Development and Use of Prediction Models for Classification of
Cardiovascular Risk of Remote Indigenous Australians
An Tran-Duy, PhD
a*, Robyn McDermott, PhD
b,c, Josh Knight, PhD
a, Xinyang Hua, PhD
a, Elizabeth L.M. Barr, PhD
d,e, Kerry Arabena, PhD
f, Andrew Palmer, MD, PhD
a,g, Philip M. Clarke, PhD
a,haCentreforHealthPolicy,MelbourneSchoolofPopulationandGlobalHealth,UniversityofMelbourne,Melbourne,Vic,Australia
bCentreforChronicDiseasePrevention,JamesCookUniversity,Cairns,Qld,Australia
cSchoolofHealthSciences,UniversityofSouthAustralia,Adelaide,SA,Australia
dMenziesSchoolofHealthResearch,Darwin,NT,Australia
eBakerHeartandDiabetesInstitute,Melbourne,Vic,Australia
fCentreforHealthEquity,MelbourneSchoolofPopulationandGlobalHealth,UniversityofMelbourne,Melbourne,Vic,Australia
gMenziesInstituteforMedicalResearch,UniversityofTasmania,Hobart,Tas,Australia
hHealthEconomicsResearchCentre,NuffieldDepartmentofPopulationHealth,UniversityofOxford,Oxford,UK
Received2September2018;receivedinrevisedform5December2018;accepted5February2019;onlinepublished-ahead-of-print22February2019
Background Cardiovasculardisease(CVD)istheleadingcauseofdeathforIndigenousAustralians.Thereiswidespread beliefthatcurrenttoolshavedeficienciesforassessingCVDriskinthishigh-riskpopulation.Wesoughtto developa5-yearCVDriskscoreusingawiderangeofknownriskfactorstofurtherimproveCVDrisk predictioninthispopulation.
Methods WeusedclinicalanddemographicinformationonIndigenouspeopleagedbetween30and74yearswithout ahistoryofCVDeventswhoparticipatedintheWellPerson’sHealthCheck(WPHC),acommunity-based survey.Baselineassessmentswereconductedbetween1998and2000,anddatawerelinkedtoadminis- trativehospitalisationanddeathrecordsforidentificationofCVDevents.WeusedCoxproportionalhazard modelstoestimatethe5-yearCVDrisk,andtheHarrell’sc-statisticandthemodifiedHosmer-Lemeshow (mH-L)
x
2statistictoassessthemodeldiscriminationandcalibration,respectively.Results Thestudysampleconsistedof1,583individuals(48.1%male;meanage45.0year).Theriskscoreconsistedof sex,age,systolicbloodpressure,diabetesmellitus,waistcircumference,triglycerides,andalbumincreati- nineratio.Thebias-correctedc-statisticwas0.72andthebias-correctedmH-L
x
2statisticwas12.01(p-value,0.212),indicatinggooddiscriminationandcalibration,respectively.Usingourriskscore,theCVDriskofthe IndigenousAustralianscouldbestratifiedtoagreaterdegreecomparedtoarecalibratedFraminghamrisk score.
Conclusions Aseven-factorriskscorecouldsatisfactorilystratify5-yearriskofCVDinanIndigenousAustraliancohort.
ThesefindingsinformfutureresearchtargetingCVDriskinIndigenousAustralians.
Keywords Aboriginal TorresStraitIslanders Predictionmodel Riskscore Cardiovasculardisease Coronaryheartdisease
©2019AustralianandNewZealandSocietyofCardiacandThoracicSurgeons(ANZSCTS)andtheCardiacSocietyofAustraliaandNewZealand(CSANZ).
PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Correspondingauthorat:CentreforHealthPolicy,SchoolofPopulationandGlobalHealthTheUniversityofMelbourne,Level4,207BouverieStreet,Carlton, Victoria3053,Australia.Tel.:+61390356387;Fax:+61393481174.,Email:[email protected]
https://doi.org/10.1016/j.hlc.2019.02.005
Introduction
Earlypreventionofcardiovasculardisease (CVD)isrecog- nised tobe crucial forindigenous populations given their substantiallyhigherCVDriskcomparedtonon-indigenous people[1].TheexcessCVDriskamongIndigenousAustral- iansislargelyduetotheveryhighprevalenceoftraditional CVDriskfactorssuchashypertensionanddiabetes.Inaddi- tion,otherhighlyprevalentriskfactorssuchasalbuminuria havealsobeenshowntobeassociatedwithCVDinIndige- nousAustralians[2,3].
InCVDprimaryprevention,absoluteCVDriskassessment isanimportantcomponentthathasbeenwidelyused and recommended[4,5].Thishelpstoensurethathigher-riskindi- vidualsare appropriatelytargetedfor initiationofprimary preventionstrategies[6].WhiletheannualCVDriskassess- mentusingavalidatedabsoluteriskalgorithmhasbeenrec- ommended forIndigenousAustralians[7],thereis widespread beliefthatcurrenttoolshavedeficienciesinassessingCVDrisk inthishighriskpopulation[6,8,9].Severalstudieshaveshown thattheequationsderivedfromtheFraminghamstudyunder- estimatetheCVDriskofIndigenousAustralians[10,11].One explanationforthisunderestimationmaybethatcertainCVD riskfactors forIndigenouspeoplesuchasalbuminuriaand waistcircumferencearenotincludedintheFraminghamCVD equations [2,3,12,13]. While it ispossible torecalibrate the Framinghammodelstocorrectforthisunderestimation[11], thisdoesnotaccountforabroaderrangeofriskfactorswhich arepotentiallyusefulinfurtherstratifyingrisk.
Ontheotherhand,therearealsocircumstancesinwhichitis usefultostratifyCVDriskusingarestrictedsetofavailablerisk factors [14].Forexample,sometimesIndigenousparticipants wereexcludedfromlaboratorytestsaccordingtodifferentrules [15].Wheninformationontraditionalriskfactorsisnotavail- able,astandardapproachforriskstratificationistoproducea modelorriskchartbasedonareducedsetoffactors[16].
Inthepresent study, weaimedtodevelopand validate predictionmodelsfor5-yearriskofCVDusingdatafroman IndigenousAustraliancohort.Wedevelopedtwomodels:a primary model that included any relevant factors and a reducedinformationmodelthatdoesnotcontainlaboratory variables.Afterinternallyvalidatingthesemodels,weused themtoclassifythestudycohortasgroupswithhigh,mod- erateandlowCVDrisksalongsideclassificationbasedonthe AustralianguidelinesforCVDprevention[4]andtherecali- brated 2008Framingham equation[11],and comparedthe averagerisksineachpredictedcategorywiththeobserved risks.Then,weexaminedtheextenttowhichtheAustralian guidelinesmaymisclassifyIndigenousAustralianswithand withouthigh5-yearCVDrisk.
Methods
Study Cohort
Thecohortusedinthepresentstudywasobtainedfromthe WellPerson’sHealthCheck(WPHC)study[17]andhasbeen
describedindetailinthestudybyHuaetal.[11].Briefly,the WPHCwasconductedbetween1998and2000andincluded 3,508peoplein26ruralandremoteIndigenouscommunities inNorthQueensland.Forouranalysis,weincludedIndige- nousmenandwomenagedbetween30 and74yearswho could be linked to hospitalisation and death records for identificationof theCVDevents occurring after thestudy entry.WeexcludedpeoplewithahistoryofCVDevents.In contrasttothestudybyHuaetal.[11],wedidnotexclude peoplewithmissingriskfactorsatbaseline.Instead,weused imputationstoreplacethemissingvalueswiththeestimates.
Asaresult,thestudycohortconsistedof1,583individuals (seesupplementarydocument-FigureS1foraflowchartof thecohortselection).
Outcome Events and Follow-Up Time
WeusedthedefinitionofCVDfromtheFraminghamHeart Studyforouroutcomeevents,whichincludedacompositeof coronary heartdisease (coronaryinsufficiency, myocardial infarction, and angina pectoris), cerebrovascular events (ischaemicstroke,haemorrhagicstrokeandtransientischae- mic attack), congestive heart failure, peripheral vascular disease,andcoronarydeaths[18].Theseeventswereidenti- fied using theInternational Classificationof Diseases and procedure codes(versions ICD-9-CM and ICD-10-AM; for details,seeHuaetal.)[11].Thefollow-uptimewascalculated asthedurationbetweenbaselinemeasurementandhospital- isationofaCVDevent,coronarydeath,non-coronarydeath orlastdateofdatacollection(1December2014),whichever camefirst.TomaintainalignmentwiththeCVDriskcalcu- lators recommended bytheAustralian guidelines for pre- ventionofCVD[4],a5-yearfollow-upperiodwasgenerated forallindividuals.This wasdonebyconsidering anindi- vidualasrightcensorediftherewasnorecordedCVDevent withinthe5-yearfollow-upperiod.
Statistical Analysis
MissingDataandMultipleImputation
Thepercentage ofobservations with missing data ranged from0% to15.8%dependingonvariables recordedin the dataset.Weusedmultipleimputation[19]toreplacemissing data with appropriate estimates (see detailed methods in supplementarydocument-section2).
ModelSelection
WeusedCoxproportionalhazardmodelstoestimatethe5- yearCVDrisk.Twomodelsweredeveloped:(i)theprimary modelwithvariablesselectedfromriskfactorsincludedin theFraminghamCVDmodels[18] as wellas otherfactors suchas waistcircumference[12]andalbumin-to-creatinine ratio(ACR)[2,3,20]whichhavebeenshowntobeassociated with CVD risk in Indigenous populations; and (ii) the reducedinformationmodelthatexcludedriskfactorsrequir- inglaboratorymeasurements.Initialcovariatesconsideredin theprimarymodelincludedsex,age,totalcholesterol,high- densitylipoprotein(HDL)cholesterol,low-densitylipopro- tein (LDL) cholesterol, total cholesterol to HDL ratio,
triglycerides,systolic bloodpressure (SBP),diastolicblood pressure (DBP), current smoking, diabetes status, fasting bloodglucose,bodymassindex(BMI),waistcircumference andACR(seesupplementarydocument-section3formeth- odsofriskfactormeasurements).Ofnote,thediabetescon- ditionwasidentifiedbasedonthepatientself-reportsand confirmed by the primary care medical records. In the reducedinformationmodel,onlysex,age,SBP,DBP,current smoking,diabetesstatus,BMIandwaistcircumferencewere considered.Toselecttheoptimalsetofpredictors,weper- formedbothstepwiseandmanualprocedures,andincluded variableswithap-valuesmallerthan0.15inthefinalmodels (seesupplementarydocument-section4fordetailedmeth- ods).WeusedthescaledSchoenfeldresiduals[21]totestthe proportionalhazardassumption.
RiskEquationDevelopmentandPerformance Assessment
Theequationfor5-yearCVDriskbasedontheCoxpropor- tionalhazardmodeltakesthefollowingform[22]:
p¼1Sð5Þexp Pn
i¼1
b^iðxixiÞ
wherepisthe5-yearCVDrisk,Sð5Þisthesurvivalrateat5 yearsofapersonwithmeanvaluesofriskfactors,
b
^i isthe estimatedcoefficientforthei-thriskfactor,andxiandxiare the actual and mean values, respectively, of the i-th risk factor.WeestimatedSð5Þandb
^iandtheir95%CIsbyfitting thefinalmodeltoeach oftheimputeddatasetsandcom- binedtheestimatesusingRubin’srule(seesupplementary document-section5fordetailedmethods).WeusedtheHarrell’sc-statistic[23]toevaluatethemodel discrimination, i.e. themodel’s ability toseparate persons with events from those without events. The c-statistic is defined as theproportion of allpossiblepairs ofpersons, atleastoneofwhomhasanevent,inwhichthepredicted survivaltimeislargerforthepersonwholivedlonger.Ac indexof0.7orlargerindicatesgooddiscrimination.
To quantify the model calibration, i.e. the agreement between the observed and predicted risks, we used the modifiedHosmer-Lemeshow (mH-L)
x
2 statistic proposed byD’AgostinoandNamforsurvivalmodels[24].Thepar- ticipantsweredividedintodecilesbasedontheirpredicted CVDrisks,andtheKaplan-Meierestimateforfailurewithin eachdecilewascomparedwiththemeanpredictedriskinthe samedecile. AmH-Lx
2statisticlargerthan20indicatesa poorcalibration[25].Tointernallyvalidatethemodels,wecalculatedtheappar- ent c and mH-L
x
2 statistics and corrected these for theoptimismthat mightarise fromoverfittingusingthealgo- rithmdevelopedbyHarrell[23](seesupplementary docu- ment-section6fordetailedmethods).Thecorrectedcand mH-L
x
2statisticswereshowntorepresentnearlyunbiased assessmentofthemodelperformance[23].RiskClassification
We classified 1,583 individuals as either a high (>15%), moderate(10–15%) or low 5-year CVD risk (<10%) using
thealgorithmprovidedbytheAustralianguidelinesforCVD prevention[4],therecalibrated2008Framinghamequation [11] and thenew primary andreduced informationequa- tions, thencomputed meanrisks andtheir95%CIswithin each category using Rubin’s rule [19,26]. We used the Kaplan-Meier estimator to compute 5-year CVD risks of people withinthesamecategoryindifferent imputeddata setsandcombinedthemtoestimatetheobservedrisks.The Australianguidelinesautomaticallyclassifypeoplewithone or more of the following conditions as high-risk people:
diabetesandage>60years,diabeteswithmicroalbuminuria, moderate or severe chronic kidney disease, a history of familial hypercholesterolaemia,aSBP180mmHg,serum totalcholesterol>7.5mmol/L,orage>74.Forpeople not automatically classifiedashighrisk,the1991Framingham equation[27]isrecommendedbytheAustralianguidelines forcalculatingtheabsoluterisks,whichareusedtoclassify thesepeopleintohigh(>15%),moderate(10–15%)andlow (<10%)risks.Therefore,peopleclassifiedashighriskbythe guidelinesmayhaveornothaveanyoftheabove-mentioned conditions.Weusedthesamecut-offpointsforriskcatego- ries as thoseintheguidelinestoclassifypeople usingour new equations. Because the Australian guidelines do not recommend anyequation forthe calculation ofthe actual riskofthoseautomaticallyclassifiedashighrisk,weusedthe 1991 Framingham equation [27] to examine their absolute risksinreferencetotheobservedrisksandtheriskspredicted byournew modelsandtherecalibrated2008Framingham model.
Toexaminethepotentialmisclassificationof5-yearCVD riskusingtheAustralianguidelines,wecalculatedthepro- portionsofpeopleclassifiedas highriskandmedium-low risk bytheAustralianguidelines,andwithineachofthese groups determined the proportionsof people with a con- trastingriskcategorybasedonournewmodels.
Results
Of1,583people,142developedCVDwithin5yearsafterthe firstscreening.Wefoundthatsex,age,SBP,waistcircumfer- ence,diabetesstatus,triglyceridesandACRratiowereasso- ciated with 5-year CVD risk. Table 1 provides summary statistics of theserisk factors andthe 5-year survival rate of an average person. Current smoking and cholesterol- relatedvariablesdidnotsignificantlycontributetothepre- diction(p-values>0.5;seesupplementarydocument- sec- tion 7 for coefficients of all variables includedin the full model).Table2showstheregressioncoefficientsandhazard ratios(HRs)forCVDeventsassociatedwiththeriskfactorsin theprimaryandreducedinformationmodels.Thepropor- tionalhazardassumptionwassatisfiedinfittingthemodels toanyoftheimputeddatasets.
Table3providesperformanceindicesofournewmodels andtherecalibrated2008Framinghammodel[11].Thebias- correctedc-statisticsoftheprimaryandreducedinformation modelswere0.722and0.719,respectively,indicatinggood
discrimination.Thebias-correctedmH-L
x
2statistic(p-val- ues)oftheprimaryandreducedinformationmodelswere 12.01(0.212)and12.49(0.188),respectively,indicatinggood calibration.Comparedtotherecalibrated2008Framingham model[11],whichhadabias-correctedc-statisticof0.727and abias-correctedmH-Lx
2statistic(p-value)of29.47(0.0005), ournewmodelsperformsimilarlyintermsofdiscrimination, but far better in terms of calibration. The observed and predictedrisksindecilesoftheprimaryandreducedinfor- mationmodelsweresimilar(Figure1).Table4showsmeanobservedandpredictedabsoluterisks forthewholecohortanddifferent groupsstratifiedbysex, age and predicted risk levels. The predicted mean 5-year risks for the whole cohort, women and men were 9.4%, 8.8% and 10.1%, respectively, using the primary model, and were 9.4%, 8.6% and 10.2%, respectively, using the reduced information model. These predicted values were almost identical to theobserved 5-years risks (9.4%, 8.7%
and 10.1% for the whole cohort, women and men, respectively).
Whenthecohort wasstratified intohigh, moderateand lowrisksbasedonthepredictedvalues,the1991Framing- hamequation[27]slightlyoverestimatedthemeanriskofthe moderate-riskgroup (12.4% against 11.7%) andunderesti- mated the mean risk of thelow-risk group (3.1% against 5.7%). In the high-risk group classified by theguidelines’
algorithm, the 1991 Framingham equation [27] underesti- mated the mean risk of the whole group (13.8% against 17.1%), and overestimated the mean risk of persons who didnothaveanyoftheconditionspre-definedintheguide- lines(20.9%against17.1%).Therecalibrated2008Framing- hammodel[11]overestimatedthemeanriskinthehigh-risk Table1 Baselineriskfactorsand5-yearsurvivalrateof
thestudycohort(N=1,583).
Riskfactor Value*
Men,%(SE)y,z 48.1(1.3)
Age,mean(SE)y,z 45.0(0.3)
SystolicBP,mean(SE),mmHgy,z 134.5(0.5) DiastolicBP,mean(SE),mmHg 75.6(0.3)
Currentsmoking,%(SE) 53.4(1.2)
BMI,mean(SE),kg/m2 28.8(0.18)
Waistcircumference,mean(SE),cmy,z 99.2(0.4)
Diabetes,%(SE)y,z 23.2(1.1)
Fastingbloodglucose,mean(SE),mg/dL 114.4(1.4) Totalcholesterol,mean(SE),mg/dL 198.9(1.0) HDLcholesterol,mean(SE),mg/dL 44.5(0.3) LDLcholesterol,mean(SE),mg/dL 121.2(0.9)
Totalcholesterol:HDLratio 4.7(0.04)
Triglycerides,mean(SE),mg/dLy 179.8(3.7)
ACR,mean(SE)y 19.2(1.6)
Underlying5-yearsurvivalrate§
Primaryequation 0.9298
Reducedinformationequation 0.9344
Abbreviations:ACR,Albumincreatinineratio;BMI,bodymassindex;BP, bloodpressure;HDL,high-densitylipoprotein;LDL,low-densitylipopro- tein;SE,standarddeviationofthemean.
*PooledvaluesusingRubin’srule[19]fromestimatesfor20imputeddata sets.
yRiskfactorsintheprimarymodel.
zRiskfactorsinthereducedinformationmodel.
§EstimatedusingthefittedCoxproportionalhazardmodelsforaperson withmeanriskfactors.
Table2 EstimatedcoefficientsandhazardratiosfromCoxproportionalhazardmodels.
Variable Primarymodel Reducedinformationmodel
Coefficient(p-value) Hazardratio Coefficient(p-value) Hazardratio
[95%CI] [95%CI] [95%CI] [95%CI]
Men 0.272(0.074) 1.328 0.261(0.076) 1.312
[0.029,0.573] [0.925,1.731] [0.031,0.552] [0.927,1.697]
Age,years 0.050(<0.001) 1.052 0.048(<0.001) 1.050
[0.038,0.063] [1.039,1.065] [0.036,0.061] [1.037,1.062]
SystolicBP,mmHg 0.010(0.012) 1.010 0.014(<0.001) 1.014
[0.002,0.018] [1.002,1.018] [0.006,0.022] [1.006,1.022]
Waistcircumference,cm 0.009(0.110) 1.010 0.009(0.09) 1.010
[-0.002,0.020] [0.999,1.020] [0.001,0.020] [0.998,1.020]
Diabetes* 0.268(0.104) 1.325 0.405(0.009) 1.517
[0.015,0.592] [0.974,1.755] [0.101,0.709] [1.055,1.980]
Triglycerides,mg/dL 0.001(0.142) 1.001
– –
[0.000,0.001] [1.000,1.001]
ACR 0.003(0.001) 1.003
– –
[0.001,0.005] [1.001,1.004]
Abbreviations:ACR,albumincreatinineratio;BP,bloodpressure;CI,confidenceinterval.
*Self-reporteddiabetesconfirmedbytheprimarycaremedicalrecords,usedinbothprimaryandreducedinformationmodels.
group(26.4%against19.5%),butslightlyunderestimatedthe meanriskinthemoderate-(12.3%against13.2%)andlow- risk (4.5% against 5.1%) groups. In contrast, mean risks predicted by the primary model were relatively close to theobservedrisksinthehigh-(25.0%vs25.4%),moderate- (12.3%vs12.6%)andlow-risk(4.9%vs4.6%)groups.Similar meanpredictedandobservedrisksinthreeriskcategories wereobservedusingthereducedinformationmodel.
Whenriskwascalculatedseparatelyforwomenandmen (seeTablesS5andS6inthesupplementarydocument),we foundthat,inwomen,theCVDriskpredictedbythe1991 Framinghammodel[27]wasonlyonethirdoftheobserved CVDriskintheyoungestgroup(30–34yearsold),whilethis ratiowasmuchlargerinotheragegroupsofwomen(0.53–
0.86) and in any age groups of men (0.6–1.1). When the cohort was classified intomajor CVD riskcategories, the 1991Framinghamequation[27]underestimatedCVDrisk
inallcategories inwomen, whilethis wasnotthecase in men with moderate risk. In both women and men, the agreementbetweenthe observedand predictedCVDrisk usingtherecalibrated2008Framinghammodel[11]andour new models was much better compared tothe 1991 Fra- mingham model [27] in every age group and major risk category.
Using the primary model, the reduced information model,the recalibrated2008 Framinghammodel [11]and the guidelines for risk classification, the proportions of cohort (i) with high risk were 17.1%, 18.3%, 22.0% and 28.4%, respectively, (ii) with moderate risk were 13.8%, 11.6%,13.4%and6.8%,respectively,and(iii)withlowrisk were69.1%,70.2%,64.7%and64.8%,respectively(Figure2).
Given thegood calibration and the predicted mean risks almost identical to the observed mean risks in any risk categories of the new models, these figures suggest that Table3 Performanceofthenewmodelsandtherecalibrated2008Framinghammodelfor5-yearCVDriskprediction.
Newmodel Recalibrated2008
Framinghammodel Primary Reducedinformation
Discrimination
Apparentc-statistic 0.735 0.731 0.728
[95%CI] [0.698,0.782] [0.701,0.783] [0.681–0.776]
Optimism 0.013 0.012 0.001
Bias-correctedc-statistic 0.722 0.719 0.727*
Calibration
ApparentmH-Lx2statistic(p-value) 5.70(0.770) 7.46(0.589) 19.17(0.024)*
Optimism 6.31 5.03 10.30
Biased-correctedmH-Lx2statistic(p-value) 12.01(0.212) 12.49(0.188) 29.47(<0.001)
*ThesevaluesareslightlydifferentfromthoseinthestudybyHuaetal.[11]becauseinthepresentstudyweusedmultipleimputationtoreplacemissingvalues withtheestimatesandevaluatedperformanceoftherecalibrated2008Framinghammodelonthe20imputeddatasets,whileinthepreviousstudy[11]the recalibrated2008Framinghammodelwasevaluatedonthecohortwithcompletecases.
Figure1 Meanobservedandpredicted5-yearcardiovascularrisksindecilesofthepredictedrisksusing(A)theprimary modeland(B)thereducedinformationmodel.Theerrorbarsrepresent95%confidenceintervals.
theguidelinesoverestimate theproportionofpeoplewith high risk, underestimate the proportion of people with moderateandlowrisk,andpotentiallymisclassifyasmall proportionofpeoplewithactualhigh,moderateorlowrisk.
Theagreementbetweentheguidelinesandthenewmodels inclassificationofproportionswithdifferentriskcategories
washigherinthelow-riskcategorythaninthemoderate- andhigh-riskcategories.
Usingournewmodelsasastandardtoolforidentification ofapersonwithahigh5-yearCVDrisk,wefoundpotential misclassification of the high risk and moderate-low risk people by the Australian guidelines (Figure 3). Sixteen Table4 Mean5-yearcardiovascularriskestimatedusingKaplan-Meiermethod,1991Framinghamequation[27], recalibrated2008Framinghammodel[11]andthenewmodelsforthewholecohortandgroupsclassifiedbysex,ageand predictedrisklevels.
Sample size
Observedrisk basedon Kaplan-Meier method,%[95%CI]y
Predictedrisk,%[95%CI]y
1991Framingham equation[27]
Recalibrated2008 Framinghammodel[11]
Newmodel
Primary Reduced information Total 1583* 9.4[7.9–10.8] 6.7[6.4–7.1]{ 10.4[9.8–10.9] 9.4[8.9–9.8] 9.4[8.9–9.8]
Sex
Women 822* 8.7[6.7–10.7] 5.7[5.2–6.2]{ 9.6[8.9–10.3] 8.8[8.1–9.4] 8.6[8.1–9.3]
Men 761* 10.1[7.9–12.2] 7.9[7.3–8.4]{ 11.2[10.4–11.9] 10.1[9.4–10.6] 10.2[9.5–10.8]
Agegroups(years)
30–34 327* 3.2[1.2–5.2] 1.3[1.2–1.5]{ 2.9[2.6–3.1] 3.3[3.1–3.5] 2.8[2.7–3.0]
35–44 541* 3.7[2.1–5.3] 3.7[3.4–4.0]{ 6.1[5.7–6.5] 5.6[5.4–5.9] 5.1[4.9–5.3]
45–54 377* 13.0[9.5–16.4] 7.9[7.3–8.5]{ 11.8[11.0–12.5] 9.9[9.2–10.5] 9.3[8.9–9.8]
55–74 338* 20.3[15.8–24.6] 15.5[14.5–16.5]{ 22.8[21.4–24.3] 20.6[19.5–21.7] 22.7[21.623.8]
Riskcategoriesbasedontheguidelines[4]
High(>15%) 450z 17.1[11.0–23.2] 20.9[19.6–22.2]§/ 13.8[12.8–14.8]{
20.4[18.9–21.9] 16.5[15.4–17.6] 16.3[15.2–17.4]
Moderate(10–15%) 108z 11.7[1.9–22.8] 12.4[11.5–13.2] 17.1[16.1–18.1] 14.1[13.0–15.2] 15.8[14.3–17.3]
Low(<10%) 1025z 5.7[3.0–8.5] 3.1[2.9–3.2] 5.3[5.0–5.5] 5.7[5.0–6.0] 5.7[5.4–6.0]
Riskcategoriesbasedontherecalibrated2008Framinghamequation[11]
High(>15%) 348z 19.5[13.5–25.5] 15.8[14.9–16.7]§/ 18.1[17.1–19.1]{
26.4[24.9–27.9] 20.4[19.2–21.6] 21.4[20.2–22.5]
Moderate(10–15%) 212z 13.7[1.1–25.3] 8.4[7.6–9.2] 12.3[11.3–13.3] 11.6[11.0–12.3] 11.8[11.0k12.6]
Low(<10%) 1023z 5.1[1.4–9.3] 2.4[2.2–2.6] 4.5[4.2–4.8] 5.2[4.7–5.3] 4.8[4.6–5.0]
Riskcategoriesbasedontheprimaryequation
High(>15%) 271z 25.4[15.8–35.1] 14.7[13.3–16.1]§/ 18.0[17.1-19.2]{
26.6[25.0–28.2] 25.0[23.1–25.7] 25.9[24.7–27.1]
Moderate(10–15%) 218z 12.6[6.6–19.9] 10.3[9.7–10.9] 14.9[14.1–15.8] 12.3[12.1–12.5] 12.5[12.1–12.8]
Low(<10%) 1094z 4.6[2.3–7.0] 3.2[3.0–3.4] 5.4[5.2–5.6] 4.9[4.9–5.1] 4.7[4.5–4.8]
Riskcategoriesbasedonthereducedinformationequation
High(>15%) 289z 25.2[14.9–32.9] 13.5[12.3–14.7]§/ 17.0[16.4–18.5]{
25.7[24.1–27.2] 23.4[22.1–24.6] 25.6[24.5–26.7]
Moderate(10–15%) 183z 12.9[5.2–20.6] 10.4[9.7–11.1] 15.0[14.0–15.9] 12.3[11.8–12.8] 12.3[12.1k12.5]
Low(<10%) 1111z 5.0[3.0–7.1] 3.3[3.1–3.5] 5.6[5.4–5.9] 5.2[5.0–5.4] 4.7[4.5–4.8]
*Numberofpersonsineachof20imputeddatasets.
yPooledvaluesusingRubin’srule[19]fromestimatesfor20imputeddatasets.
zAveragenumberofpersonsacrossimputeddatasets.
§EstimatedforpersonsnotautomaticallyclassifiedasthosewithhighCVDriskbytheguidelines[4],i.e.personsdonothaveanyofthefollowingconditions:
(1)Diabetesandage>60years,(2)Diabeteswithalbumincreatinineratio>2.5mg/mmolformalesor>3.5mg/mmolforfemales,(3)moderateorseverechronic kidneydisease,(4)apreviousdiagnosisoffamilialhypercholesterolaemia,(5)Systolicbloodpressure(BP)180mmHgordiastolicBP>110mmHg,and(6)total cholesterol>7.5mmol/L.
{Estimatedforallpeopleincludingpersonsautomaticallyclassifiedasthosewithahighcardiovascularriskbytheguidelines.Seecriteriainthepreviousnote.
percent(16%)ofthepopulationwerefalsepositives,i.e.the individualsclassifiedashighriskbytheguidelinesbutas moderate-lowriskbyeithertheprimaryorreducedinfor- mationmodel.Fourpercent(4%)or6%ofthepopulation werefalsenegativesonthebasisoftheprimaryorreduced informationmodel,respectively,i.e.theindividualsclassi- fiedasmoderate-lowriskbytheguidelinesbutashighrisk by the primary or reduced information model. The esti- mated sensitivity and specificity of guidelines were 74%
and 81%, respectively, based on the primary model, and were 67% and 80%, respectively, based on the reduced informationmodel.
Discussion
Inthisstudy,wedevelopedthefirst5-yearCVDriskpredic- tionmodelsbasedonIndigenousAustraliandata.Boththe primary model and the reduced information model per- formed well, and had a far better calibration (mH-L
x
2statistic) than the recalibrated 2008 Framingham model [11]. This wasexpected as inthe recalibratedmodel only the baseline survival rate and means of risk factors were derived from the Indigenous data, while the predictors andtheircoefficientswereobtained fromtheFramingham equation[18].Asthereducedinformationmodelperformed similarlytotheprimarymodel,itprovidesaconvenienttool foraquickassessmentof5-yearCVDriskwherenolabora- toryvariablesareneeded.Usingmultipleimputationcom- binedwithbootstrapping,weconfirmedthefindingsinthe studybyHuaetal.[11]thatthe1991Framinghammodel[27]
underestimatedmean5-yearriskoftheIndigenouspeople, andtherecalibrated2008Framinghammodel[11]corrected theunderpredictionoftheoriginalmodel.Wealsoshowed thatthe1991Framinghamequation[27]underestimatedthe CVD risk more severely in younger women (aged 30–34 years)comparedtoolderwomenandtomen.Despitethis, theobservedCVDriskinthisagegroupislow(mean,3.2;
95%CI,1.2–5.2)and,therefore,thisunderestimationwould not have impacted the cardiovascular health of younger womenmorestronglycomparedtoolderwomenandmen.
In terms of discrimination, the primary model and the reducedinformationmodelperformedsimilarlytothereca- librated2008Framinghammodel[11].Thismightbebecause the c-statistic is not always sensitive to model fit [28,29].
Anotherexplanationcouldbethatanumberofriskfactors Figure2Percentageofcohortwithhigh(>15%),mod-
erate (10–15%) and low 5-year cardiovascular risk (<10%) classifiedbythenew models, therecalibrated 2008Framinghammodelandtheguidelines.
Figure3 Potentialmisclassificationofthehighriskandmoderate-lowriskbytheAustralianguidelinesforpreventionof CVDbasedonthe(A)primarymodeland(B)reducedinformationmodelfor5-yearCVDriskprediction.Thebarsrepresent proportionsofpeopleclassifiedashighrisk(>15%)andmoderate-lowriskclassifiedbytheguidelines,withineachofwhich theupperpartrepresentstheproportionofpeoplethataremisclassifiedonthebasisoftheclassificationbythenewmodels.
thatareassociatedwithCVDsuchasfamilyhistoryofCVD [30], depression [31] and history ofacute rheumaticfever [32,33] (which isstillcommon inmanyAustralian Indige- nous communities [34]) were not collected and therefore couldnotbecontrolledforinouranalysis.Ourdatasetalso didnotcontaininformationonsocioeconomicdeprivation,a risk factorfor CVDmortalityinanAustraliancohort [35].
Therefore, socioeconomicdeprivationmight be apotential risk factorforCVDincluding bothfatalandnon-fatalcar- diovasculareventsasdefinedinourstudy.Itisimportantto notethatthedistributionsofriskfactorsinourstudysample aredifferentfromthoseintheFraminghamcohort[18].For example,participantsinourstudysamplehavealowermean totalcholesterol(198.9vs213.9mg/dL),buthighermeanSBP (134.5vs127.6mmHg)andsubstantiallyhighermeanratesof smoking (53.4% vs 34.7%) and diabetes (23.2% vs 5.0%) comparedtothoseintheFraminghamstudy[18].Ourmod- elsincludeseveralfactorssuchastriglyceridesandACRthat arenot includedintheFraminghamriskequations[18,27].
Theresultsfromouranalysisconfirmed previousfindings that ACR is an important CVD risk factor in Indigenous populations [2,3]. Two studies of Indigenous Australians showed that microalbuminuria (ACR between 3 and 30mg/mmol)andmacroalbuminuria(ACR30mg/mmol) increasedtheriskofcoronaryheartdiseasebytwotothree times comparedtonormalalbuminuria, afteradjustingfor other CVD risk factors[3,20]. We did not categorise ACR becausethisreducedthemodelcalibration.
Theoutcomesfromourmodelfittingshowedthat,inthe presence ofwaistcircumference,BMI wasnotsignificantly associatedwithCVDrisk.Thisisinlinewiththeresultsfrom thestudy byWang andHoy[12],which foundthat waist circumferencewasabetterpredictorforCVDriskthanBMI inIndigenousAustralians.Thismaybeexplainedbythefact that Indigenous Australians have a greater amount of abdominal fatcompared totheEuropean Australians and theuseofBMIforweightstatusclassificationhasbeenfound tobeinappropriateinIndigenouspopulations[36,37].
Surprisingly,smokingwasnotasignificantpredictorof5- yearCVDriskinourstudy.Anexplanationforthismightbe thatsmokingwasmaskedbySBPandtriglycerides,assmok- ingwasstronglycorrelatedwiththelatter.Inthestudyby Lukeetal.[38],smokingwasalsofoundtobesignificantly associatedwithdyslipidaemiaandSBP.Althoughsmoking did not significantly contribute totheprediction of5-year CVD risk, we found it significant when fitting a model withouttheconstraintonthe5-yearfollow-uptime.Hence, thefactthesmokingisnotincludedinourmodelsfor5-year CVDriskpredictiondoesnotmeanthatreducingsmokingis notanimportantcomponentoftheCVDpreventionstrategy.
Theagreementbetween theAustralianguidelines’ algo- rithm[4]andournewmodelsinriskclassificationwereonly moderate. The false positives represented the largest dis- agreement, which can lead to unnecessary treatment and increasedhealthcarecosts. Theconsequences offalseneg- atives are potentially severe with individuals who would otherwise bemedicated not receivingtreatment toreduce
CVD risk. Although the proportion of people with false negatives wasrelativelysmall (about 4–6%ofthepopula- tion),thisisroughlyequivalenttoalargenumberof31,000–
47,000 Indigenous people with high CVD risk but could potentiallybeuntreated,assumingthatthedistributionsof the risk factors in the WPHC was similar to those in the IndigenousAustralianpopulation[39].
AsourmodelswereabletobetterclassifytheCVDriskof Indigenouspeoplecomparedtothealgorithmrecommended bytheAustralianguidelines[4],theyshouldbeconsideredas acontemporarilyevidence-basedtoolforCVDriskassess- mentin remoteIndigenous Australians. Since CVDis the leadingcauseofdeathinIndigenousAustralians[40],trans- lationofourfindingstoclinicalpracticeisanimportantstep towardsaddressingthetargetsetbytheCommonwealthof Australia,thatistoclosethegapinlifeexpectancybetween Indigenousandnon-IndigenousAustralianswithinagener- ation [41,42]. Detailing strategies for this translation is beyondthescopeofthepresentstudy,butitisworthnoting that developing a tool for risk assessment that is readily availableandacceptabletohealthprofessionalsandIndige- nouscommunitiesiscrucial.Communicationofthistooland ourfindings with physicians canbedone incollaboration withtheHeartFoundationandotherrelevantorganisations viatheinternet,scientificmeetingsandmedia.
Strengths and Limitations
Inthepresentstudy,weusedarelativelylargecommunity- basedcohortandhigh-qualitydataformodeldevelopment, multipleimputationtodealwithmissingdata,andrigorous methodstoselectthepredictorsandassessthemodelper- formance. However, our study has some limitations. The cohort used for model development might not represent the Indigenous population in North Queensland because theparticipantsinthescreeningprogramwere volunteers.
BecauseourmodelsweredevelopedforremoteIndigenous peopleandhavenotbeentestedinotherpopulations,their generalisabilityiscurrentlyinconclusive.However,theypro- videanadditionalevidence-based toolforriskassessment thatcanbeusedalongsideexistingriskscoressuchas the recalibratedFraminghammodel[11].Asdataontreatment for hypertension were not ascertained in our study, our modelsdid not includetreatmentas a covariate,whichis alignedwiththe1991Framinghamequation[27].However, wenotethatthe2008Framinghamequation[18]accounted fortheeffectofanti-hypertensivetreatmentandthereforeitis importanttoexplorethistreatmenteffectinfuturestudiesfor riskstratificationinIndigenouspopulations.Otherpotential riskfactorssuchasfamilyhistoryofCVD[30],socioeconomic deprivation[35]andrheumaticheartdisease[32,33]werenot collected,andthusadditional relevantpredictorsmightbe missedto beincluded inthemodels. Ourequations were designed as a risk prediction tooland thus they may not representallkeyriskfactorsassociatedwiththeaetiologyof CVD.Anexampleofthisistheinclusionoftriglyceridesas thesolelipidfractioninourprimarymodelwhilethereisa well-establishedstrongcorrelationbetweenCVDandother
lipidfractionssuchastotalandHDLcholesterol[30].Inthis respecttherole oftriglycerides inourequationrepresents boththedirectimpactaswellastheindirectimpactonCVD via itscorrelation with other lipid fractionsin Indigenous Australians[43,44].Althoughwerigorouslyassessthemodel performance internally, external validation of the models usingotherdatasourcesisneededandthiswarrantsfurther studyinthefuture.
Conclusions
Thealgorithmforclassificationofpeopleashigh,moderate andlow 5-yearCVDrisk recommendedbytheAustralian guidelinesforpreventionofCVD[4]issubjecttomisclassi- ficationofIndigenouspeopleinthesemajorriskcategories, andisnotaccurateinestimatingmeanabsoluteriskineachof these categories. The prediction models we developed improvedthese.Thereducedinformationmodel,withgood discrimination andcalibration, providesa convenient and reasonabletoolfor aquickassessmentof5-year CVDrisk wherenolaboratoryvariablesarerequired.
Funding Source
ThisstudyissupportedbytheAustraliaNationalHealthand Medical Research Council (project number NHMRC/
1107140). Thesponsorhasnoroleinstudydesign;orcollection, analysisandinterpretationofdata;orwritingofthemanu- script;orthedecisiontosubmitthearticleforpublication.
Conflicts of Interest
Theauthors declared that there is no potential conflictof interest.
Appendix A. Supplementary data
Supplementarymaterialrelatedtothisarticlecanbefound, in theonline version, at doi:https://doi.org/10.1016/j.hlc.
2019.02.005.
References
[1] InternationalDiabetesFederation.Expertmeetingonindigenouspeo- ples,diabetesanddevelopmentreport.Copenhagen:InternationalDia- betesFederation; 2012 .Accessed 9 August 2018https://www.
worlddiabetesfoundation.org/sites/default/files/Indigenous%
20Peoples%2C%20Diabetes%20and%20Development_IP%20Expert%
20Meeting%202012.pdf.
[2] McDermottRA,McCullochB, LiM.Glycaemia andalbuminuriaas predictorsof coronaryheartdiseasein AboriginalandTorresStrait Islanderadults:anorthQueenslandcohort.MedJAust2011;194:514–8.
[3] BarrE,CunninghamJ,TatipataS,DunbarT,KangaharanN,GuthridgeS, etal.Associationsofmortalityandcardiovasculardiseaseriskswith diabetesandalbuminuriainurbanIndigenousAustralians:theDRUID follow-upstudy.DiabetMed2017;34:946–57.
[4]NationalVascularDiseasePreventionAlliance.Guidelinesfortheman- agement of absolute cardiovascular diseaserisk; 2012 . Accessed9 August2018https://www.heartfoundation.org.au/images/uploads/
publications/Absolute-CVD-Risk-Full-Guidelines.pdf.
[5]GoffDC,Lloyd-JonesDM,BennettG,CoadyS,D’agostinoRB,Gibbons R,etal.ACC/AHAguidelineontheassessmentofcardiovascularrisk:a reportoftheAmericanCollegeofCardiology/AmericanHeartAssocia- tionTaskForceonPracticeGuidelines.JAmCollCardiol2013;2014 (63):2935–9.
[6]ReathJ,BrownN.ManagingcardiovasculardiseaseinAboriginaland TorresStraitIslanderpeople.AustPrescr2010;33:72–5.
[7]BrownA,O’SheaRL,MottK,McBrideKF,LawsonT,JenningsGL.
Essentialservicestandardsforequitablenationalcardiovascularcare for Aboriginal and Torres Strait Islander people. Heart Lung Circ 2015;24:126–41.
[8]ChanA.Makingthecaseforamoreaccuratecardiovasculardisease risk assessment tool for Indigenous Australians. Contemp Nurse 2015;50:92–3.
[9]VasantBR,Matthews V,BurgessCP, ConnorsCM,BailieRS. Wide variationinabsolutecardiovascularriskassessmentinAboriginaland TorresstraitIslanderpeoplewithtype2diabetes.FrontPublicHealth 2016;4:37.
[10]WangZ,HoyWE.IstheFraminghamcoronaryheartdiseaseabsolute riskfunctionapplicabletoAboriginalpeople?MedJAust2005;182:66–9.
[11]HuaX,McDermottR,LungT,WenitongM,Tran-DuyA,LiM,etal.
ValidationandrecalibrationoftheFraminghamcardiovasculardisease risk modelsinan AustralianIndigenouscohort.EurJ Prev Cardiol 2017;24:1660–9.
[12]WangZ,HoyW.Waistcircumference,bodymassindex,hipcircumfer- enceandwaist-to-hipratioaspredictorsofcardiovasculardiseasein Aboriginalpeople.EurJClinNutr2004;58:888–93.
[13]AdegbijaO,HoyW,WangZ.Predictionofcardiovasculardiseaserisk usingwaistcircumferenceamongAboriginalsinaremoteAustralian community.BMCPublicHealth2015;15:57.
[14]ModestiPA,AgostoniP,AgyemangC,BasuS,BenetosA,CappuccioFP, etal.Cardiovascularriskassessmentinlow-resourcesettings:aconsen- susdocumentoftheEuropeanSocietyofHypertensionWorkingGroup onHypertensionandCardiovascularRiskinLowResourceSettings.J Hypertens2014;32:951–60.
[15]Rowley KG,ThorpeAH. Research,information andconsent forthe AustralianHealthSurvey:aseparatestandardforIndigenouspeople?
MedJAust2011;195:158–9.
[16]World Health Organization. Prevention of cardiovascular disease : guidelines for assessment and management of cardiovascular risk.
Geneva: World Health Organization; 2007 Accessed 9 August 2018http://www.who.int/cardiovascular_diseases/guidelines/Full%
20text.pdf.
[17]MillerG,McDermottR,McCullochB,LeonardD,ArabenaK,MullerR.
TheWellPerson’sHealthCheck:apopulationscreeningprogramin indigenous communities in north Queensland. Aust Health Rev 2002;25:136–47.
[18]D’AgostinoRB,VasanRS,PencinaMJ,WolfPA,CobainM,MassaroJM, etal.Generalcardiovascularriskprofileforuseinprimarycare—the FraminghamHeartStudy.Circulation2008;117:743–53.
[19]RubinD.Multipleimputationfornonresponseinsurveys.NewYork:
JohnWiley&Son;2004.
[20]WangZ,HoyWE.Albuminuriaandincidentcoronaryheartdiseasein AustralianAboriginalpeople.KidneyInt2005;68:1289–93.
[21]GrambschPM,TherneauTM.Proportionalhazardstestsanddiagnostics basedonweightedresiduals.Biometrika1994;515–26.
[22]WoodwardM.Epidemiology:studydesignanddataanalysis, 3rded.
BocaRaton:CRCPress;2014.
[23]HarrellFE,LeeKL,MarkDB.Multivariableprognosticmodels:issuesin developingmodels,evaluatingassumptionsandadequacy,andmeasur- ingandreducingerrors.StatMed1996;15:361–87.
[24]D’Agostino R,Nam B-H.Evaluation ofthe performanceof survival analysis models:discriminationandcalibration measures.Handbook ofstatistics,23.2003;p.1–25.
[25]D’AgostinoSrRB,GrundyS,SullivanLM,WilsonP,CRPGroup.Vali- dationof the Framinghamcoronary heartdiseaseprediction scores:
resultsofamultipleethnicgroupsinvestigation.JAMA2001;286:180–7.
[26]RubinDB,SchenkerN.Multipleimputationforintervalestimationfrom simplerandomsampleswithignorablenonresponse.JAmStatAssoc 1986;81:366–74.
[27]AndersonK,OdellP,WilsonP,KannelW.Cardiovasculardiseaserisk profiles.AmHeartJ1991;121:293–8.