AZIMUTH, O
5.3.1 The Soectrr¡n of Norma ÏR-l
In the
enerry ¡.ange 27to
5? KeV, Nor TR-I wag observeilto
havea,n
ínteneity
equalto 3.5
standartldeviations
obovethe
backgroundt'counting
rate. This is the only
balloon-borne observationof this
source reported
to date. Figure 5.2
ghowsthe
spectre,lresults for
Nor
ÏR-1. Also plotted a¡e the
neosurements clueto MìL
andto
theLeicester
group (Cooke and Pounds,f97O). Tïo gets of
.Atlelaidepoints are tlísplayed,
correrponilingto the
useof
twodlífferent
assqmed. spectra
for the calculatÍon of
energy-depend'entcorreetions'
'fhese spectreare respectively a
pouerlav witb
e:çonentI = I.5,
andar
erqponentlalwlth
kT=
13 KeV (seeSection 1.I.4).
The NRLme¿turenent
is inconsistent vith oll other data
andv1ll not
bediscusce¿t
further.
72
2
q, (J ô,(n
E(J q)
I
N
l2
l0-l
t0
-)
t
t0
¿0ENERGY (KeV
)50
5
¡\toR x R-1
t
-l
at 1.8
KeV22
-2 2.4xl0
cmI N_H
t-
This expt.
kT = 13 KeVThis expt.
EN(E)-
E-1.5Cooke and Pounds (,l970)
¡.- - -l
Friedmanet al
( 1967 )(
for
EN fgI^,
e1'5 ISLOPE= -.l.5
ËXPONENTIAL
--7 kT:
l3 KeV2xl0 3
2
tr'ig: 5"2 Spectral results for
Nor XR-1o t00105 Cooke and Pounds found
th¡¡t their dato
aloue r¡erebest fíttecl
byan èxponentíal spectrum
with
kT=
5 KeV, attenuatedby interst'ellar
matter havinga
eolumrr clensityof *4 x
to21tt
atoms"t12.
Thiscol.umn
density
was calcuLatedusing the total ìi-ray
absorption cross-section per
H atomfor
norma,l cosinic abundancesgiven
by Ðrown anclGould
(fqZO).
ijiowovcr,their data
a.nt1 ours combined¿re best fitted
by
tlie
?cìvor l.¿¿l¡t¡¡itir ì = I.5, vith interst'ellar
attenuationcorresporrcliug
to a
coltunndensÍty of
^, Z.,tr t(. tC22lt
atorns cml2rather groater than tl¡e Leieester value. îhe
exponentialfit to
thecombineri
data is not
as good andalso yields a value for the
columnclensity
<<1021 H atoms cm:z.'vlith re¡¡orC
to the
poverlav fit,, ít
rnruy besignificolrt that
asupernova romn¿lnt P 1613-50
lies very closc to the
sourceposition
(Coolce anr] Pounrls
1')70).
'fhe Crab Nelrulois of
coursea
sup"r'rrovn remns,nt and has a, pover law){-ray spectrum.
The measure..f colunmdensiby
af 2.+ x
To22II
atoms".*12 *,,ry be. eompa,Ìed
vith resul'ls
of Rappaportet aI.
(1969a, b)
vhofind a.2
xLo22"nl? fortbe
neorbySeorpius-Sogi.ttarius region.
lhus the revisÍon of tl¡e
spectrrunof
ltror .ÍJù-I which has resulted fromthe
preserrthigh
ener{gy merisurc'merlbs, h:rs prod.uceda
column d.ensityin
r¡uch bett,er agreementvith thot
fromother
nearby sources thon was c}..{c,i,r¿'d b:¡ ûooke r¡n'l llounils usin¡q low energy <lataonly. îhis result is consistent
r¡it,hthe proposjtion
tha.tarl
these soureeslie in
thesarne
Âalaetic spircl
errn (se.,s"çtrion I.I,1).
106
ãr3.2
The Spectrr¡nof
AraHì-l
/ira lR-l
r¡as observed.to
be3.2
stcndarcl clevia.tions above the background countrate ín the
energy range 27to
57KeV.
The d.eriveclspeetrum
is
presentedin figure 5.3.
Thepoints
have been corregteclfor
atmospheric
absorption, etc. by
assuming en exponential spectrumwith
kT
= 1I KeV. For
comparison,the fit
funct,ion EN(E)dE= L.4
exp (jE)anI1
is
shown,together with
low energyattenuation
corresponclíngto a
colu¡nndensity of 2 x
to22 u,ator "r]2 Ín the line of sight as for
Nor XR-l..hlso shown a,re
data points
dueto (a)
Lewinet al-.
(1969)for their
source Ì42,
(u) ¡'istler et al. (rg0a) for their
sourceL3, (c)
Bunner etaL
(fgOg)for
GX 340-2, ar'd(d) the
NRL measuÌementd
Àra)G-1"
Thepoints (c)
ana(A)
extenc!. overa
broad energ|¡interval
and have been acljustedto
correspondto
anIL
KeV spectrgm.The
fit function
providesa very
goorlfÍt to the data
over the eomplete observeC energyra,nge. Àt present it is not certain that all points
epplyto the
sams source,but figure 5.5
showsthat all
the sourceslisted
above do haveerror
boxes whichoverlap,
sharinga
sna1lregion of
sky centredat
about RÂ=
17h8m, Dec. = -45.oo.
The complexof
sources observed.in the
.hraregion will
befurther
cliscussedlin section
5.5.If the points
shown onfig. 5.3
do oríginat,eat a single
soutco,the exeellent spectral fit indieates that
any tímevariations
betweent,he dates
of the
observatíons have beensmall. the lov
energ|¡ turnover incorporoteclin the fit by
assurninga
i{ydrogen columndensity of
Zx
LO22atoms
cml- -) is hy¡rothetical
andit
can be seenthat there are at
presentinsuff
icient
1or,¡ energydata
(-€ 5 KeV)
to
<letermine whetherthe
amountof int,erst,ellar
absorpt,ion(it any) is
conparablewith that in
thed.irection of
Norru-I.
7l
l;>
tt
a, 2r0
-l
r0-2
T;
å, U|lE
urd0,
t0?
ENERGY
5 50
(KeV )
ARA XR-l
o- -
Effect
ofinterstettar
absorPtion,-H 22
-2
=
2rl0
cm..r.--o-_r
GX340'2,
Bunneret at'
1969(llKeV)
t+l This
exPcriment (tlKcV)I
t L' Fisher et at.
1968F-€---l
I Ëriedrnan¿t at.
1967 (llKeV) I+ Mr, Lewin et at.
1969 (l6KeV)kT
=
llKe,V2 xl0
I 2
Fig: 5.3 Spectral results for
Àram*1"
r00
'!.07
lhe spectral results
obtaineclfor
bottr sourees, Nor J(P,-l and.Âra
XR-l,
a.re presenteclin tabular
formin table 5'I' 5.4
IIPPER LIMITS0ther MìL
sourcesfor
which seatc̡es uere madevere
Lup 'i3ù-t'(see
ctso
ChoCiIet aI.
1967), Nor)G-2 (also Lavin et al.
1968a, Cookeand Pouncls 1970). Sco
Æ-2
and Sco )St-3(Irishèr et a1.
f966),
and seoK:l-4.
uppertimÍts only
coulcl be assigneclto
these sources.TlLe
results to
clatefor
lrlor iüi,-2are
shor¡nin fig' 5'4'
Th-eltdelaicle uppeT
limíts
corresPondto 3
stanctard ôevi¿'.tious abovel'acUgro,rncl and
eontain spectral c'rrectíons
bâsed onthe
â'ssumptionof
anII.4
KeV exponentialspoctruú.
These upperlimits are
consistentwith the other result,s plotte<], both at
low andhigh energies.
ther¡id.e-bonit }tr[ìL
result
ha,s been plo+,tociby
assrrnning en uxponential spectrumrvith kÎ = 1I.4
HeV anûis
noretiran a factor of
t'wo ̡elow the measurementsof
Cooke an<l Pound's (f97O)' It is interesting to note that the
low energyrlata
show no evidencc'of interst,ellar absorption, in
contrast,
to
l.[orffi-I, indicating
that,the
hyd.rogen atom column clensityin the lÍne of sight to
Nor )où-2is
considerabrytess tbs¡
1o22 atomsclll. .-2
l'fhe sun was
in the fiel<t of vÍev for a short time
anil no hartlx-rays
weredeteeteô. seteltite
observations haveestablished thatthe
sun emits hard
i(-rays in
assoeÍntionwith flares
anåradio
bursts(Cline et al.
1968, Iluclsonet aI, 1969).
I{owever,there
was noabr¡ormal
golar nctívity
tluríng I"IIL-1-68 frn¿l noflare greater
thanimportance
I
occu¡¡erl (ÉlSS/r So1ar GeophysicslReports,
196S).109
5.5
SOtmCE LOC.TITIONSÀlso listed in table 5.I are the
lee.ct squa,resfit'positions
obtained
for
l,Ior )G,-I antl Ara )üù-1, whichare also
shown onfig.5.5.
The
emor
boxes correspond.to uncertainties of !
+oin both zenith
and.azímui:h angles.
The azimuth
uncertainty
has two component,s,(*) tfr" statistical uncertainty,
givenby
equation5.4 rrhich
Ls 2.5ofor
NorIR-I
and 2.7ofor
AraS"-I,
and6) the
eyetomaticuncertainty of tbe
azimuthmeasurement,
I t.4o
(see chapter4).
Thezenith uncertainty of I
+ocorresponcls
to the
expectetlvariatíon of zenith angle,
d.uring the period.of
observationof
approximr:.telyI hour" of a
sourcein this region of the sþ.
Results
obtaíned fromthís part of the
skyby other
workers arealso
shownin fig.5.5. It
shoultl. be notedthat the
clotelistecl
besid.eeach group
of
workersis the date of publicatÍon rather
than obeævation.Figure 5.5
presentsa very
confusing apBeara,nee a,nd t'he poor angularresolution of the
measurementsis
immeclÍatelyaplnrent.
Ilovever, thereís
broad. agreement between observotions.0f particular interest is the
source complexat the vicinity of
¡\ra
vhich
can be tokento
includ.e Sco )Gl-3 ancl ScoIR-4,
and whichroquires
B, surveyof fer better
anguÌo.rresolution
than has d'ofar
beenperformerl.
Tharesults of Fisher
et,al. (fq0g)
and Bunneret al, (fgAg)
appearto
bethe
mostprecise to date
ancl shor¡ reasonable butnot perfect'
agreenent'r¡ith
each ot'her.tdúl
L¡J æ,(t
KJ
c)
o
l- 4z
J C)l¡l (f
-30
-40
-50
74
,IB
t7
16RIGHT ASCENSION
15
( HOURS )
\
\
\
x
GALACTIC CENTRE\
\
\
\
\
SOURCES 3200
<
F-3500È
0
I
F1 tt!- -.1
H
PRESENT EXP LEWIN et at
1968¿, 1969
c0 xR-¿ FRIEDMAN et at
1967
XR-¿.sc0
BUNNER
et
at19 ô9
CLARK et at. .l965 CH00lL et at 1967 FISHER et
at
1968MAYER et
at
1970I
\
Irl
,\
ARA COMPLEX
SCO XR-3 Ë
ARA XR-I -->
\
I I I I I
LUP XR-I
I t
I (
,?\ \
I I
I
I
GX 3ôt-6
GX 3¿0-2
NOR XR-I
NOR XR-¿
GALI\CTIC EOUATOR
-50
ì'ig: 5.5 ?ositional data for
sources 320o <tr<
35oo"llo
thege
results intlicate thot poor-resolutlou stuilios
sueh a8 ot¡¡experiment
, erd
tbose ex¡nrimentsof
Lewinet aI.
(1969) and' Friednauet al.
(fgOZ) would experience<lifficulty in resolvÍng reparate
aourcesin the Ara conplex. ltre
problemís es¡ncially ilifficult for balloon-
borne experiments because
of the lor¡ intensity of the high
energ)¡radiation.
Inconsistencíes between
clifferent
observations a,lsoexist nithin the
ScoïR-2
complex whichat the
presenttine consists of the
Lockheetl grouprs sourceL6 (Fisher et aI.
1968),a
source designatetL M4by
L,ewinet al.
(fçOg) anrL one GX. )4g+2 by l,loyeret aI.(fgZO). Àlso
assocÍatedwith
theseso'rces is
GX)54-5 (o{ = tf+{, 6 =
-360,uncêrtêinty'-2o't
observe¿l by
Buseltí et aI.
(1968) anditlentifÍett vith
G)G-5.6 (Gurahyet al, 1967). This is
reportectin tletail
by Clancy(fgZf).
The sources Nor
ffi-l,
Nor XR-2 and Lup XR-I have hatllittle
observational
exposure anal demandoloser examination' VarÍebility
hasbeen mentioned
to
aecountfor
Ínconsistenciesvhich
have eppearedin
thetimitert
numberof
observationsof
Nor Eù-á antl LupXR-l
(MoGregoret aI.
Lg6g, Lewin
et aI. I968a,
Cooke and Por¡nclsr97O).
Thelinitecl
dataavaíLable
for
NorTB-I inilicateg that it
has suffereclllttle variation in intensity
between observat,ions (Cooke ancl Por¡ndsI97O).
Theinability of
Lewinet al (t9684, f969) to
d'etecta significant
flnr< fromNor
TR-l
tLuringthe
experimentÍn
whichthey
observecl NorÏIì-2t
naysuggest
variability in either (or both)
sourcesof high
energÍes since bothregions of
slry received. comporable exposuretimes
from them andcomparison
of figures 5.2
ancl5.4
showthat'
Nori{R-l
wasthe
strongerof the
tr¡oat the time of
ot¡r experiment'111
The
gelactic
d.iscregion
J2oo< lII<
35Oorequires
furthenintensive stutly. It
has been shovnto
bericlr in X-ray
sourcestas
ísthe
case for the a¿jolning
Centa'rusregion also
(Cooke anil Por¡¡tls I9?O)'
From our work
it is elear that to
besuccessfulrfuture
experÍmentsdirectecl
t,owardsthÍs part of the
sky shoulô possess angularresolutions better
than abouta tenth of a
degree (rocket-borne)'
't\largë
area'proportiona,l counter
plus rotating nodulation collimator
experimentsinilar to that carried out
by Schnopper et'al.
(fgZO)in Sagittarius,
woulð
give resolutions of the order of
oneninute of orc,
and voutril be
a significant contribution. Intensity
threshol¿lsfor
suchan experiment shoultl be
of the
orclerof O.I
antl 0.05 KeV"tlz
"erãlfeV-I at
energiesof I
and IO KeVrespectively. For
balloon-borne experimentswith
onintensity
tb¡esholclof
about O.Ol KeV srnl2"""11 f"vlt
anclwith
a,n accurs,te t,elescope
pointing
syst'em,&n
angula'rresolution of '-
10seems a, rea,sona,ble
goal for vhich to
oim.112
CIÌAPTEB 6
â1Ì"10SPIüIRIC X-RAYS.
I 6.1
INTH,GDUCTION:-
0bservations
of
cosmicX-rays at balloon altitutles
are hamperetl bythe
presenceof a large
background. prod.ucecl. bythe interactions of
cosmicrays with the
atmosphere andt'elescope surrounclings. Becluction
of this
backgroundis essential if X-ray
astronomy studÍesare to be effectivel-y
pursuetl, ancl consequently an understand,ingof the
processes by vhíchthe
background.is
prod.ucedís
clesirable..6,, 1 .'l
.
The l_el+scop€_Beghground :Three
clistinct
sourcescont'ribute to the total
backgrouncl countraie (.Brr) of 'the
tstresc_opêr
(u)
Atliffuse flux (8"**) ot
photons whichenters
throughthe
teLescope aperture and. whichis
proclucetlby
cosmic rayinters.ctions uith
atmosphericnuclei; the
countrate
B"rrnis proportional to the
telescope geornetricfactor
Q .rn.Z st,er.(see chapter
3),
anclis a function of (i)
photon energy U(feV),(ii) ttre
<!.epthof
residuaJ- atmospherep (er.qñ2), (iii)
trre geomagneticcut-off rigittity (since this
d.eterminesthe
incid.ent primary cosmicray
spectrum),(iv) ttre prevailing
cosmic rayflux at the time of the
experiment¡ and. perhaps(rr) tfr"
telescopezenith
angl-el'.
Clnatgetlparticles entering
throughthe
forward aperture havo been foundto contribute
É4
+,o Brr,n (Bleeker anclÐeerenbere 1969).
113
(¡) ¡
cosmicray
indrrced leaho.ge bachground(Br)
whichis a result of the detectorrs characteristics
andof the
aturosphericracliation environment. It is
caused byhigh
energy gamna rays which pass throughthe
guardscintillator without interactÍon
antl
nhich
subsequently Comptonscatter in the central crystal,
and
by the high
energy tlaughter prorluctsof interactíons occurring in
ancl aroundth.;
telescope whichalso
ev¿de the anticoíncidencesystem. U, t" a functíon of (i) u, (ii)p,
(iii) cut-off rigírlity, (iv) tine,
and(") the physical
a.¡rcgeometrica.l
configurotion of the
de'bector andits
guard. systemwhich lencls
to variations in the
meLgnitude and propc-.rtiesof
B,from
detoctor to ùetector. B, is
inrilepenrlentof
G ancì can only be separated, frornF*t,
b.y employing avarinble
openingsolid angle. iíecently
an oxperiment r,rasflor¡n in
ryhiohthe
act,ive telescope operturewls period.ically
screened by anotherscintillator in
anticoincirlencewith the
telescopecentral detector;
hove'/er, nodata regrrrling B,
and tsatrrere
obtained, asthere
lrasa
major rnalfunctionof the observat,ory.
Ilencgein the vorh
doneto ttris
da't,e,the
separote component" Bu,t. and B, cannot bedístinguished
anclvill
br:collectively referred to
asthe local
bacbgroundBlo".
a.s opposeclto the
countrate
proiluced,by
the diffuse
br,.ckground.of
cosmicorigin, O"n". That is, Blo"
=Brtr * Br
(")
ii'hethiro
componentÍs the
cosmicrliffuse :t-ray
background.,
lJ"o,
(see chapter8) vhich enters the collimrrtor
opening angre
after attenuation
bythe resÍrluar atnosphere, rt, is
a function of (i) ü, (ii) p
a¿c '¿J, Eùn¿(iii)
c.114
It is
inclepend.entof cut-off rigirtity
andsuffers
no knownobservable
time variations. It contributes significantly to
thetotal
backgroundrate at
pressures p^.(1 Ogm.
cm-2, increasÍngwith
decreasingPr
as oPi.rosed.to BIo"
r¡hich clecreases.the uncertainty of the relative contributions of Brr*
anrt
B,
anrlthe
clepenilenceof B,
ondetector configtration
will
lea<lto clifficulties in the
intercomparisonof the results of
cLifferent, workers onthe
cosmicray productíon of
X-raysin the
atmoSphere¡ For these reasons conversíonof
measurecl backgrountl.rates to
abgolute atmosphericx-ray fluxes is
arather
speculativeventl¡¡e.
Howeverit is
believeclthat Bt
has been recluceil most
effectively in the active
telescopetlescribed
in
previous pa,ges as å,result of
backgroundrejection
techniquos
yhlob
a,regenerally superior to
thoseof
other cletectorsfor
whÍch atmospheríc photonresults
have beenreported
in d.etaiI. This fact together with the
sma1leffect'ive soliit
angleof n
hx¡O-2ster me&nsthat the results
presenteclin this
chapter applyto uniclirectional
atmosphericX-ray fluxes
more
accurately
than anyothers
publishetlto
cÌate.It
shoultl be emphasized.that
sincedífferent
d'etectorsmay be measuring
fh¡xes of substantially <lifferent origins
owingto the Bt atbiguity,
intercomparisons must be rnaclewith
care.For
the
same reasonrcorrections of
countrates to
absolute aturosphericX-ray fluxes is uncertain
andin this
chapterconclusions will
be mostly drawn usingrawr
uncorrected countrates
ontry.115
6.1.2.
The atno.sphericradiatÍpn
e$vironnent.The cosmic
rad,iation wíthin the
atmosphereconsists of
anumber of, oomponente w̡ich can
be classifiett in a
nr¡mberof
ways anil
the following is e very brief prfcis of t]re currently
acceptetl
facts
(Uayatcawar 196%)bPenetrability of
matt'eris
one
cl,ossification criterion
whichallows the ttivision ínto
two components,
a bartl
component which penetrat'es )., locm.of leatl
and ¿' ae¿-penetratÍngsoft
component.Ihe proðuction of a
showerof
seconalaryparticles by inter- ections of primaries wíth matter
províðes anotlrer neansof
classifùcation.
Onetype of
shoveris
generotetlín small thick-
nesses
of
nratter a¡rdits
secondaríes emergeat large
angles onôare rapidly absorbeô. This electronic or
E-componentls
associatetlwith the soft
component and.is
eccorr¡rtedfor by the theory of
the
cascade showeriuítiatett by electrons
6nal photonsr and sustalned bypaÍr
product'l'on, bremsstrahllng and. Comptonscatterlng. Ihe other type of
showeris
generateôrr'ith
largemean
free
paths ar¡d.its
secondariesere very
Benetratingwíth Iittle angular spreail. This is
associatettwith the hartl
componentancl
nucleons
antl cborgedpions ere its
primary orr1 secoadaryparticles.
The sholteris
prod.ucett bya
conbin¿tionof multiple
meson prodUction and
a
cascede p¡'ocess ond.is
d.enoted.as
thenuclear
-sctl.ve or
N-component,of
cosmicTê/sr At high
energies both E-e,nctN-showersoccul together, tl¡e
E-showers beÍnginitiatect by tbe
decayof neutral
pions.116
At sea-level oost
cosmicrays are neÍther
Enor ìI-particles
but formthe penetrating
component,consistingof
harcl muons.The man¡¡er
in vhich this
totcr,lradiation
envifonmentinteracts vith the active
telescopeis
thenresponsible for the
observedIocal
background.. 'IheaLtitude
d.epenclenceor transition curve, of the total
backgroundrate ín the
energy renge 3Tto
47 KøYfor
theftight Ì.{IL-l-68 is plottecl in figure 6.I
asa function of slant
atmospherictlepth (- p
sec Zg ."^12, '¿=)zo).
The countrate
increase as
the balloon
reachesfloat
clepth,for p
sec Z€1Ogr""*ir2 is
dueto the contributto^
U"o"of the
cosmicdiffuse
background which beeomesprogressively less
attenuated bythe
decreasingthickness of the overlying air. At slant
depths exceeding 10 gtn.cm.-r -) the
countrate
increages, reachesa
maximumet
about lOO gm,cm.-,
and then decteases.îhe
shapeof the transition
eurlreat
d.epthsgreater than
IOgf,. cm.-r -) is broadly
und.erstood fromN-
and. B-cascade shor¡ertheory
andis charecteristic of
secondary cosmicradiation
(i{ayakawa
I969a).
tr'or example,a I
GeV cosmic ra,yproton interact- ing with
atmosphericnuclei will learl to the multipte production
of charged andneutral
pions r¡l¡ichinitiate E-
cascarlesof
electrons,positrons
andphotons.
Thereis n rapid incfease in the
number ofpartieles in the
showeruntil the
averageparticle
energyis
d.egroded. below
that
necess&ryfor further
secondaryproituction,
andthe
numberof particles
reaehesa
maximum(tt¡e pfotzer
¡rnaximumat
an atmospheric pressureof
about, lOO gm,"*12).
1æ