• Tidak ada hasil yang ditemukan

Investigating the Classroom Environment With Physical Computing

N/A
N/A
Protected

Academic year: 2023

Membagikan "Investigating the Classroom Environment With Physical Computing"

Copied!
14
0
0

Teks penuh

(1)

DOI: 10.4018/IJMBL.315627

Copyright©2022,IGIGlobal.CopyingordistributinginprintorelectronicformswithoutwrittenpermissionofIGIGlobalisprohibited.



*Corresponding Author

Investigating the Classroom Environment With Physical Computing

David Parsons, The Mind Lab, New Zealand*

https://orcid.org/0000-0002-9815-036X

Kathryn MacCallum, University of Canterbury, New Zealand https://orcid.org/0000-0003-3844-7628

ABSTRACT

Tointegratedigitaltechnologiesintothecurriculum,teachersmustsupportlearnerstousedigital

toolsinauthenticcontexts.Physicalcomputing,whichinvolvestheuseofsmallportableelectronic

devices,providesanopportunitytoachievethesegoals.Thisarticlereportsontheinitialstagesof

adesign-basedresearch(DBR)projectthatwillenablestudentstomonitorandinvestigatetheir

ownlearningspaces,withafocusontheimpactsontheirownwell-being,andtoproposesolutions

toanyissuesthattheyidentify.Thestudyfocusesonaseriesofworkshops,runwithstafffroman

educationalorganisation,designedtoexploreenvironmentalmonitoringintheclassroomandidentify

opportunitiestoapplythetheoryofsituatedcognitiontoauthenticlearningincontext.Thearticle

reportsonthefirsttwophasesoftheDBRapproach,definingtheprojectfocusandunderstanding

theproblem,toproposeandrefineasetoffivedesignprinciples.Theinsightsgainedwillbeused

inthesubsequentphasesoftheDBRprocess.

KEyWoRdS

Critical Incident, Design-Based Research, Environmental Monitoring, micro:bit, Sensor, Situated Cognition, Well-Being

INTRodUCTIoN

Smallportableelectronicdevicessuchasthemicro:bit,Arduino,andRaspberryPi,arenowavailable

tostudentsinmanyclassroomsaroundtheworld.Thesedeviceshavebeenadoptedinschoolsto

teachprogramminginamorehands-onmannerinlearningcontextsthataremoreengagingand

inclusive(Hodgesetal.,2020;Nikouetal.,2020).Thechallengeforeducatorsis,however,toachieve

authenticitywhenusingthistypeofelectronicdevice.Usingelectronicsinauthenticwaysinthe

classroommeansthelearningmustbemeaningfullyconnectedtodifferentsubjectsordomainsof

knowledge.So,whilethesetoolsarebecomingmorepopularinschools,teachersstillneedsupport

(2)

toidentifymeaningfullearningactivitiesinwhichelectronicscanbeintegrated-activitieswhere

theuseofthesetoolsenable,ratherthandominate,thelearning.Theconceptofphysicalcomputing

providesalensthroughwhichwecaninvestigatethischallenge.

Physical Computing

Physicalcomputingisanemergingareaofresearchwherestudentsareengagedwiththeprocess

of“creativelydesigningtangibleinteractiveobjectsorsystemsusingprogrammablehardware”

(Przybylla&Romeike,2017,p.352).Theintegrationofsmallelectronicdevicesnotonlysupports

thedevelopmentofcriticalthinkingbutalsofosterscollaborativeandinterpersonalskills(Psycharis

etal.,2018).Thesedevicesoffersignificantopportunitiesforrichlearning.Whiletheyhavebeen

primarilyadoptedtoteachprogrammingandcomputationalskills(Papavlasopoulouetal.,2019)

theinclusionofsensors(suchastemperature,light,sound,etc.)in,orattachedto,thesedevices

providesforrichexperienceswherelearnerscanengagewithreal-worldenvironments,suchastheir

ownlearningspaces.

Physicalcomputing,therefore,supportsrichtransdisciplinarylearning(Psycharisetal.,2018),

forexamplebyenablingstudentstoapplyphysicalcomputingtoaddressenvironmentalfactorsthat

impacttheirownwell-being.Physicalcomputingalsoprovidesnewapproachesforproblem-based

learning,wherestudentscanaddressproblem-solvinginahands-onmanner.Itsupportsstudent-centred

classroomsandsmallgroupworkactivitieswithlimitedteacherinvolvementandafocusonallowing

studentstoteacheachotherandprogresstogether.Thecombinationofsensorsandcommunication

channelsprovidesstudentswithmanyopportunitiesforscientificdiscoveryandrelatedmathematical

skills.Examplesfromtheliteratureincludeusinganaccelerometertogatherdatafrommodelrocket

carsandgatheringsoilmoisturedatainenvironmentprojects(Austinetal.,2020),andmeasuring

CarbonDioxide(CO2)indifferentenvironments(Henry,2022).However,despiteitsclearpotential

inthecurriculum(Przybylla&Romeike,2017)thereislimitedresearchintohowphysicalcomputing

canbestbeintegratedintolearningexperiences.Thequestionaddressedinthisarticleistherfore:How

canphysicalcomputingbestbeusedtosupportauthentic,student-ledlearningabouttheclassroom

environmentanditsimpactsonwell-beingorotherfactorsimportanttostudents?

Adopting a dBR Approach

Onewaytobetterunderstandhowtodesignlearningthataddressestheaspectsaddressedabove

istoadoptadesign-basedapproach.Design-basedresearch(DBR)isasub-areaofdesignscience

specificallyadoptedineducationtobridgethegapbetweenresearchandpracticeinformaleducation

(Anderson&Shattuck,2012).DBRevolvesthroughaseriesofiterationsdesignedtotestandevaluate

interventions.Eachiterationisdesignedtorefineandevolvethedesignoftheinitiative.Thetestingof

theiterationisdoneinauthenticpractice,withdifferentmethodsgenerallyadoptedineachiteration

toevaluatethedesignfromdifferentperspectives.Thepurposeofthisapproachistogeneratenew

theoriesandframeworksforconceptualisinglearning.Thedesignevolvesfrom,andleadsto,the

developmentofpracticaldesignprinciples,patterns,andresearch-groundedapproaches.

TheDBRprocessconsistsofsixiterativephasesinwhichdesignersfocusontheproblem,

understandtheproblem,definegoals,conceivetheoutlineofasolution,buildthesolution,andtest

thesolution(Easterdayetal.,2014).Thescopeofthefirstiterationofthestudyreportedthisarticle

isphasesone(focusontheproblem)andtwo(understandtheproblem)oftheDBRapproach.The

outcomeofthisiterationisthenabletoinformthenextphases.

Thenextsectionaddressesthe“focus”phaseofthestudy,specifyingitsaudience,topic,and

scope(Easterdayetal.,2014)anddefiningthegeneralproblemandgoals.Thefollowingsections

willthenaddressthe“understand”phaseoftheproject.AccordingtoEasterdayetal.(2014),the

“understand”phaseinvestigatestheproblemthroughempiricalmethodsandsecondarysources,

andsynthesisesthatknowledgeintoaformthatcanbeeasilyusedlaterintheprocess.Therefore,in

thisarticle,“understanding”issplitintotwoparts.Thefirstpartexploresissuesaroundwell-being

(3)

intheclassroomenvironmentrelatedtoenvironmentalfactors,thenreviewssomeoftheprevious

literaturethatexploresthemonitoringofclassroomenvironmentvariableswithdigitaltools.The

mainfeaturesofthespecifichardwareusedinthisstudy(themicro:bitandassociatedsensors)are

alsoexplained.Thesecondpartofthe“understand”phasethendiscussestheempiricalmethodsused

tobetterunderstandtheproblemandtesttheproposedapproach.Thisphaseinvolvedworkingwith

staffmembersofatertiaryinstitutiontotesttheproposeddesigninaseriesofworkshopstobetter

understand,fromaneducator’sperspective,howeffectivethisapproachwouldbewhenworking

withstudents.

Theremainderofthearticleexplainsthemethods,includingtheteachingapproachusedand

thedatagathered,followedbytheresults.Thefinalsectionofthispaperthenlooksforwardtothe

nextphaseoftheprojectandexplainshowtheinsightsgainedwillcontributetofutureiterations.

Phase 1: Project focus

Thefocusofthisprojectistoexplorehowmicro:bitscanbeauthenticallyintegratedintoaclassroom.

Theprojectaimstoinvestigatepracticethatfocusesonstudentlearninghappeninginauthenticsocial

activities,wheredigitalskillsareintegratedandbuiltthroughthedevelopmentofsolutionsusing

electronicdevices,sensors,andthedatathattheygather.

Tofurtherscopethisbroadcontext,thestudyfocusesonhowmicro:bitscanbeadoptedinto

project-basedlearningtoinvestigateenvironmentalfactorsintheclassroomthatcanimpactthewell- beingofstudents.Thefocusofthisapproachistogetstudentstodevelopstrategiesaroundimproving

themicro-climatesintheirlearningenvironments,takingaccountofarangeofenvironmentalvariables.

Thelearningactivitytobedesignedisintendedtobesuitableforanyclassroomthathasaccess

tomicro:bits(orsimilardevices)andadditionalsensors.Themostimportantaspectofthislearning

activityisthatitisembeddedinproblem-basedinquiryintostudentwell-beingintheirownclassroom

environmentsandisintendedtohelpthemunderstandwhatkindsofenvironmentalmeasurescanbe

made,andwhattheimpactsofenvironmentalvariablesmightbeontheirownwell-being.

Phase 2a: Understanding the Literature

Relevantliteraturewasidentifiedtobetterunderstandthecontextsinwhichthemicro:bitscouldbe

adopted,andthewaysthattheycouldbeused,Theaimofthisphasewastobetterunderstandthe

problem,throughanexaminationoftheproblemcontext,analysisofcurrentsolutionstosimilar

orrelatedproblems,andtheproposedsolutionandmodelsoflearning(Easterdayetal.,2014).An

outcomeofthisphasewastheidentificationofdesignprinciplesthatwillthenbeusedtohelpsupport

theanalysisofphasetwo.

The Context: The Classroom Environment and Well-Being

Onetopicthatimpactsallstudentsiswell-being,andamajorfactorinwell-beingatschoolisthe

physicallearningenvironment.TheNewZealandMinistryofEducationhasadoptedamodelthat

presentswell-beingascomprisingfourdimensions:Physicalwell-being,mentalandemotionalwell- being,socialwell-being,andspiritualwell-being(MoE,1999).Thereisaclearlinkbetweenthe

physicalwell-beingprovidedbytheenvironmentandthementalandemotionalwell-beingofstudents

(e.g.,Gaihreetal.,2014),withaprobableimpactonsocialandspiritualwell-being.

Althoughmanyaspectsofthelearningenvironmentareembeddedintothedesignandbuild

ofthestructureandaredifficultforstudentstochange,therearesomeparametersthatcanbe

addressedintheindividualclassroom,includinglight,sound,temperature,andairquality(Barrett

etal.,2013).Someoftheadjustmentsthatcanbemadetotheseparametersincludesuchsimple

thingsaschangingwindowshadesandadjustingventilation.Evenindividualactionscanmake

adifference,oneexamplebeingmovinganoisyfishtankfromaclassroomtoapublicspace

(Woolner&Hall,2010).Issuesrelatedtothephysicalclassroomenvironment,suchasventilation,

havebeenbroughttotheforeinrecentdiscussionsaboutthesafetyofstudentsatschoolduring

(4)

theCOVID-19pandemic.VentilationlevelscanbemeasuredbymonitoringCO2concentrations,

whichcanalsohaveadirectimpactonstudentwell-being,ascanarangeofotherfactors,outlined

inthenextsection.

Current Approaches: Monitoring Classroom Environment Variables

Therearemanypreviousstudiesthathaveexploredtheimpactofdifferentenvironmentalfactorsin

theclassroom.Severalstudieshaveusedsensorstomonitorandcontroltemperatureandlighting

(e.g.,Runathongetal.,2017;Yinetal.,2021).Lakshagaetal.(2021)proposedanInternetof

Things-basedsmartclassroomenvironmentthatwouldincludemonitoringlight,temperature,

andhumidity.Akeyquestioniswhattheimpactonstudentsofsuchfactorsmightbe,ifany.For

example,Gaihreetal.(2014)notedthatneithertemperaturenorhumidityimpactedattendance,

oneofthecommonlyusedmeasuresoftheimpactoftheclassroomenvironment.However,there

areothermeasuresofimpactthatcanbeconsideredsuchastaskperformance,asinDockrell

andShield’s(2006)studyontheimpactsofhighlevelsofnoiseinaprimaryclassroom.The

recommendedmeannoiselevelinsideaclassroomshouldbebetween35and45decibels(dB)

(Dreossi&Momensohn-Santos,2005).DockrellandShieldfoundthatbackgroundspeechof65

dB,andotherenvironmentalnoiseof58dB,showedsmallnegativeimpactsonbothstudents’

verbalandnon-verballearningtasks.

SeveralstudieshavemonitoredlevelsofCO2inclassroomsandtheirpotentialimpacts.

MeasuringCO2intheclassroomisparticularlyimportantbecauseitcanbeusedasaproxyforthe

riskofvirusinfection(Deyetal.,2021).LevelsofCO2canbeveryhighrelativetotheguideline

valueof1,000partspermillion(ppm).Thenormalbackgroundconcentrationoutdoorsis250-400

ppm,whilewell-ventilatedindoorspacesarebetween400and1,000ppm.Valuesincreasingabove

1,000ppmcanleadtodrowsiness,headaches,andlossofconcentration,with5,000ppmbeinga

commonworkplaceexposurelimit(KaneInternational,2022).OnestudyintheUKmeasuredCO2

insevenclassroomsacrossfourschools.Theaverageconcentrationwasaround2,000ppm,andin

someclassroomsexceeded4,000ppm(Coley&Beisteiner,2002).Arecentstudyataschoolin

NewZealand,usingoneoftheCO2monitorsthathadbeendistributedto2,500schools,testedthe

impactofventilationinclassroomsaspartofaCOVID-19relatedlearningactivity.Datagathered

showedthatwell-ventilatedclassroomshadlowlevelsofCO2,butacrowdedofficeshowed

levelsover1,000ppm,indicatingthatwell-beinginschoolsisnotlimitedtoclassroomspaces

(Henry,2022).Suchlevelscanhaveanegativeimpactonbothstudentattendanceandlearning.

CO2concentrationsabovetheguidelinelevelhavebeenlinkedtoarelative10%to20%increase

instudentabsence(Shendelletal.,2004).Anotherstudyindicatedthatevensmallincreasesof

100ppmovertheguidelinecorrelatedwithsmallreductionsinstudentattendance,thoughnot

attainment(Gaihreetal.,2014).However,adifferentstudyindicatedthathighlevelsofCO2inthe

classroomledtoadropofapproximately5%instudents’powerofattention(Coleyetal.,2007).

ItshouldbenotedthattherearemanyfactorsthatcaninfluenceCO2levelsindifferentareasof

theclassroomandatdifferentheights,somultiplesensorsareneededtogainanaccuratepicture

ofagivenclassroom,alongwithmultiplemeasuresovertimethatcapturedifferenttypesofroom

usageandstudentactivity(Mahyuddinetal.,2014).Therearealsoseveralotherenvironmental

factorsthatcanbemonitoredintheclassroom,IntheUK,the‘Learnometer’(Gratnells,n.d.)can

alsobeusedtomeasuredustparticlesandchemicals.

Itshouldbenotedthatfewofthesestudieshaveattemptedtointegrateanypedagogyinto

theirmeasurementstrategies.Inmanycases,theworkhasbeenlimitedtoresearchersmeasuring

environmentsindependentoflearnersand,iftherehavebeenanyresponses,thesehavebeenresearcher

driven.Inotherstudies,learnershavehadsomeinvolvementintakingmeasurements(e.g.,Henry,

2022)butnoneoftheaforementionedstudieshaveputthelearneratthecentretogivethemagency

overprocessesandoutcomes.Thefocusofthestudyreportedinthisarticleisthereforetoforeground

thepedagogyalongsidethetechnologyandenvironmentalmonitoring.

(5)

The Proposed Solution: The Micro:Bit, Sensors, and Communication Channels Sofar,thisarticlehasoutlinedthepotentialimpactsonstudentwell-beingofclassroomenvironmental

factors,aswellassomeinitialideasabouthowphysicalcomputingmightbeusedtoaddressthese

issueswithinalearningexperience.Thissectiondescribeshowthemicro:bit,andassociatedsensors,

canbeusedtoprovidetheinfrastructuretosupportalearningexperiencewithinthisdomain.

Themicro:bitisasmallportableelectronicdevicethatisprevalentinmanyclassrooms,

particularlyintheUK,whereonemillionmiddleschoolstudentsweregivenmicro:bitsin2016

(Balletal.,2016).Themicro:bititselfcontainssomeonboardsensors:light,temperature,direction

(compass),accelerationand,fromversion2,touch,andsound.Theseonboardsensorsareakey

componentofthemicro:bit’sdesign.Theintentionwastoenablelearnerstoengagecreativelywith

thedeviceandexploreaworldwheresensor-baseddevicesareubiquitous(Knowlesetal.,2018).

Fromtheearliestprototypeversions,therewasavisionofa“gender-neutralsensing/actuationdevice

thatcouldsupportsocial-anddiscovery-basedexplorationsofelectronicsandcoding”(Rogersetal.,

2017).Inaddition,therearemanyexternalsensorsthatcanbeconnectedtoamicro:bitusingvarious

combinationsofthe25externalconnections(pins)ontheedgeconnectoroftheboard.Sensorsthat

canbeconnectedtothesepinsincludeairpressure,humidity,andCO2.Manyofthesesensorscan

contributetoarelateddatasetofenvironmentalmeasuresthatcanbeusedbystudentstoanalyse

theirownlearningenvironmentsandaddressanyissuesthattheyidentify.

Aswellastheirabilitytogathersensordata,micro:bitsalsohavethecapabilitytosharethat

databymeansoftheircommunicationfacilities,usingtheirbuilt-inradioorBluetoothconnections.

Austinetal.(2020)suggestthat,foreducationalcontexts,theradiobroadcastcapabilitiesofmicro:bits

providemoreopportunitiesforcollaborativelearninginnovationsthanthedevicepairingmechanisms

ofBluetooth.Althoughmicro:bitsweredesignedfromthebeginningasameansoflearningaboutthe

InternetofThings(IoT)theycannot,ontheirown,beIoTdevices,sincetheydonothaveon-board

Internetconnections,partlyforethicalreasons(Knowlesetal.,2018).However,theycancombineto

formanetworkofthings,anditisalsopossibleformicro:bitstobeInternet-enabledbyconnecting

themtoWiFiexpansionboardsorlinkingthemwithinternet-enableddevicessuchasRaspberryPis

orlaptops,enablingmicro:bitstobecometrueIoTcomponents.

Models of Learning: Learning with Electronics and Sensors

Tosuccessfullyusesensorsaspartofthelearningprocessitisimportantthatstudentsgainaproper

understandingofwhatthesensordatameansandhowitisused.Inonestudy,whereschoolstudents

wereusingmicro:bitsaspartofthedesignandconstructionofaburglaralarmsystem,student

feedbackindicatedthatsomeofthemhadapoorunderstandingofwhatthemeasuresbeingtakenby

thelightsensormeant,howtheywerebeingusedinthesystem,orhowinformationflowedbetween

components(Cederqvist,2022).Thestudysuggestedthat,formeaningfullearningtotakeplace,

studentsneedtobeabletounderstandhowcodeandcomponentsworktogetherasafeedbacksystem

toproducethedesiredoutcomes.

Aspreviouslymentioned,itischallengingforeducatorstoachieveauthenticitywhenusing

electronicdevicesacrossthecurriculum.Integratingelectronicsintoactivitieswheretheyenable,

ratherthandominate,meaningfullearningrequiresareasofinvestigationthatareofbroadinteresttoall

students,alongwithasuitablepedagogicalapproach.Theapproachchosenforthisprojectistoapply

thetheoryofsituatedcognition,wherethesituationinwhichthelearningtakesplaceco-produces

knowledgethroughtheactivitiesthathappenwithinit(Brownetal.,1989).Situatedcognitionfocuses

onthetoolsthatbothpractitionersandstudentsuse(thesemaybeconceptualtoolsbutequallycan

bephysicalones).Theroleoftheeducatoristomodeltheuseofsuchtoolsinaddressingauthentic

problemsandprovideauthentic“cognitiveapprenticeship”activitieswherelearnerscanbuildarich

understandingofthetoolsandtheworldinwhichtheyareused.Socialinteractionandcollaboration

alsoplayacentralroleinthislearningtheory.Theworkshopsdescribedinthemethodssectionbelow

weredesignedwiththisapproachinmind.

(6)

Themostimportantaspectofthislearningactivitydesignisthatitisembeddedinproblem- basedinquiryintostudentwell-beingintheirownclassroomenvironmentsandisintendedtohelp

themunderstandwhatkindsofenvironmentalmeasurescanbemadeandwhattheimpactsofthe

environmentalvariablesmightbeontheirownwell-being.Further,togivethemanopportunityto

strategisewaysinwhichtheirlearningenvironmentscouldbeimprovedtoenhancehealthandwell- being.Inthissense,thereisnospecificlearningoutcomeorsetofknowledgethatisexpectedto

emergefromthisactivity.Rather,itisanopportunityforstudentstobuildknowledgeinareasthat

theyfeelareimportanttothemandtheirownlearning.Inprinciple,theactivitycanbeusedwith

studentsofdifferentagesandcapabilitiesbyprovidingdifferinglevelsofsupportinthecodingand

useofthesensors,thoughtheworkdonesofarhasbeenundertakenwithadults.

dESIGN PRINCIPLES

Theongoinguseanddevelopmentofdesignprinciples(DP)isakeydefiningelementofDBR(van

denAkkeretal.,2006).Ateverystageoftheresearchprocess,initialandevolvingDPsarecreated

andtested.TheseDPsareusedtoinformandguidethedirectionandshapeofinnovationbeing

developedaswellasitsimplementationandtesting.TheseDPsbecomeacriticalproductofthe

researchthatmaybeusedtoguidethedesignofasolutioncreatedinthefinalphasesoftheproject.

Basedontheliteraturereview,andguidedbythepedagogicalconceptsofsituatedcognition,

fivedesignprincipleswereidentifiedthatwillguidethenextpartoftheresearch,wherethesewill

betested.Theseare:

DP1:Theuseofelectronicsneedstobewithinaproblem-basedinquiry DP2:Theproblemshouldbeframedinameaningfulwaythatisauthentic DP3:Learningshouldoccurthroughtheprocessofengagingwiththeproblem DP4:Learningshouldbecollaborativeandsocial

DP5:Learnersshouldbeguidedandscaffoldedintheprocessandtoolssothattheyareabletolead

theirownlearning

Phase 2b: Empirical Evaluation

Inthenextsection,wediscusstheempiricalevaluationthattookplaceduringthelatterpartofthe

“understand”phase.Thisevaluationwasdesignedtovalidateourinitialunderstandingoftheproblem

fromatheoreticalperspective,basedontheabovedesignprinciples,bygainingfeedbackonemergent

aspectsofthelearningactivity,enablingustodefineourgoalsmoreclearlyfortheprojectinthe

subsequentstageofdesign-basedresearch.

METHodS

Theresearchmethodsadoptedinthisphaseweresomewhatexploratory.Beforeexploringtheapproach

withstudents,wefirstwantedtotesttheideaswithagroupthatwouldbeabletogivesomeinformed

suggestions.Therefore,workshopswereheldwithstaff(educatorsandeducationaladministrators)at

atertiaryeducationprovider.Whiletheseparticipantswerenotexpertsincodingormicro:bitsthey

wereabletoprovideaninformedperspectiveontheuseofthetechnology.

Theworkshopwasundertakenoverthreesessionsspreadoutoversixweeks.Thefirstworkshop

washeldonline,andinformedparticipantsabouttheimpactofenvironmentalfactorsonwell-being

intheclassroom,andtechnologiesthatcouldenablestudentinvestigationofthosefactors.Wethen

invitedanystaffwhowereinterestedinbuildingonthatknowledgefurthertoengageinasecond

face-to-faceworkshopthatwouldgiveussomeinsightsintothegoalsanddirectionofthelarger

researchproject.

(7)

Thefirstworkshopwasaprofessionaldevelopmentactivitywheretheparticipantswereintroduced

tomanyoftheconceptsalreadydiscussedinthispaper,suchastheroleofCO2andotherpollutants

intheclassroom,waysinwhichvariousaspectsoftheclassroomenvironmentmaybemeasured,and

thetechnologiescurrentlyavailablewithintheorganisationtoperformsuchevaluations.Thereason

forthisactivitywastosetthescenebyprovidingacommonlevelofunderstandingofthecontextof

thisresearchprojectandsomeofthedetailsaboutwhatispossibleintheclassroomintermsofwell- beingandphysicalcomputing.Thiswasintendedtoraiseinterestintheprojectandtoencouragestaff

toengageinafollow-upresearchactivity.33staffmembersfromacrosstheorganisationnationally

attendedonline,fromavarietyofroles(notalleducators).Thefocusofthisworkshopwastobuilda

basicunderstandingofthetoolsthatcouldbeused(DP5)andprovideacontexttoframetheproblem

inanauthenticmanner(DP2).

Thesecondworkshopwasamoreexploratorysessionwherestaffweregiventheopportunity

toexperimentwithsomeenvironmentalsensorsaspartofalearningactivity.Thiswasrunon

twodifferentdatesapproximatelyonemonthaparttoprovideoptionsforwhenpeoplecould

attend. The numbers who could attend this workshop were reduced by location – many of

thosewhoattendedthefirstonlinesessionsworkedremotelyandcouldnotattendfacetoface.

Seventeenmembersofstaffattendedthisworkshopoverthetwosessions(allhadattendedthe

firstworkshop).Thepurposeofthesessionwastogainsomeinsightsintohowbesttoorganisea

learningactivityusingphysicalcomputinginthiscontext.Thesessionwasdesignedaroundthe

principlesofsituatedcognition,providingasituationthatcouldco-produceknowledgethrough

activity(Brownetal.,1989).Byenablingparticipantstousethesedigitaltoolsinanauthentic

activity,wehopedtoseethembuildarichunderstandingofboththetoolsandthecontextsin

whichtheymaybeused.Insituatedcognition,learnersneedtobeexposedtopractitionersusing

thesetoolsinaproblemspace(thiswascoveredinthefirstsessionusingvideoofthetoolsin

action).Inaddition,itisnecessarytoprovidestudentswithacognitiveapprenticeship,enabling

themtolearninauthenticdomainactivitiesthatincludesocialinteractionandcollaboration.

Guidedwithappropriatescaffoldingthatlessensovertime.Thestructureofthesessionwas

basedonthisapproach,involvingthefollowing

• Beginningwithsomestructuredlearningaroundthestructureandintentionsoftheactivity,

includingsometheory(DP5).

• Steppingintoapartiallyscaffoldedpairactivity,introducingtheparticipantstousingmicro:bit

sensors(DP4,DP5).

• Movingintoamoreexploratoryactivity,wheretheparticipantswereexpectedtouseprovided

resourcestoconnectdifferentsensorsandexploretheirenvironmentusingthesedevices(DP5).

• Providingthroughthesethreestagesanauthenticactivitytoinvestigatefactorsimpactingtheir

ownwell-beingintheworkspace(DP1,DP2,DP3).

Therefore,thesessionstogetheractedasakindofminiaturesituatedcognitionexperience,based

onthefiveDPs.

Ethicsapprovalwasgainedfromtheinstitutionalethicspaneltogatherbothobservationaland

surveydatafromtheparticipants.Attheendoftheactivity,theparticipantswereaskedtocomplete

asurveybasedonthequestionsdevelopedbyKeefer(2009)asanupdatedversionofthestandard

CriticalIncidentQuestionnaire(CIQ)thatiswidelyusedtoassessclassroomexperiences.This

approachwouldprovideaholisticframeworktoexploretheapproachanddeterminehowtheDP

framedtheexperience.Itwaschosenforthisresearchbecauseitsintentionistoevaluatethelearning

experience,notthelearner.Therefore,itisappropriatetoapplytosituationswheretheprimary

objectiveistocreatealearningexperiencedesign.Thequestionsinthesurvey(adaptedslightlyfrom

Keefer’ssurveytofitthecontext)were:

(8)

1. Atwhatmomentintoday’ssessiondidyoufeelmostengagedand/orleastengaged?

2. Whataction(ifany)didanybodytakethatyoufoundmostaffirming/helpful?

3. Whataction(ifany)didanybodytakethatyoufoundmostpuzzling/confusing?

4. Whatwasthemostimportantinformationyoulearnedduringtoday’ssession?

5. Doyouhaveanyquestionsorsuggestionsabouttoday’ssession?

Thesewereallfreetextresponses.

Theelementoffacilitatorobservationwasbasedonthedesignandimplementationofthe

workshop.Thefacilitatorrecordedanycriticalincidentsthatappearedtobeeithersupportingor

hinderinglearning.

RESULTS

Thefirstsessionbeganbyaskingparticipantswhattheythoughtmightbethemainfactorsthat

couldinfluencewell-beingintheclassroom.Themostpopularresponsesweretemperature,lighting,

noise,andfreshair.Noonementionedthepotentialspreadofdisease,andonlytwomentionedCO2,

suggestingthatagreaterawarenessofenvironmentalfactorscouldbedeveloped.Theparticipants

werethenintroducedtoinformationaboutvariousenvironmentalfactorsandtheirpotentialimpact

onwell-being.ThisincludedthepotentialspreadofCOVID-19inenclosedspaces,theuseofCO2

monitoringasaproxyfortheriskofinfection,thedirectimpactsofhighCO2levelsonlearning,and

theopportunitytoinvestigatethesefactorsusingsensors.Atthispoint,theparticipantswereasked

whatkindsofenvironmentalsensorstheythoughtmightbeavailableforuseintheclassroom(i.e.,low

costandusablewithsimplephysicalcomputingdeviceslikethemicro:bitandArduino).Again,the

responsesfocusedontemperature,light,andnoise,withsomementionagainofCO2andofhumidity.

Thissuggestedthatagreaterawarenessofthepotentialformonitoringthelocalenvironmentcouldbe

developed.Theparticipantswerethengivenexamplesofsomeofthemanysensorsthatarereadily

availableforconnectingtophysicalcomputingdevices,includingdustconcentration,oxygen,carbon

monoxide,alcohol,acetone,paintthinner,formaldehyde,andvariousotherharmfulchemicals.Based

onthisawareness,theworkshopconcludedwithsomediscussionofhowmicro:bitsandassociated

sensorscouldpotentiallybeusedintheclassroomforlearning.Suggestionsincludedtakingmultiple

measurementsandlookingforcorrelations(e.g.,lightandtemperature),creatingvisualrepresentations

(orartworks)ofdatabeinggatheredovertheday(e.g.,usingdifferentcolours),andaskingstudentsto

explorehowenvironmentalconsiderationsaffectedtheirlearning,suchastheabilitytoconcentrate.

Thesecondpartoftheworkshoptookplacetwoweekslater(firstoption)orsixweekslater

(secondoption)andstaffwereagaininvitedtovoluntarilyattend.Tenparticipantsattendedthefirst

sessionandanothersevenattendedthesecond.Duringthisworkshop,theparticipantsbeganby

familiarisingthemselveswiththebuilt-insensorsofthemicro:bitsandtookmeasurementsoflight

andtemperatureinsideandoutsidethebuilding.Theyweregivensomespecificinformationbefore

thisactivitysuchashowthetemperatureandlightsensorsworktoavoidaccidentallyimpedingthe

sensorswhilehandlingthedevices.Forexample,thetemperaturesensoronthemicro:bitiswithin

theprocessor,soplacingafingerontopoftheprocessorwillgiveafalsetemperaturereading.Even

withthisknowledgeinplace,itwasfoundthatthetemperatureandlightsensorswithinthemicro:bits

variedintheirmeasurements,suggestingthattheywerenotparticularlyaccurate.Thegroupwas

thenintroducedtoseveralexternalsensorsthatweremadeavailabletothem,includinglight,sound,

temperature,pressure,humidity,andCO2(Figure1).Formostofthesemeasurestherewasmore

thanonesensoravailable,sostudentswereabletocomparevaluesforconsistency.

Theparticipantsthenusedtheseexternalsensorstomeasureawiderrangeoffactorsbothinside

andoutsidethebuilding.Amongotherfindings,theynotedsignificantdifferencesinthelevelsof

CO2insideandoutsidethebuildingeventhoughwewereinalarge,air-conditionedroom,thoughit

shouldbenotedthattheinternalmeasureswerestillwithintheacceptablerange.

(9)

observations

Thefacilitatormadeseveralobservationsduringthesessionabouttheirperceptionsofthestudent

experience.Thefollowingkeymomentswerenoted:

• Duringthescaffoldingphase,someparticipantsseemeddisinterestedingaininganunderstanding

ofhowthesensorsworked.

• Duringthepartlyscaffoldedpairactivity,therewassomedisenchantmentbyparticipantswho

foundtheirmicro:bitsmeasuredlightandtemperatureinconsistently.Oneparticipantexpressed

confusionaboutwhatthemicro:bitwasfor,ingeneralterms.Thesetwoissuesmayseemseparate,

butbothrelatedtoalackofbackgroundscaffoldingtohelpthemtounderstandboththepurpose

ofthemicro:bitandexactlyhowtominimisedifferencesinmeasurements(e.g.,bybeingfully

awareofwheretheprocessor,andthereforethetemperaturesensor,waslocated).

• Duringtheexploratoryactivity,therewasfurtherconcernaboutinaccuratedevices.Thisseemed

tostemfromdifferencesinthecodingrequiredfordifferentsensors.Somehadsimplelibrary

supportthatenabledmeasurementstobemadeeasilyandaccurately.However,onedidnothave

anylibrarycodeandrequiredmorecomplexlow-levelcoding.Thisseemstohaveledtosome

errorsthatresultedinmeaninglessmeasurementsbeinggathered.

• Also,duringthisphase,someparticipantsfoundithardtoindependentlyfollowthemanufacturer’s

instructionsprovidedwiththesensors,thoughothergroupsindependentlyexploredtheoptions

availableinthoseinstructions.

Survey Results

Theresultsfromthesurveyweresomewhatdisappointinginthatonlynineoftheseventeenparticipants

electedtorespond.However,despitethesmallquantityofdata,itwasquiterevealingintermsof

thecriticalincidentquestionsthatwereasked.Thefirstcriticalincidentquestion,whichrelatedto

themomentwhereparticipantsfeltmostengaged,revealedthatevenwithinthesmallsamplethere

wasaninterestingrangeofresponses,includingtwofavouringtheinitialscaffoldingsection,three

thepartiallyscaffoldedinitialpairactivity,andtheothersthemoreindependentpairactivity.In

respondingtowhentheywereleastengaged,ofthetwowhorespondedtothisprompt,onestatedit

waswhenthey“weretryingtochooseasagroupwhichonetodo”andtheother“whenplayingwith

themicro-bitandwiresanddownloads”.Thisrangeofresponsesseemedquiterevealingaboutthe

extenttowhichpeopleenjoy(a)groupworkand(b)hands-onpracticalwork.

Figure 1. The external sensors used in the activity

(10)

Forthecriticalincidentquestionthataskedaboutactionsthattheparticipantsfoundmost

affirming,againtherewasaninterestingrange,whichcoveredworkinginateam,independently

gaininganindividualinsightintothetechnology,beingabletofollowtheinstructionsthemselves,

having“one-on-oneinteraction”withthefacilitator,butalso,fromothers,havinggroupinteractions

bothwithandwithoutthefacilitator-“teamproblem-solving”.

Intermsofactionsthattheparticipantsfoundmostpuzzlingorconfusing,thesewereallrelatedto

technology.Whetheritwasunderstandinghowthesensorsworked,understandingwherethesensors

werepositionedonthemicro:bit,tryingtoresolveerrorsinthedatabeinggathered,or“tryingto

attachjawclampstothecorrectpins”,thesewerealltechnicalchallenges.

Forthefourthquestion,whichaskedaboutthemostimportantinformationthatparticipants

hadlearnedinthesession,theresponsesweremainlyaroundlearningaboutthepotentialofthe

micro:bits,forexample,“usingmicro:bitscanbefun.Thereisawidescopewhereitcanbevery

simpleandgetverycomplicated.Italsoletsyoubecreativeasyourconfidenceandunderstanding

develop”.Therewasalsoaresponsearoundtryingtounderstandthepurposeofsuchdevicesin

general–“whatmicro:bitsareandsomeofthethingsthattheycanbeusedfor.Thiswasacomplete

introforme.”Therewerenoquestionsorsuggestionsgivenforthefinalquestion,justsomepositive

feedbackaboutthevalueofthesession.

dISCUSSIoN

Althoughtheworkreportedsofarisaverylimitedstudy,webelieveithasserveditspurposeof

helpingscopeoutthenextstageofdesign-basedresearch,clearlydefinegoals,andexplorehowthe

proposeddesignprinciplescouldbeintegratedintoalearningactivity.Theintentionoftheworkshops

describedabovewastoexploresomedifferentlearningapproachesthatcouldthenbeadoptedin

aclassroomenvironment.Thefocusofthislearningactivitywouldenablestudentstounderstand

whyenvironmentalmonitoringintheclassroomcanbeofvalueforbothwell-beingandlearning.

Thetrialwiththeeducatorsintheworkshopwasundertakentotesthowwelltheproposedactivity

incorporatedthefiveproposeddesignprinciples.

Fromthefirstworkshop,itwasevidentthattheparticipants’awarenessofenvironmental

variablesthatmightimpactwell-beingwasrelativelylimited,andfeedbackfromthisworkshop

indicatedthatdevelopingknowledgeinthisareacouldbeofinteresttolearners.Thisindicatedthat

theproposedapproachofusingmicro:bitsinthismannermayprovideagoodcontextformeaningful

engagement(DP3).Itwasalsoevidentthattheapproachprovidedtheparticipantswithideasoftools

thatcouldbeengagedtomonitoranenvironment.Itwasevidentthatalthoughtheparticipantshad

limitedknowledgeaboutenvironmentalsensors,theinitialworkshopprovidedadequateopportunity

togenerateideasthatcouldbethenintegratedintoaproblem-basedinquiry(DP1)andprovidea

goodcatalystforsupportinglearnerstoidentifyandengagewithaproblem(DP3).However,italso

highlightedthatusingtheclassroomenvironmentmeantthatlearnerswouldhaveasimilarframing

ofcontext,butitshouldalsoprovideopportunitiesfordifferentiation.Fromtheideassharedatthe

endofthesession,itwasevidentthatmanyparticipantssawthisasavaluablelearningopportunity

thatwouldbemeaningfultothelearner(DP2).

Fromthesecondworkshop,wheresomemoreformaldatawasgathered,wegainedsomefurther

insights,particularlyaroundhowthisactivityneedstobescaffoldedtosupportsituatedcognition

(DP3andDP5).Wehadexpectedthattheprimaryinterestofparticipantsinthisactivitywouldbethe

hands-oncollaborativeworktowardstheend,wheretheywereabletoworkindependently.Infact,we

foundthattheparticipants’preferencesvaried,whichsuggeststhatallthedifferentstagesofasituated

cognitionlearningjourneywillneedtohavespecificvaluesfordifferentlearnersandthatweshould

notvalueoneaspectoveranotherbutensurethatallaregivensufficientfocus.Itwasalsoevident

thatsomelearnersneedmorescaffoldingthanotherswhenitcomestoworkingwithtechnology,and

thatwecannotassumethatthevalueofaparticularpieceoftechnologyisautomaticallyunderstood

(11)

byall(DP5).Justbecauseanactivityisexpectedtobeauthenticallylinkedtoareal-worldcontext

doesnotmeanthatlearnerswillseethisthemselveswithoutpriorknowledge.Asmighthavebeen

expected,thethingsthatmostconfusedtheparticipantswereaspectsofthetechnology.Thisraises

animportantquestionaroundtowhatextentanactivityaimstofocusonlearningabouttechnology,

asopposedtolearningwithtechnology.Theanswertothisquestionwillprobablydependonthe

curricularcontext.Forsomelearners,allofthetechnicalsetupshouldbedoneinadvanceforthem,

sotheycansimplyfocusonmonitoringandevaluatingtheirenvironments,whereasinothercases

wemaywishthemtoundertakedeeplearningaboutthetechnologyitself,includinghowitworks,

howtheconnectionscanbesetup,bothwiredandwirelessly,andhowtodevelopthecodeforthese

activities.Alltheselearningswillbetakenforwardintothenextstageofthestudy.

Whilecollaborationwasonlymentionedbysomeparticipants,itwasclearthatdesigningthe

activitytobecollaborativeassistedunderstanding(DP4).Theobservationsshowedthattheparticipants

workedwellwitheachotherandhelpedtobuildadeeperengagementwiththeactivity.Sincethe

activitywasnewforalltheparticipants,havingabuddytohelpunpackanddiscussideashelpedthe

learning.Whiletheactivitywasdesignedtobedoneinpairsitwasalsoclearthattheparticipants

workedacrosspairsandtheyhelpedeachother.Thiswasespeciallyimportantduetothedesignofthe

activitybeingfocusedonbuildingknowledgethroughhands-onexperimentationwiththemicro:bits.

Basedonthisevaluation,itwasclearthattheproposedDPswererelevantandhelpedtoguide

thelearningactivity.However,itwasalsohighlightedthatdifferentiationwasacriticalpartofthe

process.Differentiationwasseenintwoways,1)theabilitytodifferentiatethefocuswherelearners

canexploretheirowninterests,and2)theabilitytodifferentiatethelearningjourney.Asmentioned,

whilenoteveryonemayhavethesameinterestinallpartsofthelearning,thereshouldbeenough

toengagedifferentlearners.Therefore,wehavedecidedtorefinedesignprincipletwo,where

differentiationishighlighted,namely,thattheproblemshouldbeframedinameaningfulwaythat

allowsforauthenticintegrationanddifferentiationofapplication.

SUMMARy ANd CoNCLUSIoNS

Inthisarticle,wehavereportedonsomeworkshopactivitiesbasedonawishtoexplorethepotential

ofusingphysicalcomputingintheclassroom,withaparticularfocusoninvestigatingenvironmental

impactsonwell-beingthatcanbemonitoredbysensorsconnectedtosmallelectronicdevices.The

workshopactivities,asthefirsttwostagesofadesign-basedresearchproject,weredesignedtohelp

scopeoutthenextstagesoftheprojectthatwillapplytheprinciplesofsituatedcognitiontodeveloping

aseriesoflearningexperiencesforschoolstudents,wheretheywillbeabletomonitorandanalyse

theirownclassroomenvironmentsandproposewaysofmitigatinganynegativeenvironmental

impacts.Ourfindingssuggestthatthisisindeedapotentiallyengagingandauthenticlearningactivity

inwhichlearnerscanextendtheirknowledgeandapplytheirlearning.However,itisimportantto

takecarefulaccountofeachstageinthesituatedcognitionlearningprocesstoensurethattheneeds

ofdiverselearnersaremetandnottofocustooearlyoncollaborativeself-directedlearningwithout

firstsettingthefoundationsintheearlierstagesofcognitiveapprenticeship.

Limitations

Theworkreportedinthisarticleisbasedonaverysmallstudythataddressesonlytheinitialphases

ofalargerdesign-basedresearchprojectandisthereforelimitedinitsgeneralisability.However,

giventhatthestudyintendedtoinformwaysinwhichtodesignphysicalcomputingexperiencesin

aspecificdomainofknowledge,itneverthelessprovidedsomeinsightsintothelearnerexperience

thatwillbevaluablegoingforward.

(12)

Next Iteration

Thenextiteration,whichwilltakeusthroughthesubsequentstagesofdesign-basedresearch,will

involvepartneringwithsomesecondaryschooltechnologyteacherswhohaveaninterestinthese

areasoflearning.Eachteacherwillexploredifferentaspectsofphysicalcomputingformonitoring

well-beinginclassroomenvironmentsusingvarioustoolsandlearningapproaches.However,therewill

besomeconsistentthemesstructuredwithinthefivedesignprinciples,includingsituatedcognition

asalearningapproachandcriticalincidentanalysisasawayofidentifyingimportantaspectsofthe

learnerexperiencetoenableustoidentifybestpracticesandprovidereusablelearningdesignsin

thisdomain.

CoNFLICT oF INTEREST

Theauthorsofthispublicationdeclarethereisnoconflictofinterest.

FUNdING AGENCy

ThisresearchwassupportedbyfundingfromTheMindLab’sResearchEnterpriseandEthics

WorkingGroup.

(13)

REFERENCES

Anderson,T.,&Shattuck,J.(2012).Design-basedresearch:Adecadeofprogressineducationresearch?

Educational Researcher,41(1),16–25.doi:10.3102/0013189X11428813

Austin,J.,Baker,H.,Ball,T.,Devine,J.,Finney,J.,DeHalleux,P.,Hodges,S.,Moskal,M.,&Stockdale,

G.(2020).TheBBCmicro:bit:FromtheU.K.totheworld.Communications of the ACM,63(3),62–69.

doi:10.1145/3368856

Ball,T.,Protzenko,J.,Bishop,J.,Moskal,M.,deHalleux,J.,Braun,M.,Hodges,S.,&Riley,C.(2016).

MicrosofttouchdevelopandtheBBCmicro:bit.Proceedings of the 38th International Conference on Software Engineering Companion,637–640.doi:10.1145/2889160.2889179

Barrett,P.,Zhang,Y.,Moffat,J.,&Kobbacy,K.(2013).Aholistic,multi-levelanalysisidentifyingtheimpactof

classroomdesignonpupils’learning.Building and Environment,59,678–689.doi:10.1016/j.buildenv.2012.09.016 Brown,J.S.,Collins,A.,&Duguid,P.(1989).Situatedcognitionandthecultureoflearning.Educational Researcher,18(1),32–42.doi:10.3102/0013189X018001032

Cederqvist,A.-M.(2022).Anexploratorystudyoftechnologicalknowledgewhenpupilsaredesigninga

programmedtechnologicalsolutionusingBBCMicro:bit.International Journal of Technology and Design Education,32(1),355–381.doi:10.1007/s10798-020-09618-6

Coley,D.A.,Greeves,R.,&Saxby,B.K.(2007).TheEffectofLowVentilationRatesontheCognitiveFunction

ofaPrimarySchoolClass.International Journal of Ventilation,6(2),107–112.doi:10.1080/14733315.2007.

11683770

Coley,D.,&Beisteiner,A.(2002).CarbonDioxideLevelsandVentilationRatesinSchools.International Journal of Ventilation,1(1),45–52.doi:10.1080/14733315.2002.11683621

Dey,T.,Elsen,I.,Ferrein,A.,Frauenrath,T.,Reke,M.,&Schiffer,S.(2021).CO2Meter:Ado-it-yourselfcarbon

dioxidemeasuringdevicefortheclassroom.The 14th Pervasive Technologies Related to Assistive Environments Conference,292–299.doi:10.1145/3453892.3462697

Dockrell,J.E.,&Shield,B.M.(2006).Acousticalbarriersinclassrooms:Theimpactofnoiseonperformance

intheclassroom.British Educational Research Journal,32(3),509–525.doi:10.1080/01411920600635494 DreossiR.C.F.Momensohn-SantosT.(2005).Noiseanditsinterferenceoverstudentsinaclassroomenvironment:

Literature review.Pró-Fono Revista de Atualização Científica, 17(2), 251–258. <ALIGNMENT.qj></

ALIGNMENT>10.1590/S0104-56872005000200014

Easterday,M.W.,Lewis,D.R.,&Gerber,E.M.(2014).Design-BasedResearchProcess:Problems,Phases,

andApplications.InJ.Polman,E.Kyza,D.O’Neill,I.Tabak,W.Penuel,A.Jurow,K.O’Connor,T.Lee,&L.

D’Amico(Eds.),Learning and Becoming in Practice: The International Conference of the Learning Sciences (ICLS) 2014. Volume 1.InternationalSocietyoftheLearningSciences.

Gaihre,S.,Semple,S.,Miller,J.,Fielding,S.,&Turner,S.(2014).ClassroomCarbonDioxideConcentration,

SchoolAttendance,andEducationalAttainment.The Journal of School Health,84(9),569–574.doi:10.1111/

josh.12183PMID:25117890

Gratnells.(n.d.).Learnometer.https://gratnellslearnometer.com/

Henry,D.(2022,April8).“Makesthemfeelsafer”:SchoolkidsusingCO2monitorstofightCovid,learnscience.

New Zealand Herald.https://www.nzherald.co.nz/nz/covid-19-omicron-outbreak-students-monitor-co2-learn- science-on-the-side/5UVDZTIBC3RZ3DFLWQH2CXPG7U/

Hodges,S.,Sentance,S.,Finney,J.,&Ball,T.(2020).Physicalcomputing:Akeyelementofmoderncomputer

scienceeducation.Computer,53(4),20–30.doi:10.1109/MC.2019.2935058

KaneInternational.(2022).What are safe levels of CO and CO2 in rooms?KaneInternationalLimited.https://

www.kane.co.uk/knowledge-centre/what-are-safe-levels-of-co-and-co2-in-rooms

Keefer,J.M.(2009,May).Thecriticalincidentquestionnaire(CIQ):Fromresearchtopracticeandbackagain.

InProceedings of the 50th Annual Adult Education Research Conference(pp.177-180).AcademicPress.

(14)

David Parsons is National Postgraduate Director for The Mind Lab in Auckland, New Zealand. He holds a PhD in Information Technology and a Master’s degree in Computer Science, and has wide experience in both academia and the IT industry. He is the founding editor in chief of the International Journal of Mobile and Blended Learning (IJMBL) and has published widely on technology-enhanced learning, software development, and agile methods.

He is President of the International Association for Mobile Learning, a member of the Australasian Society for Computers in Learning in Tertiary Education, and a certified member of the Association for Learning Technologies.

Knowles,B.,Finney,J.,Beck,S.,&Devine,J.(2018).WhatChildren’sImaginedUsesoftheBBCmicro:bitTells

UsAboutDesigningfortheirIoTPrivacy,SecurityandSafety.Living in the Internet of Things: Cybersecurity of the IoT - 2018,15.10.1049/cp.2018.0015

LakshagaJyothi,M.,&Shanmugasundaram,R.S.(2021).EnablingIntelligencethroughDeepLearningusing

IoTinaClassroomEnvironmentbasedonamultimodalapproach.Turkish Journal of Computer and Mathematics Education,12(2),381–393.doi:10.17762/turcomat.v12i2.818

Mahyuddin, N., Awbi, H. B., & Alshitawi, M. (2014). The spatial distribution of carbon dioxide in

rooms with particular application to classrooms.Indoor and Built Environment,23(3), 433–448.

doi:10.1177/1420326X13512142

MoE.(1999).Well-being, hauora.https://health.tki.org.nz/Teaching-in-Heath-and-Physical-Education-HPE/

HPE-in-the-New-Zealand-curriculum/Health-and-PE-in-the-NZC-1999/Underlying-concepts/Well-being-hauora MoE.(2018).Progress outcomes / Technology / The New Zealand Curriculum / Kia ora—NZ Curriculum Online.

https://nzcurriculum.tki.org.nz/The-New-Zealand-Curriculum/Technology/Progress-outcomes

Papavlasopoulou,S.,Giannakos,M.N.,&Jaccheri,L.(2019).Exploringchildren’slearningexperiencein

constructionism-basedcodingactivitiesthroughdesign-basedresearch.Computers in Human Behavior,99,

415–427.doi:10.1016/j.chb.2019.01.008

Nikou,S.,Collins,R.,&Hendry,M.(2020,June).Engagementinphysicalcomputingfortheprimaryclassroom:

theBBCMicro:bitexperience.InEdMedia+InnovateLearning(pp.566-569).AssociationfortheAdvancement

ofComputinginEducation(AACE).

Przybylla,M.,&Romeike,R.(2017).Thenatureofphysicalcomputinginschools:findingsfromthreeyearsof

practicalexperience.Proceedings of the 17th Koli Calling International Conference on Computing Education Research.doi:10.1145/3141880.3141889

Psycharis,S.,Kalovrektis,K.,Sakellaridi,E.,Korres,K.,&Mastorodimos,D.(2018).UnfoldingtheCurriculum:

PhysicalComputing,ComputationalThinkingandComputationalExperimentinSTEM’sTransdisciplinary

Approach.European Journal of Engineering and Technology Research,19–24..10.24018/ejeng.2018.0.CIE.639 Rogers,Y.,Shum,V.,Marquardt,N.,Lechelt,S.,Johnson,R.,Baker,H.,&Davies,M.(2017).FromtheBBC

Microtomicro:bitandBeyond:ABritishInnovation.Interaction,24(2),74–77.doi:10.1145/3029601 Runathong,W.,Wongthai,W.,&Panithansuwan,S.(2017).ASystemforClassroomEnvironmentMonitoring

UsingtheInternetofThingsandCloudComputing.InK.Kim&N.Joukov(Eds.),Information Science and Applications 2017(pp.732–742).Springer.doi:10.1007/978-981-10-4154-9_84

Shendell,D.G.,Prill,R.,Fisk,W.J.,Apte,M.G.,Blake,D.,&Faulkner,D.(2004).Associationsbetween

classroomCO2concentrationsandstudentattendanceinWashingtonandIdaho.Indoor Air,14(5),333–341.

doi:10.1111/j.1600-0668.2004.00251.xPMID:15330793

vandenAkker,J.,Gravemeijer,K.,McKenney,S.,&Nieveen,N.(Eds.).(2006).Educational design research.

Routledge.doi:10.4324/9780203088364

Woolner,P.,&Hall,E.(2010).NoiseinSchools:AHolisticApproachtotheIssue.International Journal of Environmental Research and Public Health,7(8),3255–3269.doi:10.3390/ijerph7083255PMID:20948959 Yin,S.,Zhang,D.,Zhang,D.,Li,H.,&Yu,Y.(2021).WirelessSensorsApplicationinSmartEnglishClassroom

DesignBasedonArtificialIntelligentSystem.Microprocessors and Microsystems,81,103798.doi:10.1016/j.

micpro.2020.103798

Referensi

Dokumen terkait

May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S.. or applicable copyright

OFFSHORE KOREA 국내 해양플랜트 소식 | OFFSHORE KOREA | 해양플랜트 관련 업무, 해양수산부 통합 추진 Ÿ 8월 7일, 홍문표 의원농림축산식품해양수산위원회은 해양플랜트, 조선, 해양광물·에너지 관련 업무 를 해양수산부로 통합하는 것을 주요 내용으로 하는 정부조직법 개정안을 발의한다고 발표 Ÿ 이번