MIL- 2-69
6.3. The Trans.itioncurvemaxi (p-loOgm.cm-2)
Another
property of the
atmosptreric photonintensity
whichma.y be
of help in
determiningits origín is the
ctepth (prno*Bnt'"*-2)at
whichthe Pfotzer
maximum oecursi¡¡ the transition
curve.Ás
iu tho case of L
¡reasurements,the
experimentaÌconfiguratÍon is a6ain important, since if the
Gross Transfotmationis valitl,
an omnid.irectional mea.surernent
will yield. a
maxi¡uumat a
smoller ctepth thanwill a vertical ftux
measurement'. tlhenthis is
consid.ered., cornparison
of
photonresults with
thoseof
otherradíationcomponentæ
will hopefully
64ivea
clueto the
photon soüro€¡174
Eowever, tJ¡Ís ruethod experieucea
the
samedifficulties
as doL
comparisons and.the results too are
someïhat inconclusive.6.3.1"
Results:The
value" of pr*x,
wit'hout a.nycorrections
+,o Z=Oo ¡obtaíned on each
flight are llste<t in table 6.5.
UncértaintÍesare typically
about¡
20gr."*-2.
Tobte
6.5¡ Transition
maximumaltitudes (gr."rn-z).
Fi.ight .Active
Energy Range (Kev)
Þ*t
(pn¡i)
Pto*
(Guartl avg)
GS tetescope (+o-'t25 KeY)
Prn"*
These
results are in
general agreementwith
thoseof other
workers(taUte
6.3).Howeversûgortfieortdifferences are apparent,
espooû,ally betr,¡een MII.,-1-69 antllrillr-2-69,
as was noted.for the L
valuecleterminations.
/rlso the
enerry dependonc"of p***
obtainetlfor
l,fll,-3-69is not
apparentin the other flights. In
aclditionPro" fo" the
averaged, guard.rates is consistently
s¡naIIer thanfor the nearly unid.irectional active
PIIA rat,es as would be expectod.fronr absorption
va4fing as
exp (-p/1" cosz).
The G.S telescoperesults
however tend. nc¡tto
agre,evith this
expectationsince
they groupwith the active
PiI/r valuesrather than
thoseof the active guards. This
apparent d.isagreement,if
in(leedit is a
disagreement,since statistics are
poorrcanrì<¡t be explained.within the
fra¡nework Þrrl,-1-68MIr-l
-69þ.iTL-2-69
iliIL-3-69
27-167 12.7-142.7 12,7-142.7 20-90
110 130 100 140 110
90 110 80 100 0-1 50
140 100
135
of the
Gross Transformation h¡pothesis;6.3
.2.
Discussion:-
Value's
of prr*
obtained.for other
cosmíc ra.y componentsappear
in table
6,6.lable
6.6- Tr.snsi *.i on mo*i 'P^n â^êhi ô anmnnnon*-corV
Pr*
(gm. cm
Beference.
Puppi
et ar (tg¡z)
Peterson
(lgøll
Ivlillikan
e+ a,L(194/,,Meyer antl Vogt(t962
Duthie et
ar(t963)Ha¡rmes
(lgøql
Soberman (tgSO,
Staker (tgro)
Soberman
(tg¡0) Staker et al (tg¡f)
Soberrnan (rgSA) -2\)
Electrcns 690
Soft Soft Soft
Chargetl
particles
Fast neutrcns,
1-1 4!IeV Slow
neutfons
( < loorev)
4ro 550
410 o
10.1o o
JO,40 55.10
690
Bg.go
200 50 70
t50-200
130
120
110 100 90 75
v
o o
v v at
400
95
ll o
o o o
Ù
It
n
The
variations evident in table 6.5, together with
thevariety of results in t¿ble 6.6.
eneble photonsto
be associoteclwith practically
any cosmicray
componentif only
pru,* "orparisonsComponent Geomag
lat
are
mad.e.136
Yalues
of p*r*,
asâre
thoseof L, are
thr¡sr¡nreliable intlicat,o¡s of
Lhcgenerlç reloti,o¡r of
e-trnosphoric Xray photonet¡
ccsmicrays
and. any c<lnclusiqns reached.þ
such means canno-bbe -taken
too seriously.
6.4.
SUlvll&rflT:The
results
presented. showdifferences
betweenflights
ofthe
oriler'$f
15%in ϡlay attenuation lengths L in the
atmospÌ,reric d.dpthintorval
2OO{p -€:7OO grn.crn2. lnn"o
is
onLya
smallenorgy d.eÞeudence
in L for
energies 1O<8.<lBO KeV.Gooà evidence
exists that at thesc d.epths either
the¡rhcton intensity itseif or the
photcn-prod.ucingradiation
Fossesses ¿i
zenith
an¡1re d.ependence.îhis is
so becauseof
theèmpirÍcnl fact
thb.tthe
Gross lransfc¡rmationis
founclto
provid.ea
gcorl explanationof the
obstlrved numericalrelationships
betrseenL
values for the
activ<-' telescope Èneïg,r charurels,for
theactive
guard.rates
and.for the
grad.ed. sh{eldrtcrescope energy channcls. Iìoueverthe theoretical ve.Iid.ity of the
Gross Trens- formation when apprierdto
secqnd.ar¡¡ ¡hotonFpr electro¡rs at
suchIerge
atmospheric clepttrsis guestionablel
,Comparison
of
pliotonatte¡ruaticn lengths
obtained. here wi'bhthose
of otþer
workcrs shourd be med.er¡ith
caresince L
ìras beenshovn
tc
bea
funct,ionof
enc'r6r,the
ce'i;e.ctorconfiguration,
?enith angre and.detector
acceptance sorid.angre
andpossibry of
time.sinee the active
telescopeof this
oxperiment',:is
beri+ved.to
possess supcr:ior backgroun,:trejection characteristics
¿r,nd. has as¡naLl
corrirnator
opening angrc¡it is
believed.to give tho
most137
aonprabonsivo
rêËults to
d.eto ondirectional X-lay flures in
thsatmosphere.
Gomparison
of
photonattenr¡atlon
Lengths an¿LPfotzer
naxlmr¡mheights vith the
correspontlÍngvelues of
ot'her etnospherícracllat,ions does
not
appearto
bea relíeble
mothotlof
detorminingthe generic relationship of
photonsto the
seconilary cosmiorad.iatlon.
CIIAPTER 7: A1T4OSPTTERIC X-PJì.YS
. II
138?.1 flilnoDuclloN
This
chapteris basicaily a continuaticn of
chapter 6.the
atnospherict¡aasition
curvowirr
be examined.for
p<loogm.cm-2, an importantregion for the
d.eterminatiorrof the d.iffuse
cosmicïfay spectru¡l¡
Thespectrar
formof
atmosphericxrays wilr
beexarníned. as
a function of ttepth,
t,imevariations in
background.characteristics wilr
befurther
pursued. and mentionwir.r
be madeof
geomagneticlatítude variations.
7.e
TIIE IiIGHFIST ¡.LîITLDES (o<1oO Gti.Ct"t 2).The cha¡rnel
3 transítÍon
curve obtained.during the
ascent,of the fright
YiIL-l-óB has been shownin fig. 6.1.
The corresp- oncling curvesfor other
channersare
givenfor
comparisonin figures 7.1
t'o?.5. rn fíg. 6.1 the
approximate background.contributÍoo" Blo" ( = B"t**Br)
and,B"o" or"
intticatect whereElo" i" the
local- þckground. dueto x-rays of
atmosphericorigin
(Batm) and
to the
leakage background(Br) çhich entors
un- d.etected. throughthe
telescoposhiord.ing.
These componentsare
clescribed. morefully in
cþapter 6.The
evaluatÍon of the
cosmic background cornponent B"o"at
clepthsress
tban obout 10 gm.cm-zi.
aopun{ent uponits effective
seperation fromthe locar
bockgrou¡d.For
channel 3this
separation wouldnot
appearto
be<tifficutt.
Howeverin the
ot'her chennelsthe relative contributions of B"o"
areconsid.erabry smarler owing
to the
formof the diffuse
background.spectrum and-
the spectrar
responseof the
terescope, and.it
is important to
makcthe best cstimation
possibreof the
rocar background.¡I
00¡¡
t.¡
ã
&
t¡-
\trÞ
æ,ill
G-
Ur
t-
æ.
:f,
o
L) r000
60
4tt
?ts
0
SLANT
?0
ÐEPTH
50
( -¿
Ern cm
t00
200500
t00f){ig. 7.L Transition
curvefor
channeÌ1,
MIL-l_6gMcan
float
+
count rate-{{
-+
-+-'r
-+:r
MtL-
t-68
CHAN¡NEL I tV- 27 KeV
+
tG0
ilso
"F¡r-
ú60
lÐtrJfL ¿O
m ts
3zo
(J0
2 5 tû
SLAI¡T
20
DE PT I{
t00
200500
t00050
(gn
cm-2Fig. 7.2 Transition
curvefor
channel5,
MIL-1-68MrL- r-ö8
cÞ{Af,¡hlEL 5
57- 67 KeV
ï count
rat¿{-. -+
vì
HEo
(u k-
860
t0c
@, LiJ l!-
40
t-
m 4o
(J ?t0
2 5 t0
sLANT
20
I}EPTH
5C
( grn cm-7
t00
200500
1000)
Fig. 7.3 Transition
curve for
chann.a7,
MIL-1-6r8 count ratc Mean ftoatL
M!L- 1-58 CHAhJf\¡EL 7
77-BV
KeY+ +
5û0
4S0 ul t¡l¿, æ
l,¡-
Ë
3CI0l¿J
?0Û
slt*
.É-
= 3mo
0
2 5 rÐ
SLAN T 20
DEPT H
r00
2ûû500
t00 050 -2
(gm cm
IFig. 7.4 Transition
curvefor
channels 9to
15combinecl, MIL-1-68
Mtt-r-68
CHAN¡\ELS
9-15
co¡'nb¡¡red9?- 167 KeV rJ.
,-L
-F+
+
*+-'.
+ '-ts-F
F+_{Å*i. +
Mean f ioat-i-..
I-rf
count
rat¿F{-.r
F-I-
t-{-{
r000
¡¿0t
800
6û0
4ÐC
20t
ln
El¡J
6rtL
r€
l,¡J
o- ul
Í-"
? JÐ
C'
0
2 I 50
(g*
cm-2
tû0
200 t000SLANT
DEPT I{ IFig. 7.5 Transition cutve for channels 2 to t5 combined., MIL-1-68
M¡L- ?- 68
C¡"IANNELS ?- t5 cornbined
27
-
t67 KeV.:[.
"+-,
-{-l
-{-{-
Meancount
f toat
rate
t+.
F{-{
+
F-+-..
139
This
hs.s been accornplishect bythe
loast-squa,resfitting of
anappropriate function to the total
background.data
poiuts(t*or) in
t,he depthinterval 1olp57o gm,cmî]
whereBtot=
BIo" * B"o"- BIo". îhis least
squaresfft function is then extrapolated to balloon
fLoat, depthto give a value
therefor
B,loc _ .
Uponsubtraôfion of
B,Ioc -- _
fromthe total
background.rate, the
cosmic componentis obtai,ned. This
o,nalysi.s proceclure has been followed. usingthc
d.ata fromthe ftights }IIL-I-68
antt ÞlII-3-69.7
.2-1
Tra.nsition
crrrwo-
Io {n(70
pm.c¡n. -)
Thrcc
different functional forns f¡{nn)hvebeenfittêd to ilato fron I'ÍIL-I-68
andIviIL-3-69.
I'hcse have beenrespectively
linc'arr (j=tr
sêe oquat,ion7.!)
ponerlaw
1¡=2) ancllogarithmic
1¡=3) count
rate functions of
pressure (see Elua,tion.?.3h,..The ll¡earI'*¡st
squares method. d.escribed by
i{olberg
(1967) was usedin all three
cases and.the
computations were clone onthe
CDC 6400computer
at the Unívorsity of Atlelaide.
The good.ncssof
eachtype of fit
was evaluat,ed.for
each energy cha¡rnelby
computing I,L (n(nr)-n(rif
L -rTñTef-
)(.
j
'l .1i=1
where
B(pf) ls the
countrate at
pressÌrreei,
V(Rþi))is its statisÌ;ical
vari¿rnce, F- (p,) i" the fit function valuo at pÍ
ancl N
is the
numberof
clatapoints. In the
caseof
PlIl¡-l-68tlata points for 1O(p <
70gr."rî2
wcre used..140
For !iIL'-3-69
the float
tlepth wasgreater (4.5 gt.c^-2
a,scomparerl
lo 2.7
gm.cm-zfor MII-1-68r
seetable 1.4s1.
As aresult tt¡e
locaL background was consÍiterablylarger
(seefigo 7.9)
and.a rather less reliable
cosmic background. d.etormir¡ation oould be macle. Consequentlyit
vEìsresolved to
usethis
datato
examinein rletaíI the Blo"
"*ttapole'tion-to-float
procedureantl
in particular,
cletermine which formof
countrate vs
d.epthfr¡nction
was most approprÍat,e..To d.o
this the
est,imated cosmicbacþrourrlr B"o"r
was eubtracted fromthe total
bocþround, cl,atapoint" Btot in
theinterval
4.5 \< p<1O g ."^-2.
The ctÍfference d.ata werosimply
values of BIo"
which provid.ed.additional points for
theleast
squaresfit
proced.ùre. By usíngdata
fromthe
depthínterval
4.5-<p(7O gm.c^-Z í+, was hoped,to obtoin a better
cleterminationof the fit function
than could. be obtaincd usingthe smaller
nu.nberof points
fromthe interval 10(p(7O
gm."r:-2.
The cosmic background. spoctrum used.
to calculrtn
B"o"followed the results of
Sewardet aI. (tg6Z)
who obtained. apower law
with spectral ind.ex * 1.6
between4
and 40 KeV, anilthe results of
Bleeker et,aI.
(t97Oa) who found an ind.exof
,v2.5
between 20 and. 22OKeY.
The exact magnitucle andlocatíon in
energyof the
ind.ex breakis still the subject of
speculation,but for the
present purþoseit is
assumed. t,o beat
38.1 KeV,almost
at the
bound.aryof
channel-s2
and.3for
MIL-3-69.Normalization
at
38.1 KeVled to the
ad.optionof the folloving
spectrura (photons
"*-2"o"-1
"tur-l ):
141
dLE, E<38.1
KeV.N(E)
dE =...
¡.cT"2The telesoope response
to this
spectrum wascalculatetl for 4.5-(p(10
gm.cm.-2.t"irrg
equations3.6
and'3'8, the results fo¡
channet2 (2g.4 to
39.1 KeV)being
presenterlin fig' 7,6.
The inadequacy
of using MII-3-69 for a
cosmic backgrounilspectral salculation
can be seen fromthe fact that
B"o"( Btot,
even
in
channel2 fot
whichthe
expect,ed responseis
greatest'(see
fig 7.9).
The computed' telescope response was thensubtract,etl from
the total
backgrounclin
each enerry channel anctthe least
squa,resfits applietl
t<¡the
d.ataín the
<lepthintervar 4.5-(p(fo gm.c^.-2. For
comparison, Least squa.resfíts
werealso
madeto the ciata
1o<p<7O
gn.cml2,since ext¡a- polation to ftoat of
thesefits is the usual
methodof
tleterminingB_ _ _ experimentally.
cos
Linear,
powerlaw,
andlogarithmic functions
were used astriol fits
t'othe tlat'a. the functional forot
were[s
E-1'6lroo
E-z'5 dE,
E)38'1
Kev.Ft (prB)
=¡(n)p +
B(E)r, (nrE)
=l(u¡n B(E) ..
'..
.r, ...7.3 F, (n,E) = A(E)torto ( Ëtrl)
where
the
parameters A(E) and. B(E) were tlet,erminecL bythe
method-of least
squaresfor
each channel (Volberg 19671.?50 300
?00
î50
tû0 ln
l¡JE
M
¡¡-
@
tr
¡&l
û- (n Þ-
:
€)(-¡ 50
0
¡ 2
tû
20ATM O S P i{E
R¡C
ÐE PT!.I50
r00( grn cnn
-) ')
200
500
1000Fig. 7.6 Transition
curvefor
channel2
(29.+ to 39.1 KeV), MIL-3-69,with the
computed.contribution of 8"o".
;.'I Ir
r+
B.or( computed )
ú{ l-.¡.- T¡+
rll
142 Illre gootlness
of fit of
oachof
thesefunct'ions in
each enerry channel oan be examined by referenceto table
7.1(a) in
whichbest flt values of :t3 (i =
1,2r3,
see equation 7.1) are
compared.Fits to
boththe 4.5<p<7o gt."*-2 data
andthe lo(p<?Oeurr.f2
dat'a
are
consid.ered.-2 Cb. Energy
i
Bange(rev)