• Tidak ada hasil yang ditemukan

A Grüss Type Inequality for Mapping of Bounded Variation and Applications to Numerical Analysis

N/A
N/A
Protected

Academic year: 2024

Membagikan "A Grüss Type Inequality for Mapping of Bounded Variation and Applications to Numerical Analysis"

Copied!
12
0
0

Teks penuh

(1)

A Grüss Type Inequality for Mapping of Bounded Variation and Applications to Numerical Analysis

This is the Published version of the following publication

Dragomir, Sever S and Fedotov, I (1999) A Grüss Type Inequality for Mapping of Bounded Variation and Applications to Numerical Analysis. RGMIA research report collection, 2 (4).

The publisher’s official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17215/

(2)

D JU ‚XVV W\SH LQHTXDOLW\ IRU PDSSLQJ RI ERXQGHG YDULDWLRQ DQG DSSOLFDWLRQV WR QXPHULFDO DQDO\VLV

5 5 #+BW+ # W 6,#AV

Ot|iBW| Bhtt |)Ti ?i^@*|) uLh wTtU|3@? 4@TT?}t @?_ u?U|L?t Lu ML?_i_ @h@|L? t }i? TT*U@|L?t uLh |i ?4ihU@* ?|i}h@|L? ThLM

*i4 Lu |i +i4@??5|i*|it ?|i}h@* @hi @*tL UL?t_ihi_

41 YA|iNaW|NA

Lq 4<68/ J1 Ju‚xvv ^<` suryhg dq lqhtxdolw| zklfk hvwdeolvkhv d frqqhfwlrq ehwzhhq wkh lqwhjudo ri d surgxfw ri wzr ixqfwlrqv dqg wkh surgxfw ri wkh lqwhjudov1 Qdpho|/

kh kdv vkrzq wkdw=

4

ed ]e

d

i+{,j+{,g{ 4 ed

]e d

i+{,g{ 4 ed

]e d

j+{,g{

4

7+!, +,>

surylghgi dqg jduh wzr lqwhjudeoh ixqfwlrqv rq ^d> e` dqg vdwlvi| wkh frqglwlrq=

!i+{, dqgj+{,

iru doo{5^d> e`=

Wkh frqvwdqw 47 lv wkh ehvw srvvleoh rqh dqg lv dfklhyhg iru i+{, @j+{, @vjq

{d.e 5

=

Lq wkh uhfhqw sdshu ^:`/ V1V1 Gudjrplu dqg L1 Ihgrwry suryhg wkh iroorzlqj uhvxowv ri Ju‚xvv w|sh iru Ulhpdqq0Vwlhowmhv lqwhjudo=

Wkhruhp 41 Ohwi> x= ^d> e`$Ueh vr wkdwxlv O0Olsvfklw}ldq rq^d> e`/ l1h1/

mx+{,x+|,m Om{|m +414,

iru doo{> |5^d> e`/i lv Ulhpdqq lqwhjudeoh rq^d> e`dqg wkhuh h{lvwv wkh uhdo qxpehuv p> P vr wkdw

pi+{,P>

+415,

iru doo{5^d> e`=Wkhq zh kdyh wkh lqhtxdolw|

] e

d i+{,gx+{,x+e,x+d,

ed ] e

d i+w,gw 4

5O+Pp,+ed,>

+416,

dqg wkh frqvwdqw 45 lv vkdus/ lq wkh vhqvh lw fdq qrw eh uhsodfhg e| d vpdoohu rqh1

#@|iG @) bbb

bb @|i4@|Ut 5MiU| *@tt€U@|L? h4@h) 2S#Dc 2S#bb( 5iUL?_@h) eDD ki) Lh_t @?_ Th@tit Bhtt W?i^@*|)c "@_h@|hi 6Lh4*@ic +i4@??5|i*|it W?|i}h@*

4

(3)

Iru rwkhu uhvxowv uhodwhg wr Ju‚xvv lqhtxdlw|/ jhqhudol}dwlrqv lq lqqhu surgxfw vsdfhv/ iru srvlwlyh olqhdu ixqfwlrqdov/ glvfuhwh yhuvlrqv/ ghwhuplqdqwdo yhuvlrqv/ hwf1/

vhh Fkdswhu [ ri wkh errn ^44` dqg wkh sdshuv ^4`0^43` / zkhuh ixuwkhu uhihuhqfhv duh jlyhq1

Lq wklv sdshu zh srlqw rxw dq lqhtxdolw| ri Ju‚xvv w|sh iru Olsvfklw}ldq pds0 slqjv dqg ixqfwlrqv ri erxqghg yduldwlrq dv zhoo dv lwv dssolfdwlrqv lq qxphulfdo lqwhjudwlrq iru wkh Ulhpdqq0Vwlhowmhv lqwhjudo1

51 YA|j}iB, YAj`B,|jt Wkh iroorzlqjuhvxow ri Ju‚xvv w|sh krogv1

Wkhruhp 51 Ohwi> x= ^d> e`$Ueh vxfk wkdw x lv O0olsvfklw}ldq rq^d> e`> dqgi lv d ixqfwlrq ri erxqghg yduldwlrq rq ^d> e`= Ghqrwh e| Ze

di wkh wrwdo yduldwlrq ri i rq ^d> e`=Wkhq wkh iroorzlqj lqhtxdolw| krogv

]e

d

x+{,gi+{,i+e,i+d,

ed

]e d

x+w,gw O

5+ed,be

d

i=

+514,

Wkh frqvwdqw 45 lv vkdus/ lq wkh vhqvh wkdw lw fdqqrw eh uhsodfhg e| d vpdoohu rqh1 Surri1 Dvi lv d ixqfwlrq ri erxqghg yduldwlrq rq ^d> e` dqgxlv frqwlqxrxv rq ^d> e`>

zh kdyh

]e

d

x+{,gi+{,i+e,i+d, ed

]e d

x+w,gw

@ ]e

d

3

Cx+{, 4 ed

]e d

x+w,gw 4 Dgi+{,

vxs

{5^d>e`

x+{, 4 ed

]e d

x+w,gw

be d

i

@ 4

ed vxs

{5^d>e`

]e

d

^x+{,x+w,`gw

be d

i=

+515,

Xvlqjwkh idfw wkd x lvOOlsvfklw}ldq rq ^d> e`> zh fdq vwdwh/ iru dq| {5^d> e`>

wkdw=

]e

d

^x+{,x+w,`gw

]e d

mx+{,x+w,mgwO ]e

d

m{wmgw

@ O

5

k+{d,5. +{e,5l

@O

%4 7.

{d.e5 5

+ed,5

&

+ed,5 O

5+ed,5>

+516,

(4)

D JU‚XVV W\SH LQHTXDOLW\ IRU PDSSLQJ RI ERXQGHG YDULDWLRQ 6

dqg e| +5=5,0+5=6, zh jhw=

{5^d>e`vxs

x+{, 4 ed

]e d

x+w,gw

O+ed, +517, 5

zkhqfh zh rewdlq +5=4,1

Wr suryh wkh vkdusqhvv ri wkh lqhtxdolw| +5=4,/ ohw xv fkrrvh x+{, @{d.e

5 dqg i+{, @

;?

=

4 li {@d 3 li d ? { ? e 4 li {@e =

Wkhqxlv Olsvfklw}ldq zlwkO@ 4>dqgi lv ri erxqghg yduldwlrq1 Dovr zh kdyh ]e

d

x+{,gi+{,i+e,i+d,

ed

]e d

x+w,gw

@ ]e

d

{d.e 5

gi+{,

@

{d.e 5

i+{,

e

d ]e

d

i+{,g{@ed=

Rq wkh rwkhu kdqg/ wkh uljkw kdqg vlgh ri +5=4, lv htxdo wr ed> dqg khqfh wkh vkdusqhvv ri wkh frqvwdqw lv suryhg1

Wkh iroorzlqjfruroodulhv krog=

Fruroodu| 41 Ohwi = ^d> e`$U eh dv deryh dqg x= ^d> e`$Ueh d glhuhqwldeoh pdsslqj zlwk d erxqghg ghulydwlyh rq ^d> e`> wkdw lv/ nx3n4 @ vxs

w5^d>e`mx3+w,m ?4=

Wkhq zh kdyh wkh lqhtxdolw|=

]e

d

x+{,gi+{,i+e,i+d,

ed

]e d

x+w,gw

nx3n4

5 +ed,be

d

i+{,= +518,

Wkh lqhtxdolw|+5=8,lv vkdus lq wkh vhqvh wkdw wkh frqvwdqw 4

5 fdqqrw eh uhsodfhg e|

d vpdoohu rqh1

Fruroodu| 51 Ohw x eh dv deryh dqg i = ^d> e` $ U eh d glhuhqwldeoh pdsslqj zkrvh ghulydwlyh lv lqwhjudeoh/ l1h1/

ni3n4@ ]e d

mi3+w,mgw ?4=

Wkhq zh kdyh wkh lqhtxdolw|=

]e

d

x+{,i3+{,g{i+e,i+d,

ed

]e d

x+w,gw

nx3n4ni3n4

5 +ed,= +519,

(5)

Uhpdun 41 Li zh dvvxph wkdw j = ^d> e`$U lv frqwlqxrxv rq^d> e` dqg li zh vhw i+{, @

]{ d

j+{,g{> wkhq iurp +5=9, zh jhw wkh iroorzlqj Ju‚xvv w|sh lqhtxdolw| iru wkh Ulhpdqq lqwhjudo=

4

ed ]e

d

x+{,j+{,g{ 4 ed

]e d

x+w,gw 4 ed

]e d

j+w,gw +51:,

nx3n4njn4

5 +ed,=

Fruroodu| 61 Dvvxph wkdw x = ^d> e` $ U lv glhuhqwldeoh rq +d> e,> x+d, 9@

x+e,> dqg x3 = ^d> e` $ U lv erxqghg rq +d> e,= Wkhq zh kdyh wkh wudsh}rlg lq0 htxdolw|=

x+d, .x+e,

5 +ed,

]e d

x+w,gw

nx3n4nx3n4

5 ^x+e,x+d,`+ed,5= +51;,

Surri1 Li zh fkrrvh lq Fruroodu| 5/ i+{, @x+{,>zh jhw

]e

d

x+{,x3+{,g{x+e,x+d,

ed

]e d

x+w,gw

nx3n4nx3n4

5 +ed,

+51<,

Qrz +5=;, iroorzv iurp +5=<,1

61 6jiWB, #BaiB|ij 8Ni6,B uNi |j -j6BAA7|j,|jt YA|j}iB,

Lq zkdw iroorzv/ zh vkdoo dsso| Wkhruhp 5 wr dssur{lpdwh wkh Ulhpdqq0Vwlhowmhv lqwhjudo

]e d

x+{,gi+{, lq whupv ri wkh Ulhpdqq lqwhjudo ]e

d

x+w,gw=

Wkhruhp 61 Ohwi> x= ^d> e`$Ueh dv lq Wkhruhp 5 dqg Lk@id@{3? {4? === ? {q4? {q@ej

d sduwlwlrq ri^d> e`= Ghqrwhkl@{l.4{l> l@ 3>4> ===> q4=Wkhq zh kdyh=

]e d

x+{,gi+{, @Dq+x> i> Lk, .Uq+x> i> Lk, +614,

zkhuh

Dq+x> i> Lk, @q4[

l@3

i+{l.4,i+{l,

kl

{]l.4

{l

x+w,gw +615,

dqg wkh uhpdlqghu whupUq+x> i> Lk,vdwlvhv wkh hvwlpdwlrq mUq+x> i> Lk,m O

5+k,be

d

i+{, +616,

zkhuh+k, @l@3>===>q4pd{ iklj=

(6)

D JU‚XVV W\SH LQHTXDOLW\ IRU PDSSLQJ RI ERXQGHG YDULDWLRQ 8

Surri1 Dsso|lqjWkhruhp 5 rq wkh lqwhuydo ^{l> {l.4`> l@ 3>4> ===> q4 zh j hw

{]l.4

{l

x+{,gi+{,i+{l.4,i+{l,

kl

{]l.4

{l

x+w,gw O

5 kl {bl.4

{l

i+{,= Vxpplqjryhul iurp 3 wrq4 dqg xvlqjwkh wuldqjoh lqhtxdolw| zh rewdlq

]e

d

x+{,gi+{,Dq+x> i> Lk,

O 5

q4[

l@3

kl {bl.4

{l

i+{, O

5 +k,q4[

l@3 {bl.4

{l

i+{,

@ O

5 +k, be

d

i+{,= dqg wkh fruroodu| lv suryhg1

Uhpdun 51 Frqvlghu wkh htxlglvwdqw sduwlwlrqLk jlyhq e|

Lk= {l@d.led

q > l@ 3> ===> q>

dqg ghqh

Dq+x> i> Lk,

@ q

ed

q4[

l@3

i

d. +l. 4,ed q

i

d.led q

d.+l.4,] edq

d.ledq

x+w,gw=

Wkhq zh kdyh

]e d

x+{,gi+{, @Dq+x> i, .Uq+x> i, zkhuh wkh uhpdlqghu Uq+x> i, vdwlvhv wkh hvwlpdwlrq

mUq+x> i,m O+ed,

5q

be d

i+{,=

Wkxv/ li zh zdqw wr dssur{lpdwh wkh lqwhjudo ]e

d

x+{,gi+{,e| wkh vxpDq+x> i> Lk, zlwk dq huuru ri pdjqlwxgh ohvv wkdq% zh qhhg dw ohdvw

q3@

%O+ed,

5%

be d

i+{,

&

. 45Q srlqwv1

Fruroodu| 71 Dvvxph wkdw xdqgi duh dv lq Fruroodu| 41 LiLk lv dv deryh/ wkhq +6=4,krogv dqg wkh uhpdlqghu whupUq+x> i> Lk, vdwlvhv wkh hvwlpdwlrq

mUq+x> i> Lk,m nx3n4

5 +k,be

d

i+{,= +617,

(7)

Fruroodu| 81 Dvvxph wkdw xdqg i duh dv lq Fruroodu| 51 Wkhq +6=4, krogv dqg wkh uhpdlqghu whupUq+x> i> Lk,vdwlvhv wkh hvwlpdwlrq

mUq+x> i> Lk,m nx3n4ni3n4

5 +k,=

+618,

71 VV,WB|NA uNi |j CiBVj5NaB, 8Ni6,B

Wkh iroorzlqjlqwhjudo lqhtxdolw| ri wudsh}rlg w|sh iru d pdsslqjri erxqghg yduldwlrq krogv dqg kdv ehhq suryhg e| V1 V1 Gudjrplu lq sdshu ^;`1 Khuh zh jlyh dqrwkhu surri edvhg rq wkh Ju‚xvv w|sh lqhtxdolw| +5=4,=

Wkhruhp 71 Ohwj= ^d> e`$Ueh d pdsslqj ri erxqghg yduldwlrq1 Wkhq zh kdyh wkh lqhtxdolw|=

j+d, .j+e,

5 +ed,

]e d

j+w,gw

ed

5

be d

j+w,>

+714,

dqg wkh frqvwdqw 45 lv vkdus1

Surri1 Xvlqjwkh lqwhjudwlrq e| sduwv irupxod iru wkh Ulhpdqq0Vwlhowmhv lqwhjudo zh kdyh=

]e d

{d.e 5

gj+{, @ +ed, +j+e,j+d,,

5

]e d

j+{,g{=

+715,

Ghqh wkh pdsslqjv i+{, @{d.e5 dqgx+{, @j+{,= Wkhq lw lv fohdu wkdwi lv O0olsvfklw}ldq zlwk O@ 4 dqgx lv ri erxqghg yduldwlrq1 Dsso|lqjwkh lqhtxdolw|

+5=4,> zh ghgxfh=

]e

d

{d.e 5

gj+{,j+e,j+d,

ed

]e d

{d.e 5

g{

ed

5 be

d

j+{,=

Dv ]e

d

{d.e5

g{@ 3> wkhq xvlqjwkh lghqwlw| +7=5, zh rewdlq wkh ghvluhg uhvxow +7=4,1

Qrz frqvlghu wkh ixqfwlrqj= ^d> e`$Q>

j+{, @

;?

=

4 li {@d 3 li d ? { ? e 4 li {@e Wkhqj lv ri erxqghg yduldwlrq dqg=

]e d

j+{,g{@ 3> be

d

j+{, @ 5

(8)

D JU‚XVV W\SH LQHTXDOLW\ IRU PDSSLQJ RI ERXQGHG YDULDWLRQ :

Wkxv

j+d, .j+e,

5 +ed,

]e d

j+w,gw

@ed>

vlqfh ed5 be

d

j+{, @ed/ dqg wkh htxdolw| lv uhdol}hg lq +7=4,=Wkh vkdusqhvv ri wkh frqvwdqw lv wkxv suryhg1

Fruroodu| 91 Ohw j = ^d> e` $ U eh d glhuhqwldeoh ixqfwlrq zkrvh ghulydwlyh lv lqwhjudeoh rq +d> e,=Wkhq zh kdyh wkh lqhtxdolw|=

j+d, .j+e,

5 +ed,

]e d

j+w,gw

ed 5 nj3n4= +716,

Wkh iroorzlqjtxdgudwxuh irupxod krogv=

Wkhruhp 81 Ohw j = ^d> e` $ U eh d pdsslqj ri erxqghg yduldwlrq dqg Lk @ id@{3? {4? === ? {q4? {q@ej d sduwlwlrq ri ^d> e`= Ghqrwh kl @{l.4{l>

l@ 3>4> ===q4=Wkhq zh kdyh ]e

d

j+{,g{@Wq+j> Lk, .Uq+j> Lk, +717,

zkhuh

Wq+j> Lk, @

q4[

l@3

j+{l.4, .j+{l,

5 kl

dqg wkh uhpdlqghu whupUq+j> Lk, vdwlvhv wkh hvwlpdwh mUq+j> Lk,m +k,

5

be d

j+{,>

+718,

wkh frqvwdqw 45 ehlqj vkdus1

Surri1 Dsso|lqjWkhruhp 7 rq wkh lqwhuydo ^{l> {l.4`> zh jhw

j+{l.4, .j+{l,

5 kl

{]ll.4

{l

j+w,gw kl

5

{bl.4

{l

j+{, iru dool@ 3>4> ===> q4=

Vxpplqjryhul iurp 3 wrq4/ zh ghgxfh

]e

d

j+{,g{Wq+j> Lk,

4 5

q4[

l@3 {bl.4

{l

j+{,kl

4

5+k,q4[

l@3 {bl.4

{l

j+{, @ 4

5+k,be

d

j+{,= Wkh fdvh ri wkh htxdolw| iroorzv iurp Wkhruhp 8 dqg zh rplw wkh ghwdlov1

(9)

Uhpdun 61 Frqvlghu wkh htxlglvwdqw sduwlwlrqLk jlyhq e|

Lk={l@d.l ed

q > l@ 3> ===> q>

dqg ghqh

Wq+j, @ ed 5q

q4[

l@3

j

d. +l. 4,ed q

.j

d.led q

Wkhq zh kdyh=

]e d

j+{,g{@Wq+j, .Uq+j, zkhuh wkh uhpdlqghu Uq+j,vdwlvhv wkh hvwlpdwlrq

mUq+j,m +ed, 5q

be d

j+{,=

Wkxv/ li zh zdqw wr dssur{lpdwh wkh lqwhjudo ]e

d

j+{,g{e| wkh vxp Wq+j,zlwk dq huuru ri pdjqlwxgh ohvv wkdq% zh qhhg dw ohdvw

q3@

%+ed, 5%

be d

j+{,

&

. 45Q srlqwv1

Fruroodu| :1 Ohw j = ^d> e` $ U eh d glhuhqwldeoh ixqfwlrq zkrvh ghulydwlyh lv lqwhjudeoh rq +d> e,= Li Lk lv dv deryh/ wkhq +7=7, krogv dqg wkh uhpdlqghu vdwlvhv wkh hvwlpdwlrq=

mUq+j> Lk,m +k, 5 nj3n4=

81 #BaiB|ij j|Nat uNi |j -j6BAA7|j,|jt YA|j}iB, Nu NA|ANt BVVA}t

OhwLk@id@{3? {4? === ? {q4? {q@ejeh d sduwlwlrq ri ^d> e` dqg ghqrwh kl@{l.4{l> l@ 3>4> ===q4=

Zh vwduw wr wkh iroorzlqjohppd zklfk lv ri lqwhuhvw lq lwvhoi1

Ohppd41 Ohwi eh d ixqfwlrq iurpF^{l> {l.4`>l1h1/i lv frqwlqxrxv rq^{l> {l.4`>

dqg ohw xeh d ixqfwlrq ri erxqghg yduldwlrq rq wkh vdph lqwhuydo1 Wkh iroorzlqj lqhtxdolw| krogv=

{]l.4

{l

i+{,gx+{,^x+{l.4,x+{l,` il

$^i> kl`

{bl.4

{l

x+{, +814,

zkhuh il @ 4 kl

{]l.4

{l

i+{,g{> kl @{l.4{l>$^i> kl` @ vxs

m{wmmi+{,i+w,m>lv wkh prgxoxv ri frqwlqxlw|1

(10)

D JU‚XVV W\SH LQHTXDOLW\ IRU PDSSLQJ RI ERXQGHG YDULDWLRQ <

Surri1 Vlqfhi 5F^{l> {l.4` dqgxlv d ixqfwlrq ri erxqghg yduldwlrq/ e| wkh zhoo nqrzq surshuw| ri vxfk frxsoh ri ixqfwlrqv zh kdyh

{]l.4

{l

i+{,gx+{,

ninF^{l>{l.4`

{bl.4

{l

x+{,= Wkhuhiruh/

{]l.4

{l

i+{,gx+{,^x+{l.4,x+{l,` il

@

@

{]l.4

{l

i+{,il gx+{,

i+{,il

F^{l>{l.4` {bl.4

{l

x+{,

@ vxs

{5^{l>{l.4`

i+{,il{bl.4

{l

x+{,

@ 4

kl vxs

{5^{l>{l.4`

kli+{,klil{bl.4

{l

x+{,

@ 4

kl vxs

{5^{l>{l.4`

{]l.4

{l

i+{,gw

{]l.4

{l

i+w,gw

{bl.4

{l

x+{,

@ 4

kl vxs

{5^{l>{l.4`

{]l.4

{l

^i+{,i+w,`gw

{bl.4

{l

x+{,

vxs

{5^{l>{l.4`>w5^{l>{l.4`mi+{,i+w,m

{bl.4

{l

x+{,

@ $^i> kl`

{bl.4

{l

x+{,>

dqg wkh ohppd lv suryhg1

Ohwi 5F^d> e`=Wkh gxdo wrF^d> e` lv wkh vsdfh ri ixqfwlrqv ri erxqghg yduld0 wlrq/ wkh jhqhudo irup ri wkh ixqfwlrqdo rqF^d> e` lvL+i, @

]e d

i+{,gx+{, zkhuhx ehorqjv wr wkh vsdfh ri ixqfwlrqv ri erxqghg yduldwlrq1

Wkdw lv zk| lq wkh wkhru| ri txdgudwxuh phwkrgv iru frqwlqxrxv ixqfwlrqv wkh fdvh ri wkh lqwhjudov ri vxfk d w|sh lv wkh prvw lqwhuhvwlqj1 Iru wkh lqwhjudo zlwk frqwlqxrxv lqwhjudqg

]e d

i+{,z+{,g{+z+{,A3, zh lqwurgxfh wkh huuru ixqfwlrqdo

(11)

iru wkh txdgudwxuh uxoh +zlwk wkh zhljkwvvqn dqg qrghv{n, L+i,

]e d

i+w,z+w,gw [q

n@3

i+{n,vqnLq+i, e| wkh irupxod

Hq+i, @L+i,Lq+i,=

Khuh lv wkh pruh jhqhudo uhvxow iru wkh frpsrvlwh txdgudwxuh uxohv iru wkh ixqf0 wlrqv iurpF^d> e`=

Wkhruhp 91 Ohw d dqg e eh qlwh uhdo qxpehuv dqg ohw i> x = ^d> e` $ Ueh vxfk wkdw i 5 F^d> e` dqg x lv d ixqfwlrq ri erxqghg yduldwlrq rq ^d> e`1 Li d @ {3 ? {4? === ? {q4? {q@e lv d glylvlrq ri^d> e`vxfk wkdwmklm? >;l@ 3>4> ===> q4 zkhuhkl@{l.4{l> wkhq wkh iroorzlqj hvwlpdwlrq iru wkh Huuru ixqfwlrqdo ri wkh Ulhpdqq0Vwlhowmhv txdgudwxuh uxoh lv wuxh

mHqfrps+i,m $^i> ` be

d

x+{,>

+815, zkhuh

Hqfrps+i, @ ]e

d

i+{,gx+{,q4[

l@3

x+{l.4,x+{l,

kl

{]l.4

{l

i+{,g{>

dqg $^i> `lv wkh prgxoxv ri frqwlqxlw| ri i zlwk uhvshfw wr= Surri1 Iru d jlyhq glylvlrq ri ^d> e` dv deryh/ zh kdyh

]e d

i+{,gx+{, @

q4[

l@3 {]l.4

{l

i+{,gx+{,= Wkhq e| Ohppd 4/ zh fdq zulwh vxffhvvlyho|=

mHqfrps+i,m @ ]e

d

i+{,gx+{,

q4[

l@3

x+{l.4,x+{l,

kl

{]l.4

{l

i+{,g{

@

q4[

l@3 {]l.4

{l

i+{,gx+{,q4[

l@3

x+{l.4,x+{l,

kl

{]l.4

{l

i+{,g{

q4[

l@3

{]l.4

{l

i+{,gx+{,x+{l.4,x+{l, kl

{]l.4

{l

i+{,g{

q4[

l@3

$^i> kl`

{bl.4

{l

x+{,$^i> `q4[

l@3 {bl.4

{l

x+{,

@ $^i> `be

d

x+{,>

dqg wkh wkhruhp lv suryhg1

(12)

D JU‚XVV W\SH LQHTXDOLW\ IRU PDSSLQJ RI ERXQGHG YDULDWLRQ 44

-jujijAWjt

do 55 #h@}L4hc Bhtt ?i^@*|) ? ??ih ThL_U| tT@Uitc Ai t|h@*@? @| 5LU B@3i||ic

? Thitt

d2o 55 #h@}L4hc }i?ih@*3@|L? Lu Bhtt< ?i^@*|) ? ??ih ThL_U| tT@Uit @?_ @TT*U@|L?tc a @| ?@* TT*c @UUiT|i_

do 55 #h@}L4hc Bhtt |)Ti ?|i}h@* ?i^@*|) uLh 4@TT?}t Lu hOL*_ih<t |)Ti @?_ @TT*U@

|L?t uLh |h@Ti3L_ uLh4*@c A@4! @?} a Lu @|c @UUiT|i_

deo 55 #h@}L4hc 5L4i _tUhi|i ?i^@*|it Lu Bhtt |)Ti @?_ @TT*U@|L?t ? }itt?} |iLh)c tM4||i_

dDo 55 #h@}L4hc 5L4i ?|i}h@* ?i^@*|it Lu Bhtt |)Tic tM4||i_

dSo 55 #h@}L4h @?_ Bw LL|c ? @ BhttwT@t |)Ti ?i^@*|) @?_ |t @TT*U@|L?t uLh

|i it|4@|L? Lu T4L4i?|t Lu }itt?} 4@TT?}tc tM4||i_

d.o 55 #h@}L4h @?_ W 6i_L|Lc ? ?i^@*|) Lu Bhtt< |)Ti uLh +i4@??5|i*|it ?|i}h@* @?_

@TT*U@|L?t uLh tTiU@* 4i@?tc A@4!@?} a Lu @|c 2bEeEbbHc 2HS2b2

dHo 55 #h@}L4hc ? |i |h@Ti3L_ uLh4*@ uLh 4@TT?}t Lu ML?_i_ @h@|L?c tM4||i_

dbo B Bhttc NMih _@t @ 44 _it @MtL*|i? i|h@}it L? K3@ UK

@sE%}E%_% 3

EK3@ 5

UK

@sE%_%UK

@}E%_% c @| ~ c bEbDc 2D22S dfo  6?!c |hi@|ti L? Bhtt< ?i^@*|)c tM4||i_

do #5 |h?L‚Uc a, iU@h‚U @?_  6?!c *@ttU@* @?_ i W?i^@*|it ? ?@*)ttc k*ih U@_i4U M*tihtc #Lh_hiU|c bb

E5 5 #h@}L4h 7WNN, Nu N66AWB|NAt BAa YAuNi6B|Wte XW|NiB PAjit|+ Nu CjWAN,N}+e N! gg4Ie j,ONiAj |+e  Ihh t|iB,B

,4@* @__hittG pffe72>z'[>f[>

EW 6i_L|L $jVBi|6jA| Nu B|j6B|Wte Cj PAjit|+ Nu CiBAt"je P6|B|B Fhhe 7N| uiWB

,4@* @__hittG qf[JzJ7{fz>qze>Q1>

Referensi

Dokumen terkait

A Generalised Trapezoid Type Inequality for Convex Functions This is the Published version of the following publication Dragomir, Sever S 2002 A Generalised Trapezoid Type Inequality

Integral Inequalities of Grüss Type via Pólya-Szegö and Shisha-Mond Results This is the Published version of the following publication Dragomir, Sever S and Diamond, N.. T 2002

On Ostrowski Like Integral Inequality for the Čebyšev Difference and Applications This is the Published version of the following publication Dragomir, Sever S 2002 On Ostrowski Like

Two Discrete Inequalities of Grüss Type Via Pólya- Szegö and Shisha Results for Real Numbers This is the Published version of the following publication Dragomir, Sever S and Khan,

Second Derivatives Belong to Lp A,B and Applications This is the Published version of the following publication Cerone, Pietro, Dragomir, Sever S and Roumeliotis, John 1998 An

A General Ostrowski Type Inequality for Double Integrals This is the Published version of the following publication Hanna, George T, Dragomir, Sever S and Cerone, Pietro 2000 A

An Inequality of Ostrowski Type and its Applications for Simpson's Rule and Special Means This is the Published version of the following publication Fedotov, I and Dragomir, Sever S

A New Refinement of Jensen's Inequality in Linear Spaces with Applications This is the Published version of the following publication Dragomir, Sever S 2009 A New Refinement of