach DR C o l o r i m e t e r , Model 1104, r a t h e r than t i t r a t e d . During 1968-69 the r e s u l t s w e r e d e t e r m i n e d by t i t r a - t i o n .
6. pH pHs w e r e r e a d d i r e c t l y on a L e e d s and N o r t h r u p p H m e t e r .
TABLE 2 1 . - - ( c o n t i n u e d )
7. T o t a l o r g a n i c A total organic carbon a n a l y z e r m a n u f a c t u r e d c a r b o n by the L a b o r a t o r y Equipment C o r p o r a t i o n
(LECO) was used for the d e t e r m i n a t i o n s of o r g a n i c c a r b o n . No a t t e m p t was m a d e to c o r r e c t r e s u l t s for e r r o r s due to CO2 and C O3.
8. F i l t e r e d t o t a l The insoluble m a t t e r was s e p a r a t e d f r o m the c a r b o n solution by m e a n s of filtration. A s a m p l e of
the solution was then analyzed with the " L E C O "
carbon a n a l y z e r . C O2w a s not r e m o v e d p r i o r t o a n a l y s i s .
9. T o t a l a c i d s A m e a s u r e d s a m p l e was put t h r o u g h a column containing Dowex D-50 ion exchange r e s i n . This r e s i n is the strong cation type which e x - changes H+ ions for positively c h a r g e d ions in the solution. The effluent from this column was then t i t r a t e d with a s t a n d a r d solution of sodium hydroxide to the phenolphthalein end point.
10. A m m o n i a The d i r e c t N e s s l e r i z a t i o n p r o c e d u r e a s d e - n i t r o g e n s c r i b e d in "Standard Methods for the T r e a t -
ment of W a t e r and Waste W a t e r , " 12th e d i - tion, was employed in t h i s d e t e r m i n a t i o n . The end r e s u l t s w e r e obtained by a Hach DR C o l o r i m e t e r , during the 1967-68 c a m p a i g n . But during t h e 1968-69 campaign r e s u l t s w e r e obtained by use of a Spectronic 20 (a B a u s c h &
L o m b c o l o r i m e t e r - s p e c t r o m e t e r ) utilizing a s t a n d a r d c a l i b r a t i o n c u r v e .
1 1 . P h o s p h a t e P h o s p h a t e s w e r e d e t e r m i n e d , during the 1967-68 s u g a r y e a r , by utilizing t h e stannous c h l o r i d e r e d u c t i o n in an a m m o n i u m molybdate solution. F i n a l r e s u l t s w e r e obtained by the u s e of a Hach DR C o l o r i m e t e r . A m o r e c o m - p l e t e d e s c r i p t i o n of this method m a y be found in the Hach DR C o l o r i m e t e r m a n u a l for use with the Model 1104 C o l o r i m e t e r . During the
TABLE 2 1 . - - ( c o n t i n u e d )
A n a l y s i s D e s c r i p t i o n 1 9 6 8 - 6 9 c a m p a i g n o r t h o p h o s p h a t e was d e t e r -
m i n e d b y the m e t h o d d e s c r i b e d i n " S t a n d a r d M e t h o d s for t h e E x a m i n a t i o n of W a t e r and W a s t e w a t e r , " 12th e d i t i o n , p p . 2 3 4 - 2 3 6 . 12. A l k a l i n i t y A m e a s u r e d v o l u m e of s a m p l e w a s t i t r a t e d
a g a i n s t a s t a n d a r d a c i d or b a s e s o l u t i o n to p h e n o l p h t h a l e i n end p o i n t .
13. Solids S o l i d s a n a l y s e s included t o t a l s o l i d s , total v o l a t i l e s o l i d s , s u s p e n d e d s o l i d s , volatile
s u s p e n d e d s o l i d s and s e t t l e a b l e s o l i d s . S e t t l e a b l e s o l i d s w e r e a n a l y z e d by m e a n s of a n Imhoff c o n e ; the o t h e r s o l i d s w e r e analyzed by t h e p r o c e d u r e outlined in " S t a n d a r d Methods for t h e T r e a t m e n t of W a t e r and W a s t e W a t e r , "
12th e d i t i o n .
14. D i s s o l v e d D i s s o l v e d oxygen was a n a l y z e d a c c o r d i n g t o oxygen t h e p r o c e d u r e d e s c r i b e d in " S t a n d a r d Methods
for t h e T r e a t m e n t of W a t e r and W a s t e W a t e r , "
12th e d i t i o n ; t h e a z i d e m o d i f i c a t i o n of the I d o m e t r i c m e t h o d was u s e d .
15. N O3 + N 02- N A n a l y s i s for N O3 and NO2 n i t r o g e n w e r e com- p l e t e d by adding Hach N i t r a v e r + N i t r i v e r pow- d e r p i l l o w s t o s a m p l e s and s t a n d a r d NO3+NO2
s o l u t i o n s . T h e final r e s u l t s w e r e d e t e r m i n e d c o l o r i m e t r i c a l l y on a S p e c t r o n i c 2 0 , Bausch
& L o m b C o l o r i m e t e r .
16. O r g a n i c O r g a n i c a c i d s w e r e d e t e r m i n e d a c c o r d i n g t o a c i d s t h e p r o c e d u r e d e s c r i b e d i n " W a t e r and Waste
W a t e r A n a l y s i s P r o c e d u r e s , " V o l a t i l e Acids s e c t i o n , p . 72. This m a n u a l w a s published A u g u s t , 1967 by Hach C h e m i c a l C o . Final r e -
s u l t s w e r e obtained c o l o m e t r i c a l l y utilizing a S p e c t r o n i c 20 c o l o r i m e t e r and S t a n d a r d Acetic A c i d c a l i b r a t i o n c u r v e .
TABLE 2 1 . --(continued)
A n a l y s i s D e s c r i p t i o n 17. Sulfates (SO4) Sulfate a n a l y s e s w e r e completed utilizing the
g r a v i m e t r i c p r o c e d u r e d e s c r i b e d i n " S t a n d a r d Methods for the E x a m i n a t i o n of W a t e r and Waste W a t e r , " 12th edition, pp. 2 8 7 - 2 9 0 . 18. Sulfites (SO3) A n a l y s e s for sulfite were completed utilizing
the p r o c e d u r e d e s c r i b e d in "Standard Methods for the examination of Water and Waste W a t e r , "
12th edition, p p . 294-296.
19. Sulfide During the 1967-68 campaign sulfide a n a l y s e s w e r e completed by the method d e s c r i b e d in
"Standard Methods for the Examination of
Water and Waste Water, " 12th edition, pp. 427
& 428. After the 1968-69 campaign sulfides a n a l y s e s w e r e completed utilizing a "La Motle- P o m e r o y " Sulfide t e s t kit.
20. C o l i f o r m s (APHA, S t a n d a r d Methods, 12 e d . , 1965).
A p p r o p r i a t e a l i q u o t s of sample w e r e placed in a Hydrosol filter funnel (Milipore) containing a 47mm type HA (po re size 0.45 u) white m e m - b r a n e filter (Milipore). In c a s e s where the s a m p l e aliquot was l e s s than 10 m l , t h e r e was a s t e r i l e buffered w a t e r c a r r i e r placed in the funnel to a s s u r e even distribution of the o r g a n - i s m s on the s u r f a c e of the m e m b r a n e . Using a vacuum s y s t e m , the s a m p l e aliquot was drawn t h r o u g h the m e m b r a n e and the sides of the
funnel w e r e w a s h e d with 25-50 ml of buffered s t e r i l e w a t e r .
The m e m b r a n e was then placed in a p e t r i dish (60 x 16 mm) containing an a b s o r b e n t pad with 2 . 0 ml of m - E n d o Broth MD (Difco) m e d i u m . The p e t r i dish was placed in a m o i s t c h a m b e r to p r e v e n t drying and incubated at 3 5°C for 18-24 h o u r s at which t i m e the plates w e r e counted using a s t e r e o disecting m i c r o s c o p e with obique
TABLE 21.--(continued)
Analysis Description lighting. Typical colonies w e r e d a r k with a gold-green metallic s h e e n .
(Difco L a b o r a t o r i e s ; D e t r o i t , Michigan) (Millipore Corporation; Bedford M a s s a c h u - setts)
2 1 . Fecal Aliquots of s a m p l e w e r e f i l t e r e d t h r o u g h a streptococci membrane filter a s p e r c o l i f o r m d e t e r m i n a -
tion.
Enrichment: (Rose and L i t s k y , 1965). In t h e lid of a petri plate with solidified m - E n t e r o - coccus Agar (Difco) in the bottom, an a b s o r b - ent pad was placed with 2. 0 ml of m - P Y C (Difco) medium. The m e m b r a n e was p l a c e d in a moist c h a m b e r and incubated at 35°C for 3-6 h o u r s .
Transfer and differential m e d i u m : (APHA, Standard Methods, 1965). At t h e end of t h e 3-6 hour enrichment, t r a n s f e r t h e m e m b e r to the surface of the m - E n t e r o c o c c u s A g a r (Difco) in the bottom of the p e t r i d i s h and continue i n - cubating at 35°C for an a d d i t i o n a l 48 h o u r s . All red and pink colonies w e r e counted u s i n g a s t e r e o dissecting m i c r o s c o p e with oblique lighting.
2 2 . Total aerobic (Millipore, 1969). Sample a l i q u o t s w e r e f i l - count t e r e d as p e r coliform t e s t , but b l a c k m e m b r a n e
filters were u s e d . The m e m b r a n e s w e r e placed on an a b s o r b e n t pad with 2. 0 ml of m- Plate Count B r o t h (Difco) in a s t e r i l e p e t r i plate and incubated in a m o i s t c h a m b e r at 30°C for 48 h o u r s . All colonies (0-300) w e r e
counted using a s t e r e o d i s s e c t i n g m i c r o s c o p e with oblique lighting. The b l a c k m e m b r a n e e l i m - inated the need for c o n t r a s t s t a i n i n g to m a k e a l l colonies easily d i s t i n g u i s h a b l e .
T A B L E 2 1 . - - ( c o n t i n u e d )
A n a l y s i s D e s c r i p t i o n 2 3 . Total a n a e r o b i c (Millipore, 1969) ( H a r r i s and C o l e m a n , 1963).
count Sample a l i q u o t s w e r e f i l t e r e d t h r o u g h m e m - b r a n e s a s i n the c o l i f o r m d e t e r m i n a t i o n ; a g a i n the black m e m b r a n e s w e r e u s e d . T h e m e m - b r a n e was p l a c e d d i r e c t l y on the s u r f a c e of s o l - id P l a t e Count B r o t h (Difco) in a p e t r i d i s h . This dish was p l a c e d in a d e s s i c a t o r j a r which was evacuated and flushed with n i t r o g e n t h r e e t i m e s . F i n a l l y with a slight v a c u u m r e m a i n i n g in the d e s s i c a t o r j a r , it was s e a l e d and i n c u - bated at 30°C for 48 h o u r s . At t h i s t i m e , a l l colonies (0-300) w e r e counted as in the t o t a l a e r o b i c counting p r o c e d u r e . T h e s o l i d m e d i u m e l i m i n a t e d the p r o b l e m of drying which was e n - c o u n t e r e d with a b r o t h m e d i u m .
T A B L E 2 2 . - - A N A L Y T I C A L S C H E D U L E ; F P I , S P I , S P E F O R E A C H WEEK O F CAMPAIGN; 1 9 6 8 - 6 9 .
S o l i d s a n a l y s i s included t o t a l s o l i d s , s u s p e n d e d s o l i d s , t o t a l d i s s o l v e d s o l i d s and s e t t l e a b l e s o l i d s .
T o t a l c a r b o n a n a l y s i s w a s c o m p l e t e d o n d a i l y s a m p l e s u n t i l a b o u t t h e m i d d l e of c a m p a i g n when a long p e r i o d of i n o p e r a t i o n of t h e c a r b o n a n a l y z e r n e c e s s i t a t e d t h e c o m p o s i t i n g o f d a i l y s a m p l e s i n t o w e e k l y s a m p l e s for T O C .
S a m p l e s o f F P I and S P E w e r e t a k e n b y a m e c h a n i c a l s a m p l e r w h i c h d r e w s a m p l e a t t h e r a t e o f about 5 0 m l / m i n u t e o n a c y c l e w h i c h w a s s a m p l e d f r o m t h r e e t o five m i n u t e s , e v e r y 2 0 m i n u t e s o v e r a 2 4 - h o u r p e r i o d . S a m p l e s o f S P I w e r e t a k e n b y a m e c h a n i c a l s a m p l e r w h i c h d r e w o n e
s a m p l e p e r hour o v e r a 2 4 - h o u r p e r i o d .
F o r c o n t r o l p u r p o s e s h o u r l y p H r e a d i n g s o f t h e S P E w e r e t a k e n b y t h e f a c t o r y l a b o r a t o r y . G r a b s a m p l e s f r o m F P I , S P I , S P E w e r e a n a - l y z e d f o r p H t h r e e t i m e s a d a y a t e i g h t h o u r i n t e r v a l s b e g i n n i n g e a c h m o r n i n g a t 8:00 a . m .
T A B L E 23. --ANALYTICAL SCHEDULE FOR EACH WEEK OF CAMPAIGN 1967-68.
Day Mon*
T u e s * *
• W e d * * *
T h u r s * * * F r i * * # Mon T u e s Wed T h u r s F r i
Mon T u e s Wed T h u r s F r i
T o t s u g
X X X X X
X X X X
T o t CaO
X X X X X
X X
X X X X
S o l CaO
X X X X X
X X X X
BOD
X X X
X X X
X X X
COD
X X X
X X X
p H T o t
C
T o t C filt F P I and S P E X
X X X X
X X X X X
X X X X X
X X X A P E * * * *
X X X X X Condensed Water
X X X
X X X X
X X X X
X X
Odor a n d color
X X X
X X X
T o t acids
X X X
Effluent*****
NH^-N
X X X
X X X X X
X X X X
p
X X X
X X X X X
X X X X
A l k
X X X X X
Sol- i d s
X X X
X X X
X X X
*Solids a n a l y s e s included t o t a l s o l i d s , suspended s o l i d s , t o t a l volatile and suspended volatile solids and s e t t l e a b l e s o l i d s .
**A g r a b s a m p l e taken e v e r y 4 h o u r s over a 16-hour p e r i o d .
***A c o m p o s i t e s a m p l e c o n s i s t i n g of 8 individual s a m p l e s t a k e n at 1-hour i n t e r v a l s .
****A g r a b s a m p l e taken once a day.
T A B L E 24. - A N A L Y T I C A L S C H E D U L E F O R S A M P L E S F O R BIOLOGICAL ANALYSIS; S P I , S P E , A P D C F O R E A C H W E E K O F C A M P A I G N 1 9 6 8 - 6 9 .
1.
2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 .
p H
T o t a l Sugar O r g a n i c A c i d s T o t a l A c i d s B O D5
COD N O 3 - N N 02- N N H 3 - N
10.
1 1 . 12.
13.
14.
15.
16.
17.
18.
P O 4 , T o t a l , O r t h o
so
4= so
3=
S = C o l i f o r m
F e c a l S t r e p t o c o c c i T o t a l A e r o b i c B a c t e r i a T o t a l A n a e r o b i c b a c t e r i a S o l i d s ( A P D C )
S a m p l e s for b i o l o g i c a l a n a l y s i s w e r e t a k e n t w i c e p e r w e e k a n d b i o - l o g i c a l a n a l y s i s was c o m p l e t e d o n both s a m p l e s ; c h e m i c a l a n a l y s i s w a s c o m p l e t e d o n a c o m p o s i t e s a m p l e f r o m b o t h d a y s .
S P I and S P E s a m p l e s w e r e g r a b s a m p l e s , but t h e a n a e r o b i c pond s a m p l e was a depth c o m p o s i t e .
T h e a n a e r o b i c pond d e p t h c o m p o s i t e w a s t a k e n t h r e e d a y s p e r w e e k , a n d a l l t h r e e s a m p l e s w e r e a n a l y z e d f o r a l l m e a s u r e m e n t s e x c e p t n i - t r o g e n , sulfur a n d p h o s p h o r o u s c o n t a i n i n g c o m p o u n d s .
T A B L E 2 5 . - - A N A L Y T I C A L S C H E D U L E , F I R S T P O N D M U D S A M P L E S , 1 9 6 8 - 6 9 .
1 . T o t a l Solids 5 . S o l u b l e C a O 2 . S u s p e n d e d Solids 6 . A l k a l i n i t y 3 . T o t a l C a r b o n 7 . p H
4 . T o t a l CaO 8 . S p e c i f i c g r a v i t y ( w e t )
T h e m u d s a m p l e s w e r e w e e k l y c o m p o s i t e s m a d e f r o m t h e m u d w h i c h s e t t l e d i n a n Imhoff c o n e f r o m one l i t e r o f f l u m e w a t e r . T h e s e w e r e f r o m t h e 2 4 - h o u r c o m p o s i t e o f t h e f i r s t p o n d i n f l u e n t .
T h e f l u m e w a t e r w a s d e c a n t e d , a n d t h e n t h e m u d w a s w a s h e d i n t o a c o l l e c t i o n j a r with d i s t i l l e d w a t e r . A l l d i s t i l l e d w a t e r w a s h i n g s w e r e s a v e d . T h e m u d s a m p l e a n d w a s h i n g s w e r e t r a n s f e r r e d t o a v o l u m e t r i c f l a s k , h e a t e d s l i g h t l y , cooled a n d m a d e t o v o l u m e a f t e r s p e c i f i c g r a v i t y a n a l y s i s w a s c o m p l e t e d o n a w a t e r d e c a n t e d s a m p l e .
T A B L E 26. --PHYSICAL DATA SCHEDULE; 1968-69 CAMPAIGN T e m p e r a t u r e
1. F i r s t Pond Influent - Twice daily 2. Second Pond Effluent - Twice daily 3. A n a e r o b i c Pond Depth - Once daily 4. A n a e r o b i c Pond Effluent - Once daily 5. C o n d e n s e r H2O - Once daily at r i v e r .
C h a r t s *
1. F i r s t Pond Influent - Weekly flow c h a r t 2. Second Pond Effluent - Daily pH c h a r t
3. E a s t Holding Pond Influent - Weekly flow c h a r t 4. F l u m e S y s t e m Overflow, f a c t o r y - Daily flow c h a r t 5. C o n d e n s e r w a t e r , effluent - Weekly flow c h a r t
Gauge and M e t e r Readings 1. R e c i r c u l a t i o n flow - Twice daily
2. A n a e r o b i c Effluent** - Once daily 3. A n a e r o b i c m a k e up - Once daily
4. A n a e r o b i c Pond Depth*** - Once daily
* M a i n t e n a n c e and c a l i b r a t i o n s w e r e p e r f o r m e d on a p e r i o d i c s c h e d u l e .
* * A n a e r o b i c pond effluent flow was calculated f r o m gauge r e a d i n g s of a P a r s h a l l f l u m e .
* * * A n a e r o b i c pond depths w e r e taken from a standing gauge.
09 O
T A B L E 2 7 . - - A N A L Y T I C A L SCHEDULE, CONDENSER WATER AND MISCELLANEOUS FACTORY E F F L U E N T S IMPOUNDED FOR EACH WEEK OF CAMPAIGN 1968-69.
Day Mon T u e s Wed T h u r s F r i
Mon T u e s W e d T h u r s F r i
p H X X X X X
X X X X X
T o t C X X X X X
B O D X X X X
C O D X X X X X M i s c e l l a n e o u s X
X X X X
X X X X
X X X X X
T o t S o l C a O C a O
Tot
S ug C o n d e n s e r X X X X X X X X X X X X
S o l - i d s
• T o t a c i d s W a t e r
X X X X X F a c t o r y E f f l u e n t s ,
X X X X X X X X
X X X X
X X X X X
X X X X D i s c h a ;
X X X X
O r g a c i d s
r g e d t o X X X X X
D. O.
X X X X X
NH3
N
( ( (
N 03 N 02
N N P O 4
W e e k l y ) C o m p o s i t e )
)
H o l d i n g P o n d X
X X X X
( ( (
W e e k l y ) C o m p o s i t e )
)
Solids a n a l y s i s included t o t a l , suspended, d i s s o l v e d and s e t t l e a b l e s o l i d s .
Total c a r b o n a n a l y s i s was completed on daily s a m p l e s until about the middle of campaign after which the s a m p l e s w e r e weekly c o m p o s i t e s .
N i t r o g e n and p h o s p h o r u s a n a l y s i s w e r e c o m p l e t e d on weekly c o m p o s i t e s a m p l e s .
E a s t holding pond s a m p l e s w e r e daily g r a b s a m p l e s until about the middle of c a m p a i g n , after which t h e s e s a m p l e s w e r e taken by a m e c h a n i c a l s a m p l e r which took one s a m p l e e v e r y hour o v e r a 2 4 - h o u r p e r i o d .
T A B L E 2 8 . - - A N A L Y T I C A L S C H E D U L E ; A N A E R O B I C P O N D S A M P L E S ; 1 9 6 7 - 6 8 P O S T C A M P A I G N ; F E B R U A R Y 3 T O M A R C H 2 8 , 1 9 6 8 ; T H R E E S A M P L E S P E R W E E K .
1. B O D 2 . C O D 3 . D . O .
4 . T e m p e r a t u r e 5 . p H
T A B L E 2 9 . - - A N A L Y T I C A L S C H E D U L E ( T W I C E W E E K L Y ) ; A N A E R O B I C P O N D ; 1 9 6 8 - 6 9 P O S T C A M P A I G N ; F E B R U A R Y 3 T O
M A R C H 2 8 , 1 9 6 9 .
1.
2 . 3 . 4 . 5.
6 . 7 . 8.
9 . 1 0 . 1 1 .
P H B O D5
COD D . O . S o l i d s *
O r g a n i c A c i d s T o t a l A c i d s
A m m o n i a N i t r o g e n * * N i t r a t e
N i t r i t e S u l f a t e
Nitrog< 3 n * *
N i t r o g e n * *
12.
1 3 . 14.
1 5 . 16.
1 7 . 1 8 . 1 9 . 2 0 . 2 1 .
S u l f i d e
P h o s p h a t e , S o l u b l e , O r t h o * * T o t a l C a O
S o l u b l e C a O * * P o n d T e m p e r a t u r e P o n d D e p t h
C o l i f o r m * * *
F e c a l S t r e p t o c o c c i * * *
T o t a l A n a e r o b i c B a c t e r i a * * * T o t a l A e r o b i c B a c t e r i a * * *
*Solids a n a l y s i s i n c l u d e d o n l y n o n - v o l a t i l e s u s p e n d e d a n d d i s s o l v e d s o l i d s .
* * A n a l y s i s c o m p l e t e d o n c e p e r w e e k o n a c o m p o s i t e s a m p l e m a d e f r o m a l l s e p a r a t e s a m p l e s t a k e n d u r i n g t h e w e e k .
* * * A n a l y s i s c o m p l e t e d o n t w o s a m p l e s p e r w e e k .
T A B L E 3 0 . - - A N A L Y T I C A L S C H E D U L E , A N A E R O B I C P O N D S A M P L E S ; 1968-69 P O S T C A M P A I G N ; A P R I L 2 T O J U L Y 9 , 1969;
ONE S A M P L E P E R W E E K .
1.
2.
3 . 4 . 5.
6.
7.
8.
9.
10.
PH B O D5
COD S o l i d s *
O r g a n i c A c i d s T o t a l A c i d s
A m m o n i a N i t r o g e n
N i t r a t e p l u s N i t r i t e N i t r o g e n Sulfate
Sulfide
1 1 . 1 2 . 1 3 . 14.
1 5 . 16.
17.
1 8 . 19.
P h o s p h a t e , S o l u b l e , O r t h o T o t a l C a O
S o l u b l e C a O
P o n d T e m p e r a t u r e P o n d D e p t h
C o l i f o r m
F e c a l S t r e p t o c o c c i
T o t a l A n a e r o b i c B a c t e r i a T o t a l A e r o b i c B a c t e r i a
*Solids a n a l y s i s i n c l u d e d v o l a t i l e a n d n o n - v o l a t i l e , d i s s o l v e d and suspended s o l i d s .
T A B L E 3 1 . - - A N A L Y T I C A L S C H E D U L E ( W E E K L Y ) ; A N A E R O B I C P O N D S A M P L E S ; 1968-69 P O S T C A M P A I G N ; J U L Y 1 7 T O
S E P T E M B E R 3 , 1969.
1.
2.
3 . 4 . 5.
6.
7.
8.
9.
pH B O D5
COD
A m m o n i a N i t r o g e n
P h o s p h a t e , S o l u b l e , O r t h o P o n d T e m p e r a t u r e
Pond Depth Solids*&**
O r g a n i c A c i d s * *
1 0 . 1 1 . 12.
1 3 . 14.
1 5 . 16.
1 7 . 18.
N i t r a t e p l u s N i t r i t e N i t r o g e n * * S u l f i d e * *
T o t a l C a O * * S o l u b l e C a O * * C o l i f o r m * *
F e c a l S t r e p t o c o c c i * *
T o t a l A n a e r o b i c B a c t e r i a * * T o t a l A e r o b i c B a c t e r i a A l g a e * *
*Solids a n a l y s i s i n c l u d e d v o l a t i l e a n d n o n - v o l a t i l e , s u s p e n d e d a n d d i s s o l v e d s o l i d s .
**Completed o n a n o c c a s i o n a l b a s i s .
00 (Jj
T A B L E 3 2 . --ANALYZED SUBSTANCES* ENTERING AND LEAVING THE FIRST AND SECOND PONDS IN SERIES, SHOWING P E R C E N T A G E REMOVED BY THE PONDS P E R TON OF BEETS SLICED; 1968-69 CAMPAIGN AVERAGE.
P o u n d s , p e r ton of b e e t s ,
entering f i r s t pond
2.76 2.77 0 . 6 1 1.40 3 . 13 2.03 2 . 2 4
Reduction (or i n c r e a s e )
a c r o s s both ponds
P o u n d s , p e r ton of b e e t s ,
r e s i d u a l in pounds - 2 . 0 8 * *
- 1 . 7 4 - 0 . 3 4 - 1 . 12 - 1 . 6 8 - 1 . 5 3 - 1 . 9 3 +0.31 +0.59
0 . 6 8 1.03 0 . 2 7 0 . 2 8 1.45 0.50 0 . 3 1 0.42 0.52
% reduction
75 63 56 80 54 75 86
*Calculated on s t a t i c pond volume b a s i s and as if no p h y s i c a l l o s s and subsequent dilution o c c u r r e d .
**Minus sign d e s i g n a t e s reduction, plus sign d e s i g n a t e s i n c r e a s e .
***Calculated s s i n g p e r i o d s c h a r a c t e r i z e d by high pond pH, w h e r e s u g a r c o n c e n t r a t i o n showed a tendency to i n c r e a s e .
* * * * I n c r e a s e a c r o s s ponds a p p r o x i m a t e l y equal to r e s i d u a l in ponds, so no r e d u c t i o n o c c u r r e d .
T A B L E 3 3. - - ( c o n t i n u e d )
* P a r t s p e r m i l l i o n
* * P a r t s p e r m i l l i o n a s C a O
T A B L E 3 4 .
D a t e 1 0 - 1 9 1 0 - 2 3 1 1 - 2 1 1 - 6 1 1 - 7 1 1 - 7 1 1 - 8 1 1 - 1 0 1 1 - 1 4 1 1 - 1 6 1 1 - 2 7 1 2 - 2 1 2 - 8 1 2 - 1 3 1 2 - 2 7 1 2 - 2 8 1 2 - 3 0
- - D I L U T I O N E F F E C T O N M A K E
H o u r s
p H I N P R I M A R Y P O N D O F F R E S H - U P W A T E R A D D E D T O S Y S T E M ; 1967
of d i l u t i o n
8 . 0 8 . 0 8 . 0 4 . 0 7 . 0 6 . 0 1.5 4 . 0 7 . 0 1 6 . 0 7 . 0 1 0 . 0 3 . 0 4 . 5 7 . 0 1 6 . 0 1 4 . 5
M i l l i o n g a l l o n s
a d d e d 1. 18 0 . 3 6 0 . 5 2 0 . 4 2 1. 10 0 . 4 1 0 . 2 3 0 . 0 2 1 . 0 3 1 . 7 8 0 . 3 4 0 . 0 5 0 . 1 8 0 . 0 9 0 . 3 4 0 . 4 4 1 . 4 8
L b s . l i m e a d d e d / h r .
2 7 5 600 6 0 0 150 150 150 150 3 0 0 3 0 0 4 2 5 515 150 100 400 200 200 200
B e g i n p H 1 0 . 5
9 . 9 1 0 . 3 1 0 . 5 9 . 5 9 . 1 9 . 2 1 0 . 2 1 0 . 8 1 1 . 2 1 0 . 2
9.9
1 1 . 5 1 1 . 2 9 . 8 1 0 . 5 1 1 . 0
- 6 8 C A M P A I G N .
E n d PH 9 . 5 8 . 5 9 . 7 9 . 2 8 . 6 8 . 0 8 . 4 9 . 8 9 . 1 9 . 4 9 . 6 9 . 8 9 . 3 9 . 0 9 . 0 9 . 0 9 . 0
APPENDIX III